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This study presents an overview and a few case studies to explicate the
transformative power of diverse imaging techniques for smart manufacturing,
focusing largely on various in-situ and ex-situ imaging methods for monitoring
fusion-based metal additive manufacturing (AM) processes such as directed
energy deposition (DED), selective laser melting (SLM), electron beam melting
(EBM). In-situ imaging techniques, encompassing high-speed cameras, thermal
cameras, and digital cameras, are becoming increasingly affordable,
complementary, and are emerging as vital for real-time monitoring, enabling
continuous assessment of build quality. For example, high-speed cameras capture
dynamic laser-material interaction, swiftly detecting defects, while thermal
cameras identify thermal distribution of the melt pool and potential anomalies.
The data gathered from in-situ imaging are then utilized to extract pertinent
features that facilitate effective control of process parameters, thereby optimizing
the AM processes and minimizing defects. On the other hand, ex-situ imaging
techniques play a critical role in comprehensive component analysis. Scanning
electron microscopy (SEM), optical microscopy, and 3D-profilometry enable
detailed characterization of microstructural features, surface roughness,
porosity, and dimensional accuracy. Employing a battery of Artificial
Intelligence (AI) algorithms, information from diverse imaging and other multi-
modal data sources can be fused, and thereby achieve a more comprehensive
understanding of a manufacturing process. This integration enables informed
decision-making for process optimization and quality assurance, as AI algorithms
analyze the combined data to extract relevant insights and patterns. Ultimately, the
power of imaging in additive manufacturing lies in its ability to deliver real-time
monitoring, precise control, and comprehensive analysis, empowering
manufacturers to achieve supreme levels of precision, reliability, and
productivity in the production of components.
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1 Introduction

The emergence of Industry 4.0 over the last decade has seen manufacturing industries
transforming themselves by integrating physical production and operations with smart
digital technologies and big data, thereby creating a highly interconnected network of
manufacturing devices resulting in efficient and automated production workflows
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(Zhong et al., 2017). The increasing use of sensor-fusion based
technologies in manufacturing, wherein data from multiple
sensors are fused to produce reliable information, yields a
more robust understanding of the physics behind
manufacturing processes and significantly contributes towards
improving product quality control (Kumar and Garg, 2004).
Imaging techniques have emerged as central tools within the
space of additive manufacturing, revolutionizing industry.

The machine vision market, which encompasses imaging
systems in manufacturing, has been experiencing significant
growth. According to a report by Fortune Business Insights (The
global machine vision market, 2023), the global machine vision
market was valued at around $9.01 billion in 2022 and is projected to
reach $16.82 billion by 2030, with a compound annual growth rate
(CAGR) of 8.2% during the forecast period. The integration of AI
and machine learning techniques with imaging systems has further
fueled the growth by enabling automated decision-making and real-
time monitoring, enhancing overall manufacturing efficiency. From
machine vision systems that perform automated quality inspections
to thermal imaging cameras that detect anomalies in temperature
distributions, imaging technologies are a powerful tool to visualize
and understand complex manufacturing processes with unique
clarity.

1.1 Imaging techniques

1.1.1 In-situ imaging
In the realm of additive manufacturing, two major imaging

techniques exist: in-situ imaging and ex-situ or post-processing
imaging. Each technique possesses distinct advantages and
disadvantages, but in-situ imaging holds significant importance,
particularly in the context of real time process monitoring. In-
situ imaging, within the realm of manufacturing and material
processing, is a technique that involves the capture and analysis
of data directly within the operational environment. This is done
without disrupting ongoing processes or necessitating the removal
of samples for external examination.

This method allows for the real-time monitoring and analysis of
various phenomena, such as alterations in material properties,
structural dynamics, and process conditions. These observations
provide valuable insights into the underlying mechanisms at work.
By studying the process in its natural state, researchers can gain a
holistic understanding of the dynamics and behaviors involved. This
facilitates the identification of key patterns and trends, as well as
potential areas for optimization or intervention. This technique
enables the continuous monitoring of manufacturing processes,
resulting in the generation of large volumes of data.
Subsequently, these data sets can be subjected to analysis, aiming
to extract meaningful and valuable information.

1.1.2 Ex-situ imaging
While not real-time, ex-situ imaging techniques offer detailed

characterization of the manufactured part. Typically, these
techniques involve capturing images and relevant data from
samples to analyze their mechanical and structural properties.
Notable examples include technologies such as scanning electron
microscopy, optical microscopy, and profilometer-based scanning.

These techniques provide highly accurate and precise
characterizations of the samples, making them indispensable for
quality control as well as research and development efforts.

Ex-situ imaging has been a mainstay in the industry for decades.
However, several compelling reasons have underscored the need for
in-situ imaging techniques. Firstly, ex-situ techniques do not provide
immediate feedback or the ability to address issues as they arise. This
is particularly true for time-sensitive industries such as additive
manufacturing, where near real-time adjustments are necessary.
Another limitation of ex-situ techniques is their inability to
capture the process dynamics as the manufacturing process
progresses.

In contrast, in-situ techniques can circumvent some of the
redundancies inherent in ex-situ imaging, making them more
practical in today’s smart additive manufacturing environment.
This paper discusses ex-situ imaging techniques tangentially,
with a specific focus on the integration of AI and ML
frameworks.

The utilization of these in-situ imaging approaches offers a data-
driven perspective, allowing for the identification of patterns,
anomalies, and correlations that might remain unnoticed using
conventional methods (Iquebal et al., 2020). The continuous
monitoring and analysis of data streams enable real-time
decision-making, as deviations from desired process conditions
or quality specifications can be promptly identified. This timely
feedback loop allows for immediate adjustments and interventions
to uphold or improve manufacturing performance. However, these
in-situ image techniques are prevented in implementation due to
high markup prices, which over the time will become feasible for
everyone to use such techniques.

1.2 Techno-economic barriers and
opportunities

While the initial high costs currently deter the widespread
adoption of in-situ imaging techniques, ongoing research and
technological advancements are anticipated to lead to cost
reductions. As these costs decrease, these techniques will become
increasingly accessible to a wider range of manufacturers, enabling
them to harness the advantages of data-driven decision-making,
real-time monitoring, and process optimization. The industry also
faces significant challenges, such as the effective development and
deployment of an appropriate edge computing setup capable of
analyzing large volumes of high-quality image data in real-time. This
capability to process vast amounts of data within milliseconds is
crucial for applications where prompt decision-making is essential.

At present, the options for edge computing are limited, either
due to high capital investment or processing speeds. However, with
advancements in GPU technologies, the development of more
powerful and energy-efficient hardware, and better-optimized
algorithms, it has become feasible to achieve near real-time
decision-making, even in implementations where all raw data is
used for analysis. On another front, there has been a shift towards
the concept of ‘just-the-right data’ or feature extraction. In this
approach, only the important features of the raw data are extracted,
while the redundant imaging data is discarded, enabling real-time
in-situ monitoring.
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TABLE 1 Imaging techniques used in different fusion-based additive manufacturing processes.

Aspects AM process Imaging technique Sensor Feature Spatial and temporal
resolution

Geometry SLM (Black et al., 2023) Optical CCD Material flow and densification 60 µm/pixel, 75 Hz

SLM (Abhilash and Ahmed,

2023)

Optical USB digital camera Corner/Edge dimensions -

SLM (Xie et al., 2022) Optical - Linear zone boundaries 1,080 × 1920 pixels*, 2,158 fps

SLM (Lapointe et al., 2022) Optical Photodiode Thins walls and overhangs 40 kHz

SLM (Özsoy et al., 2021) Optical CMOS Layer width 5.4 µm/pixel

SLM (Zhang et al., 2023a) Optical 3D scanner Deviations of common geometric features (right angles, acute

angles, arcs, rings, etc.) and warpage

5.4 µm/pixel, 42 fps

DED (Regulin and Barucci,

2023)

Optical In-process depth meter (IDM), CMOS Build height 30 FPS

Wire-DED (Xiong et al., 2016) Optical Passive vision sensor, CCD Layer width Wavelength of 650 nm

Wire-DED (Becker et al., 2021) Optical OCT Track height Wavelength of 1,550 nm, 20 kHz

Wire-DED (Li et al., 2021b) Optical SLS Bead height and width -

Wire-DED (Radel et al., 2019) Optical Camera Deposit radius 30 µm/pixel

SLM (Liu et al., 2022) Thermography LWIR sensor Layer thickness 325 µm/pixel, 200 Hz

Wire-DED (Bernauer et al.,

2022a)

Thermography Pyrometer Bead width 1.45–1.65 μm/pixel, 1 kHz

EBM (Renner et al., 2022) Electron optical imaging Backscattered Electron Bulging 53.3 μm/pixel, 32 MHz

EBM (Arnold and Körner,

2021)

Electron optical imaging Backscattered Electron Dimensional accuracy 47 μm/pixel, 1.8 s

EBM (Wong, 2020) Electron optical imaging Backscattered Electron Surface tilt 100 μm/pixel, 27.3 s

Morphology SLM (Cherif et al., 2023) High speed optical CMOS Balling, irregularity, overheating 1,022 × 428 pixels*, 2000 FPS

SLM (Chebil et al., 2023) High speed optical CMOS Spatter 80 μm/pixel, 10kfps

SLM (Boschetto et al., 2023) Optical CCD Lack-of-fusion porosity, geometrical deformations 1,280 × 1,024 pixels*

SLM (Bugatti and Colosimo,

2022)

Optical CMOS Hot spots 121 × 71 pixels*, 300 FPS

SLM (Boschetto et al., 2022) Optical CCD Voids, lack of powder 1,280 × 1,024 pixels*

SLM (Vallabh et al., 2021) Optical high speed CMOS Spatter 0.5 μm/pixel, 1000 FPS

SLM (Zhang et al., 2023b) High speed optical CMOS Thickness, balling 35.56 µm/pixel

SLM (Lu et al., 2020) Optical Photo interrupter Porosity, lack of fusion defects 10–13 μm/pixel

SLM (Yan et al., 2022) High speed optical CMOS Hot spots 126 × 136 pixels*, 150 fps

SLM (Lin et al., 2022) Optical high speed CMOS Spatter 8 μm/pixel, 2 kHz

SLM (Jiang et al., 2023) Optical CMOS Balling, crack, debris, lack of powder 80 μm/pixel, 6 fps

SLM (Fischer et al., 2021) Optical CMOS Balling, spatters, surface porosity 24 μm/pixel

SLM (Yang et al., 2021) Optical and Thermography Coaxial camera, pyrometer Metrology–roughness, density of part 160 × 160 pixels*, 2.5 kHz

DED (Yang et al., 2023) High speed optical CMOS Spatter and plume 7 × 5 mm2, 5,000 fps

DED (Mi et al., 2023) High speed optical CMOS Spatter 1,280 × 896 pixel*, 30,000 fps

DED (Sun et al., 2020) Optical high speed CMOS Melt pool 100 fps

DED (Min et al., 2022) High speed optical CMOS Surface dust 1,280 × 896 pixels, 30,000 fps

DED (Chen et al., 2020) Optical CCD Melt pool width -

EBM (Grasso, 2021) Optical CMOS Inhomogeneity and irregularities 130 μm/pixel

DED (Reich et al., 2022) Optical–Laser 2D, 3D triangulation scanners Surface deformation 12 μm, 300 Hz

EBM (el Farsy et al., 2023) Laser spectroscopy Diode laser Plume 1 MHz

SLM (Guerra et al., 2022) Optical coherence

tomography

NIR, LWIR, CMOS Porosity, lack of fusion and Geometric distortions 26 μm/pixel

SLM (O’Dowd et al., 2021) Interferometry Projector and camera Keyhole and lack of fusion porosity 50 μm/pixel

DED (Ma et al., 2023) Interferometry Coherent optical sensor Keyhole porosity 1,000 Hz

(Continued on following page)
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TABLE 1 (Continued) Imaging techniques used in different fusion-based additive manufacturing processes.

Aspects AM process Imaging technique Sensor Feature Spatial and temporal
resolution

DED (Su et al., 2023) Thermography IR sensor Surface roughness, porosity 1,064 nm, 64 × 48 pixels

DED (Liao et al., 2022) Thermography IR sensor Melt pool depth 200 μm, 25 Hz

DED (D’Accardi et al., 2023) Thermography IR sensor Residual melted powder 0.5 mm/pixel, 100 Hz

DED (Akbari and Kovacevic,

2019)

Thermography CMOS (Infrared imaging) Melt pool size 640 × 480 pixels*, 200 fps

DED (Smoqi et al., 2022) Thermography Two-wavelength pyrometer imaging Melt pool temperature 11 µm/pixel, 2.5 Hz

DED (Su et al., 2022a) Thermography IR sensor Melt pool size 0.5 mm/pixel

DED (Ali et al., 2022) Thermography IR sensor Melt pool size 64 × 64 pixels*, 1 kHz

DED (Hu and Kovacevic,

2003b)

Thermography IR sensor Melt pool area 128 × 128 pixels*

Wire-DED (Gibson et al., 2020) Thermography IR sensor Melt pool size 2,600 to 3,400 pixels*

Wire-DED (Bernauer et al.,

2022b)

Thermography Pyrometer Melt pool temperature 1.45 1.65 μm, 1 kHz

Wire-DED (Gibson et al., 2019) Thermography Thermal camera, laser line scanner Melt pool size -

WAAM (Huang et al., 2022) Laser profilometer Camera and laser projector Bulges, dents, surface pores 1 mm/pixel, 100 Hz

DED (Bakre et al., 2022) Laser Ultrasonic Imaging Laser Interferometer Pores and defects Rayleigh waves Bandwidth

~5 MHz λs� 0.6mm

Wire- DED (Chabot et al.,

2020)

Phased array Ultrasonic

Testing

Ultrasonic Transducer Pores and defects -

DED (Sotelo et al., 2021) Ultrasonic Imaging Ultrasonic Transducer Surface roughness and solid state phase changes -

DED (Liu et al., 2023) Laser Ultrasonic Imaging Laser Doppler Vibrometer Lack of fusion and gas porosity Ultrasonic response (50 μs)–

frequency resolution of 20 kHz

DED (Millon et al., 2018) Laser Ultrasonic Imaging Two-wave mixing interferometer Lack of fusion pores and defects Detect 15 MHz ultrasound frequency

and 0.1-mm size flaws

SLM (Raffestin et al., 2023) Ultrasonic Imaging Ultrasonic Transducer Part’s Geometry and Morphology–designed cavities 10 MHz

SLM (Allam et al., 2022) Phased array Ultrasonic

Testing

Ultrasonic Transducer Lack of Fusion defects -

Guided waves based

Ultrasonic Imaging

Laser Doppler Vibrometer Lack of fusion pores 12.5 MHz, spatial resolution 0.5 mm

SLM (Davis et al., 2019) Laser Ultrasonic Imaging Two-wave mixing interferometer Lack of fusion pores 63 µm

SLM (Honarvar et al., 2021) Phased array Ultrasonic

Testing

Ultrasonic Transducer Internal defects 0.132 mm at 50 MHz

SLM (Hirsch et al., 2018) Spatially Resolved Acoustic

Spectroscopy

Pulsed Generation Laser, Mask, Detection

Laser, and Knife Edge Detector

Surface defects 10 µm/pixel

SLM (Hirsch et al., 2017) SRAS and Optical

Microscopy

Pulsed Generation Laser, Mask, Detection

Laser, and Knife Edge Detector

Surface Defects (Cracks, Pores) 10 µm

Microstructure DED (Farshidianfar et al.,

2021a)

Thermography IR sensor Cooling rate, grain structure, microhardness 0.5 mm/pixel, 30 Hz

DED (Farshidianfar et al.,

2021b)

Thermography IR sensor Cooling rate, grain structure, microhardness 0.5 mm/pixel, 30 Hz

DED (Chechik et al., 2023) Thermography Thermal camera Grain area, average hardness 5.4 µm/pixel, 75 FPS

DED (Su et al., 2022b) Thermography Thermal camera Phase transformation, grain size, melt pool width 0.15 mm/pixel, 1000 FPS

DED (Farshidianfar et al., 2016) Thermography IR sensor Melt pool temperature, dilution, clad height 0.5 mm/pixel

SLM (Pieris et al., 2019) Spatially Resolved Acoustic

Spectroscopy

Pulsed Generation Laser, Mask, Detection

Laser, and Knife Edge Detector

Microstructure variations Morphology–Surface and subsurface

pores

-

SLM (Smith et al., 2014) Spatially Resolved Acoustic

Spectroscopy

Pulsed Generation Laser, Mask, Detection

Laser, and Knife Edge Detector

Microstructure Imaging and Grain Orientation 20 μm

SLM (Patel et al., 2018) Spatially Resolved Acoustic

Spectroscopy

Pulsed Generation Laser, Mask, Detection

Laser, and Knife Edge Detector

Microstructure (Image Texture) and Morphology - Surface

Roughness

0.35 µm/pixel

SLM (Sharples et al., 2006) Spatially Resolved Acoustic

Spectroscopy

Pulsed Generation Laser, Mask, Detection

Laser, and Knife Edge Detector

Microstructure of multi-grained materials 0.8 mm

SLM (Lu et al., 2022) Optical Powder bed scanner Build density 20 µm/pixel

EBM (Gardfjell et al., 2023) Electron optical imaging Backscattered Electron Powder contamination 1,500 × 1,500 pixel*, 20 MHz

(Continued on following page)
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The generation of high-quality image data for training machine
learning and AImodels is expensive, posing a challenge for industries to
widely adopt such techniques. Even with advancements in imaging
technology leading to cheaper options thatmaintain high image quality,
processes such as storage and labeling of such high-resolution datasets
are highly resource-intensive, further straining a company’s finances.
However, ML/AI methods have evolved to enable the extraction of
valuable insights even from low-quality image data. Techniques such as
transfer learning and data augmentation have provided the means for
artificial data generation and training more robust models with less
pristine data.

While there are still some restrictions on the widespread
adoption of in-situ imaging techniques, they offer a plethora
of advantages over other sensing modalities. They provide high-
resolution visual data that works exceptionally well with modern
deep learning architectures while also being human-friendly for
quick human decision-making or intervention. Intricate visual
patterns and anomaly detection are possible, which might evade
detection via other sensing technologies. In-situ imaging also
provides more flexibility and adaptability when it comes to
reproducing the same setup elsewhere, making them versatile
for various applications. Most other sensing modalities
require some amount of contact with the process or the
machine, while these machine vision-based in-situ methods
provide for non-contact measurements and monitoring. Such
methods also relax the need for specialized signal conditioning
or data acquisition system requirements by often providing
plug-and-play usage.

The subsequent sections of this paper are structured as follows:
Section 2 comprises a comprehensive literature review as listed in
Table 1 that specifically concentrates on imaging techniques
employed within the field of additive manufacturing. Moreover,
detailed case studies are provided in Section 3, showcasing
experiments carried out on DED process at Texas A&M
University. In-situ imaging methods are discussed, about the
utilization of high-speed cameras, thermal cameras, and digital
cameras for real-time observation and analysis. Furthermore,
comprehensive exploration is undertaken on post-processing
imaging techniques, specifically highlighting the application of
3D optical profilometry and the image segmentation toolbox for
defect detection. Concluding remarks are presented in Section 4.

2 Overview of imaging methods for
fusion-based additive manufacturing

This section evaluates key optical sensing technologies in
literature for in-situ imaging measurements in additive

manufacturing. The imaging techniques are classified based on
the type of wave used for imaging: electromagnetic waves (see
Figure 1) and mechanical waves (e.g., laser ultrasonic and
spatially resolved acoustic spectroscopy imaging). While not
exhaustive, the primary focus is on the most significant imaging
techniques that offer high-resolution capture of process physics and
integration withmachine learning and artificial intelligence methods
during model training. The objective is to assess the capabilities and
performance of these technologies in a scientific context and to
highlight their utility for non-destructive evaluation of surface
characteristics during additive manufacturing.

Radio waves, characterized by longer wavelengths and lower
frequencies relative to other forms of electromagnetic radiation, are
not a preferred choice for high-resolution imaging in additive
manufacturing. Although their propensity to traverse large
distances renders them suitable for communication and data
transmission, their interaction with matter does not facilitate
non-destructive evaluation and process monitoring in additive
manufacturing. Conversely, gamma rays, characterized by
extremely short wavelengths and high frequencies are highly
energetic. While gamma rays have the ability to penetrate deep
into materials and can be used for non-destructive testing, their
adoption in additive manufacturing for in-situ process monitoring is
limited due to safety concerns.

2.1 X-ray imaging

High speed X-ray imaging and X-ray diffraction studies for in-
situ characterization of Laser Bed Powder Fusion (LBPF) process
have revealed several significant phenomena such as melt pool
dynamics, solidification rates, phase transformation and pore
formation mechanism due to keyhole at high spatial and
temporal resolutions (Zhao et al., 2017; Leung et al., 2018). Wolff
et al. illustrated the use of high-speed synchrotron hard X-ray
imaging to study the pore formation dynamics in DED with
micrometer spatial resolution and microsecond temporal
resolution as shown in Figure 2. Due to the inherent difference
in the way DED and LBPF systems are designed, the pore formation
dynamics differ for both the processes. Particle deposition was
found to be the key driver behind pore formation due to lack
of fusion in DED and the presence of voids between the packed
particles on the powder bed was the primary reason for porosity
due to lack of fusion in LPBF (Wolff et al., 2021a; Wolff et al.,
2021b). Owing to the difficulties for X-ray passage in commercial
PBF systems, Bidare et al. designed an open architecture for metal
PBF system accommodating for two X-ray imaging directions
and the entire set up being easily transportable allowing for

TABLE 1 (Continued) Imaging techniques used in different fusion-based additive manufacturing processes.

Aspects AM process Imaging technique Sensor Feature Spatial and temporal
resolution

EBM (Wong et al., 2019) Electron optical imaging Backscattered Electron Quality 1800 × 1800 pixels*, 118.8 KHz

DED (Freeman et al., 2023) Optical CMOS Flexural stress-strain curves 5.4 µm/pixel, 28 FPS

EB-DED (Liang et al., 2022;

Liang et al., 2023)

Optical Industrial camera Absorbed current 640 × 480 pixels*, 50 FPS

aCamera resolution.
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inspections at different measurement facilities (Bidare et al.,
2017). The widespread adoption of in-situ X-ray imaging for
DED and other AM processes at an industrial scale faces several
challenges. High costs are a significant deterrent, and the
requirement for a complex setup that demands regular
adjustments complicates operational procedures. Furthermore,
environmental factors, such as ionizing radiation, as well as
material-specific properties such as emissivity and reflectivity,
pose additional challenges to its applicability.

2.2 Optical imaging (visible spectra)

Optical methods that utilize electromagnetic waves in the
visible spectrum are among the most frequently employed in-situ
monitoring systems for additive manufacturing. These methods
leverage different types of detectors to capture high-speed images

of the process, providing valuable insights into the material
deposition and quality assurance aspects of additive
manufacturing.

2.2.1 Stereovision
Stereo vision is a method for reconstructing the 3-D structure of

an object from corresponding points from 2 cameras by
triangulation. Based on the configuration of the cameras and
their intrinsic parameters, one can calibrate the “line of sight” of
each pixel, and the intersection of the corresponding lines of sight
from both the cameras will help us infer the 3-D position as shown
in Figure 3 (Lazaros et al., 2008; Kanatani et al., 2008). With respect

FIGURE 1
Electromagnetic spectrum.

FIGURE 2
Illustration of principle behind Stereovision using two cameras.

FIGURE 3
Schematic of dual-camera structured light sensor system.

Frontiers in Manufacturing Technology frontiersin.org06

Balhara et al. 10.3389/fmtec.2023.1271190

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2023.1271190


to metal AM, stereovision can help capture the geometry of melt
pool and identify the size, speed, direction, and age of spatter ejected
from the laser melt pool (Eschner et al., 2020). Barrett et al.,
employed a stereovision camera system to record the selective
laser melting of maraging steel, with two cameras in 1,000 fps
setting having 1,280 × 720-pixel count resulting in a spatial
resolution of about 20 μm/pixel. The cameras were synchronized
to measure stereoscopic features of the resulting spatter. Laser
spatter can help us infer the process and quality of the part being
built in-situ with a qualify-as-you-go methodology (Barrett et al.,
2019; Barrett et al., 2018a). Liu et al. investigated a stereo vision-
based system for a hybrid (additive and subtractive) manufacturing

process to automatically detect the defect area and generate a tool
path for repairing the defect (Liu et al., 2017). The resolution of the
cameras and proper illumination will act as a bottleneck as we aim to
characterize surfaces corresponding to different materials in the sub-
micron scale.

2.2.2 Structured light systems (SLS)
The principle of structured-light 3D surface imaging technique

is to extract the 3D surface shape based on the information from the
distortion of the projected structured-light pattern. The distortions
of the fringe pattern due to variations in surface height of the sample
can be precisely captured by the cameras. SLS utilizes the
triangulation principle to calculate the relative positions of the
measuring points on the target surface. The use of multiple
fringe patterns and the corresponding reconstruction improves
the measurement accuracy of this technique without
compromising speed compared to other methods, and therefore
is suited for in-situ AM applications as shown in Figure 3 (Zhang
et al., 2020; Wang et al., 2021). A dual-camera SLS consists of two
cameras and a projector. Usually, the projector acts as a bottleneck in
the set up with respect to the resolution. However, implementation
of phase shifting method and defocusing technique on the multiple
fringe patterns can compensate the shortcomings of the projector
resolution, as demonstrated byWang et al. They were able to achieve
a spatial resolution measurement of 5 μm with an accuracy of
0.05 μm, by using 6 different fringe patterns (Wang et al., 2021).
Zhang et al. employed a custom designed single projector single
camera fringe projection system for in situ metrology in Laser
Powder Bed Fusion (LBPF) process. They were able to achieve a
spatial resolution of 6.8 μm/pixel and a single point repeatability
measure of 0.47 μm for measuring the surface topography at each
layer using phase shifting and unwrapping algorithms (Zhang et al.,
2016). Li et al. proposed a 4D line-scan hyperspectral imager by
employing a camera with a spectrograph for a line-scan fringe
projection (c) profilometry and achieved a spectral resolution of
2.8 nm along with the spatial root mean square error of 0.0895 nm
when measuring a sphere of diameter 40.234 nm (Li et al., 2021a).
Harshavardhan et al. proposed a new fringe projection method

FIGURE 4
High speed camera image during a metal directed energy
deposition process.

FIGURE 5
Pyrometer based melt pool camera (Stratonics ThermaViz
System) image during a metal directed energy deposition process.

FIGURE 6
Illustration of spatially resolved acoustic spectroscopy.
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using polarized light illumination and a polarization camera which
could measure moving objects or varying shape objects with high
speed (Harshavardhan et al., 2018).

2.2.3 Optical coherence interferometry
Interferometry captures the depth information of the surface

under study by using the interference pattern of two coincident light
beams that travel unequal paths. An important characteristic of the
interferometric surface topography measurement is that the
sensitivity to variations in the measurement is independent of the
field of view unlike other optical metrology techniques involving
triangulation, fringes or focus effects (De Groot, 2019). However, the
surface under consideration needs to be reflective in nature to obtain
accurate measurements. The resolution of interferometers is
generally in the order of 10 nm in the longitudinal direction and
in the order of 1 μm in the lateral direction (Gomez et al., 2020).
Optical Coherence Tomography (OCT) is essentially a low
coherence interferometer, samples points in the depth direction
and constructs a cross sectional image (Yoshizawa, 2009). Spectral-
domain optical coherence tomography (SD-OCT) techniques have
been reported in literature for monitoring real time in-situmelt pool
morphology changes and surface roughness measurements for each
layer in LPBF processes (DePond et al., 2018; Kanko et al., 2016).
The interference spectrogram, recorded by a 100 kHz Si CMOS
camera is then transformed into a map of intensity as a function of
distance above the powder bed surface. SD-OCT has been found to

permit a long working distance, high sampling rate and provides
micrometer scale axial and lateral resolution.

2.2.4 Optical displacement sensors
High accuracy optical displacement sensors can be

categorized into two types depending on their working
principle being laser triangulation and confocal imaging.
Laser profilers (or) laser displacement sensors are used to
collect height data across a laser line on the surface instead of
a single point. A common example would be the Kinect sensor,
which uses an Infra-Red (IR) projector to project a pattern of IR
dots onto the surface under consideration and the reflected rays
are captured by a monochrome CMOS camera placed a few
centimeters apart. The depth information is estimated using the
principles of triangulation. In the field of additive
manufacturing, Barrett et el. employed a high-resolution laser
line profilometer to provide a micron level surface map of each
layer after being printed in a LPBF system (Barrett et al., 2018b).
Wang et al. employed a stereovision camera coupled with a laser
displacement sensor for a hybrid manufacturing setup with CNC
milling to achieve a spatial resolution of the order of 10 μm
(Wang et al., 2015). Confocal sensors use a white light source
that is focused onto the target surface by a multi-lens optical
system. The objective of the multi-lens system is to disperse the
light into monochromatic stages along the measurement axis. A
specific distance to the target is assigned to each color’s

FIGURE 7
Data Collection Strategy Implemented at Texas A&M University. The Optomec MTS 500 manufacturing system is integrated with multiple optical
sensors for comprehensive data collection. The recorded data is stored both locally and on cloud-based platforms, enabling efficient data management.
Real-time monitoring and analysis are conducted to extract valuable insights from the collected data.
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wavelength in a factory calibration. The distance or surface
topography is accurately captured by detecting the colors
from the reflected light (Fu et al., 2020). Confocal sensors are
used when laser displacement sensors do not make a
measurement either due to the type of material used such as
one-sided glass or if measurements need to be captured in tiny
spaces in the sub-micron scale.

2.2.5 Digital camera
Optical metrology techniques can help real time in-situ

monitoring of the workpiece surface morphology evolution and
tool condition because of their non-contact nature. Digital cameras
involving CCD (charge-coupled device), or CMOS (complementary
metal oxide semiconductor) technology have been reported in
literature for in-situ monitoring of surfaces during machining

FIGURE 8
High-speed camera captures the laser-material interaction: (A) Powder particles emerging from the nozzles meet the laser at the focal point on the
depositing layer, resulting in precise build dimensions and high surface quality. (B) Powder particles interacting with the laser above the depositing layer
depicting a shift in the laser focus, which leads to surface waviness.

FIGURE 9
Melt pool formation at the substrate captured using high speed camera. Spatter particles ejecting from the melt pool tracked using Kalman filter.
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FIGURE 10
Melt pool geometry, with major axis and minor dimensions calculated using melt pool frames captured by the thermal camera. Additionally, the
temperature distribution curve along the x-y direction exhibits a smooth profile, indicating uniform heat distributionwithin themelt pool and ensuring the
absence of anomalies during the deposition process.

FIGURE 11
A custom MATLAB algorithm used to calculate the thermal gradients from the raw melt pool frame. Quiver plots depict the temperature decrease
from the edge of the melt pool towards its center, representing a crucial step in the formation of ripples DED process.
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operations. All the pixel’s signals are processed by a single circuit or
chip in a CCD camera, whereas a CMOS camera has a processing
circuit for each pixel which improves speed but reduces the capture
area due to increased complexity (Tapia and Elwany, 2014).
Challenges associated with the use of CCD or CMOS include the
requirement for high frame rate of capture for continuous streaming
and post processing of images in order to extract useful information.

With the rapid development of machine vision, image
processing and pattern recognition methods, advanced optical
solutions are combined with machine learning technologies for
surface defect detection and characterization. Iravani et al. set up
an optical system for AM comprising of 3 CCD cameras at 120° apart
relative orientation over the substrate plane and used a recurrent

neural network model to monitor the layer heights using the images
from the CCD cameras (Iravani-Tabrizipour and Toyserkani, 2007).
Image segmentation methods and deep learning networks including
CNN (Convolutional Neural Networks) and ensemble models have
been developed on surface images obtained during additive
manufacturing and post processing operations for defect
detection and roughness estimation (Gobert et al., 2018; Liu
et al., 2019; Giusti et al., 2020; Qi et al., 2020).

2.2.6 High speed digital cameras
High speed digital cameras (see Figure 4) have been found

suitable for real time in-situ monitoring of melt pool formation,
spatter particle tracking and surface porosity in additive

FIGURE 12
A smartphone digital camera recording (A) lasermaterial deposition during the printing cycle, (B)milling operation carried out after printing in Hybrid
DED process.

FIGURE 13
(A) SEM micrographs showing the formation of cellular structure in the DED printed 316L components, (B) 3D optical profilometer capturing the
surfacemorphology (ripples) and their Ra variation along the scan track, (C)opticalmicrograph showing voids and pores spread across the scan surface of
DED-printed component (D,E) surface waviness captured using 3D optical profilometer, (F) artifacts captured using ultrasound imaging.

Frontiers in Manufacturing Technology frontiersin.org11

Balhara et al. 10.3389/fmtec.2023.1271190

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2023.1271190


manufacturing. The setup of a high-speed camera involves selecting
the right camera based on factors like frame rate and resolution.
Proper lighting sources are positioned for adequate illumination,
especially in high-speed scenarios. A stable mounting system
minimizes vibrations, and synchronization with external devices
ensures precise timing for capturing fast events. Frame rates in the
range of 1,000 fps to 6,000 fps have been reported on multiple
occasions in literature to characterize melt pool dynamics and
particle behavior (You et al., 2014; Andani et al., 2017; Repossini
et al., 2017). Ly et al. used an ultra-high-speed camera with frame
rate of 100,000 fps to discover the spatter causing phenomenon of
vapor driven entrainment of microparticles by an ambient gas flow
(Ly et al., 2017). Matilainen et al. used a high-speed camera with an
active illumination system to monitor the laser interaction time and
the formation of keyholes during additive manufacturing of stainless
steel (Matilainen et al., 2015).

2.3 Infrared imaging

Next, we will delve into the topic of infrared-based monitoring
systems. These systems utilize infrared radiation, a type of
electromagnetic radiation with wavelengths longer than those of
visible light, to capture information about the process or material
under study. Infrared-based monitoring systems are commonly used
in additive manufacturing for various applications, such as melt pool
monitoring, temperature measurement, and defect detection.

2.3.1 Infrared (IR) camera
To set up an infrared (IR) camera the appropriate camera must

be selected based on the desired temperature range and resolution.
Calibration ensures accurate temperature measurement, and lens
focus and alignment capture clear thermal images. Controlling
ambient temperature and reducing reflective surfaces optimizes
thermal contrast. Hu and Kovacevic (Hu and Kovacevic, 2003a)
developed a closed-loop control system utilizing infrared (IR)
imaging sensing to regulate heat input and the size of the melt
pool in the Directed Energy Deposition (DED) process. By
employing IR imaging, the resulting images were able to
eliminate noise caused by metal powder and facilitate real-time
processing. The captured IR images provided temperature
information, a crucial parameter influencing the quality of the
cladding outcome.

2.3.2 Pyrometer based melt pool camera
The setup of a pyrometer-based melt pool thermal camera (see

Figure 5) involves calibrating the camera for accurate temperature
measurements, and choosing the appropriate exposure based on the
material’s emissivity. The camera is positioned to capture clear
thermal images, and optimal lighting conditions and thermal
insulation are implemented. Data analysis software enables real-
time monitoring and control of the melt pool temperature. Smoqi
et al. (Smoqi et al., 2022) implemented a closed-loop control system
in their study, utilizing the melt pool temperature as a feedback
signal to adjust the laser power in the additive manufacturing

FIGURE 14
Comparative results of different algorithms tested for the segmentation of defects. (A) Original image for sample A (B) k-means with 2 clusters (C)
Gaussianmixturemodel with expectationmaximization (D) spatially constrainedGaussianmixturemodel with k-means initialization and (E)mean shift (F)
proposed method (Iquebal and Bukkapatnam, 2022).
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process. They employed a two-wavelength pyrometer to provide the
necessary feedback. The researchers reported that the volume
porosity observed in components manufactured under the
closed-loop control system ranged from 0.036% to 0.043%, which
was lower than the range of 0.032%–0.068% observed in
components manufactured under an open-loop control system.

2.4 Laser ultrasonic imaging

In addition to in-situ monitoring techniques that utilize
electromagnetic waves, methods employing mechanical waves,
such as laser ultrasonic imaging and spatially resolved acoustic
spectroscopy, have emerged as highly effective non-destructive
testing (NDT) methods. These methods are adept at detecting
and evaluating surface, subsurface, and internal defects.

Laser Ultrasonic (LU) Imaging integrates the principles of laser
generation and ultrasonic detection to yield high-resolution images
of a material’s interior. This technique has been predominantly used
for characterizing the surface geometry and morphology of
additively manufactured parts. The selection of Ultrasonic
Testing (UT) methods for defect detection and material
characterization in additive manufacturing largely depends on the
manufacturing process, the material under examination, and the
capabilities of UT techniques.

Spatially Resolved Acoustic Spectroscopy (SRAS) is a laser
ultrasonic technique that employs Surface Acoustic Waves

(SAWs) to investigate the elastic properties of a component as
shown in Figure 6 (Smith et al., 2014; Pieris et al., 2019). The
SRAS system comprises a pulsed laser generator, a mask to define
the acoustic wavelength, a continuous detection laser, and a Knife
Edge Detector (KED). The generation laser, in conjunction with
the mask, rapidly heats the sample within its thermoelastic
regime, generating a SAW with a defined wavelength λ, as
determined by the fringe spacing imaged onto the sample
surface. The frequency f of the SAW is measured by
monitoring the perturbation of the detection laser via the
KED. This translates to a measured wave velocity of ν � fλ.
The knife edge detector, also known as optical beam deflection, is
a robust method for detecting ultrasonic waves using a laser. In
the case of a specular reflection of the incident laser beam from a
smooth surface, any lateral movement of the reflected beam
caused by the ultrasonic waves is easily detected by a pair of
photodiodes.

A major disadvantage of the knife edge detector is that it does
not cope well with optically rough surfaces. The optical speckles
from a rough surface adversely affect the efficiency of the knife edge
detector, because ‘dark’ speckles move synchronously with ‘bright’
speckles, and their contributions to the ultrasonic signal cancel each
other out. The SRAS method has demonstrated significant potential
for comprehensive material characterization, enabling the
assessment of not only surface defects but also grain orientation
and microstructures (Sharples et al., 2006; Hirsch et al., 2017; Hirsch
et al., 2018; Patel et al., 2018).

FIGURE 15
Comparative results of different algorithms tested for the segmentation of defects. (A) Original image for sample B (B) k-means with 2 clusters (C)
Gaussianmixturemodel with expectationmaximization (D) spatially constrainedGaussianmixturemodel with k-means initialization and (E)mean shift (F)
proposed method (Iquebal and Bukkapatnam, 2022).
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The evaluation of various optical sensing technologies
documented in the Table for the purpose of in-situ imaging
measurements in additive manufacturing. Although not all
imaging methods are discussed, the primary focus is on
discussing the most prominent imaging techniques that hold
substantial significance concerning high resolution in capturing
process physics and their integration with ML/AI methods
during model training. The objective is to examine the
capabilities and performance of these technologies in a scientific
context. These technologies encompass a range of methodologies
and instruments that enable the non-destructive evaluation of
surface characteristics during the additive manufacturing process.

In the following section, we present various case studies that
employ distinct imaging methods, such as high-speed cameras,
thermal cameras, and digital cameras, to monitor and analyze
diverse anomalies that arise during the deposition and process
mechanisms. Additionally, we explore ex-situ imaging methods

that integrate advanced machine learning (ML) and artificial
intelligence (AI) algorithms to enhance defect detection.

3 Case studies

A practical example highlighting the contribution of in-situ
imaging in smart manufacturing is the implementation of a
smart hybrid machine tool (Optomec MTS 500), at Texas A&M
University (Botcha et al., 2020). This machine tool incorporates in-
situ imaging sensors along with other sensors, enabling the
collection of data from 14 different channels. Notably, the
machine is equipped with a high-speed camera capable of
capturing videos at high frame rates, facilitating the observation
and analysis of various process mechanisms. These mechanisms
include spatter events, the emergence of powder from nozzles, and
the trajectory of chips during milling operations. In an additive-

FIGURE 16
Outputs from the Toolbox for sample images from (A)Wooden (B)Metal nut and (C) Tile categories from theMVTecAD dataset (Nakkina et al., 2022).
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subtractive process lasting 1 hour, the high-speed camera (built:
Photron Mini AX200) collects approximately 100–200 GB of data at
a frame rate of 5000 FPS. Usually, this involves speed cameras are
used for capturing selective segments of the process that involve
process mechanisms that occur at sub-second scales. For the 1-h
process, around three to four instances of such segments can be
captured. High-speed cameras capture processes with exceptional
temporal resolution, enabling the collection of detailed visual
information.

A thermal camera (Stratonics ThermaViz System) is installed
coaxially to the laser assembly, measuring temperature distributions
and thermal signatures of the melt pool. The thermal camera
captures data at different frame rates, typically ranging from
30 to 60 Hz. For a 1-h process, it collects around 60–120 GB of
data. Other imaging systems such as optical cameras in a modern
smartphone can record the entire process and generate around
20–25 GB of data if recorded at resolution of 4K at 60 FPS.
These imaging devices generate big data (~200–250 GB per hour)
that can be processed and analyzed using advanced analytics and
machine learning algorithms.

The installation of high-resolution cameras in manufacturing
machines alone does not suffice to address the challenges effectively.
It is crucial to establish an appropriate data collection pipeline to
ensure the value and usefulness of the collected data for subsequent
analysis. Implementing a well-designed data collection pipeline is
paramount as it ensures that the acquired data adheres to
appropriate protocols, preventing it from becoming
inconsequential for analysis purposes (Wang et al., 2022). By
collecting data with a well-defined protocol, researchers can
ensure data integrity and accuracy. At Texas A&M University, a
meticulous data pipeline is implemented to capture data from
multiple sensors in real-time (see Figure 7), which is then stored
both locally and on cloud-based storages. This dual storage
approach allows for real-time monitoring of the cloud-based data
and facilitates the transfer of data to other hosts for further analysis.
The collected data is subject to analysis through data processing
algorithms, providing opportunities to uncover hidden patterns,
correlations, and insights that contribute to process optimization,
quality improvement, and enhanced manufacturing performance.

In this section, we explore various case studies that pertain to the
application of imaging techniques within the space of smart additive
manufacturing. These imaging methods are employed to detect and
identify different types of defects that may occur during
manufacturing processes. Specifically, we focus on the utilization
of optical sensing and intensity-based sensing methods for defect
monitoring. Liu et al. (Liu et al., 2021) conducted a study wherein
they investigated specific defects occurring in the context of DED.
These defects can arise due to a combination of multiple factors.
Here we discuss two primary categories of anomalies in DED
process: process faults and product defect monitoring.

Process faults comprise irregularities that transpire during the
deposition process itself, such as spatter events, laser focus issues
(discussed in Section 3.1), and other similar occurrences. These
faults can have a detrimental impact on the overall quality and
integrity of the manufactured product. This detrimental impact
implies negative effects or consequences that these process faults can
introduce. They can result in reduced quality where the product does
not meet the required standards or specifications, compromised

integrity where the structural strength of the product is weakened
leading to potential failure under stress. On the other hand, product
defect monitoring relates to the identification and tracking of
various irregularities in the final product. This includes
dimensional variations, surface waviness, morphological
variations, and the detection of porosity. Monitoring these
defects is crucial as they can significantly impact the functional
properties and performance of the manufactured parts.

To address these challenges, optical sensing and intensity-based
sensing methods have proven to be effective tools. Optical sensing
techniques utilize light-based systems to capture and analyze data
related to the manufacturing process. These methods enable real-
time monitoring and analysis of process faults and product defects.
In addition to the utilization of imaging techniques, the integration
of Machine Learning (ML) and Artificial Intelligence (AI)
algorithms plays a crucial role in extracting hidden information
and patterns from the captured images. ML and AI techniques
enable advanced analysis and interpretation of the imaging data,
leading to enhanced defect detection and monitoring in smart
manufacturing.

By employing ML/AI algorithms, we can train models to
recognize and classify different types of defects based on the
patterns and features extracted from the images. These
algorithms learn from a large dataset of labeled images, allowing
them to identify subtle variations and anomalies that may not be
easily discernible to the human eye (discussed in Section 3.2). This
capability enables automated and accurate defect detection,
minimizing the reliance on manual inspection processes that can
be time-consuming and prone to human error.

3.1 Process faults

In-situ monitoring plays a crucial role in the additive
manufacturing process as it enables constant supervision of the
process physics and facilitates the detection of anomaly events
occurring during the process. The selection of accurate process
parameters is paramount to avoid various defects such as
porosity, dimensional inaccuracies, and surface waviness. These
defects tend to have a multiplier effect, meaning that when a
defect arises, it propagates through subsequent layers if not
corrected. Therefore, it becomes imperative to identify the origin
of defects as soon as they occur and implement corrective measures
tomitigate their presence. In this context, high-speed cameras can be
employed to monitor multiple process mechanisms, specifically in
observing the laser focus during the printing process, spatter events,
powder particle trajectory, and tracking chips mechanism in milling
operation.

High-speed cameras can capture rapid events with high
temporal resolution, enabling the monitoring of the laser focus
during the additive manufacturing process. By recording the laser’s
behavior in real-time, these cameras provide valuable insights into
the dynamics of the laser beam and its interaction with the printing
material. Monitoring the laser focus using high-speed cameras
involves capturing detailed images or videos of the laser spot
during the printing process. These cameras can be synchronized
with the printing system to capture images at specific time intervals
or triggered by specific process events.
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Through the analysis of high-speed camera footage, it becomes
possible to assess the laser’s focal position and evaluate its stability
and consistency. Any deviations or fluctuations in the laser focus can
be detected and correlated with potential defects observed in the
printed part. Furthermore, the use of image processing techniques
and algorithms can provide quantitative measurements of the laser
spot size, shape, and intensity distribution, aiding in the
identification of potential issues related to the laser focus.

Figure 8, shows a series of images obtained through the
utilization of a high-speed camera during the additive
manufacturing printing process. Figure 8A effectively
demonstrates the laser focus at the printing track, specifically
emphasizing the amalgamation of powder streams within the
melt pool on the deposition track. The significance of laser focus
in determining surface quality becomes apparent upon
observation of these images. When the laser is appropriately
focused, consecutive tracks are laid down without any observable
irregularities. Conversely, when the laser deviates from its
optimal focus (see Figure 8B), it becomes unfeasible to achieve
a level layer. This phenomenon becomes increasingly
conspicuous as the number of layers accumulates, ultimately
leading to undulations in the surface. Consequently, the
continuous monitoring of laser focus throughout the printing
process assumes paramount importance in upholding print
quality and attaining the desired surface characteristics.

Another essential capability offered by high-speed cameras is
their ability to accurately detect and analyze spatter events. These
spatters can have a detrimental effect on the overall quality of the
built part, potentially leading to the occurrence of various defects. By
employing advanced filtering techniques such as the Kalman filter, it
becomes possible to effectively track and quantify the spatters in
real-time as they are expelled from the melt pool.

In a study conducted by Iquebal et al. (Iquebal et al., 2022), it was
observed that a substantial proportion of the powder material
(approximately 89%) is wasted even before it enters the melt
pool. Consequently, only around 11% of the powder particles
successfully reaches the melt pool. Within this deposition zone,
approximately 12% of the material is ejected through spattering
phenomena. These spatter events involve the expulsion of molten
droplets or particles from themelt pool, which can negatively impact
the integrity and quality of the final build. The detection and
quantification of spatters in real-time using high-speed cameras
(see Figure 9), in conjunction with advanced filters like the Kalman
filter, provide valuable insights into the spattering phenomenon,
enabling the development of strategies to minimize its occurrence
and mitigate its detrimental effects on the built part.

The utilization of pyrometer based thermal cameras in
monitoring the behavior of the melt pool during the additive
manufacturing printing process is witnessing a growing trend.
The melt pool is a crucial phenomenon to monitor as it offers
opportunities for achieving tailored properties in the manufactured
components by tuning the laser power in real time. The
implementation of thermal cameras enables the acquisition of
comprehensive insights into the characteristics of the melt pool.
Through the analysis of real-time data obtained from the thermal
camera, including parameters such as peak temperature, melt pool
geometry, and temperature distribution, it becomes possible to
establish a closed-loop control system. By comparing the

observed parameters with the desired values, adjustments can be
made to the process parameters in real-time, such as adjusting the
laser power. This closed-loop control mechanism ensures that the
melt pool remains within the desired temperature range and exhibits
the intended geometry, leading to the desired properties in the
printed component.

Furthermore, the detailed insights provided by thermal
cameras allow for a deeper understanding of the melt pool
behavior. By studying the temperature distribution and
variations as shown in Figure 10, it becomes possible to
optimize process parameters and identify potential issues that
may impact the quality of the printed part. By utilizing this
information, adjustments can be made to mitigate defects such as
porosity, incomplete melting, or excessive heat accumulation,
which can negatively impact the properties and structural
integrity of the final component.

The incorporation of the Stratonics Therma Viz, installed
coaxially in the Optomec MTS 500 system, enables real-time
monitoring and analysis of the melt pool during the deposition
process. Through the utilization of advanced algorithms, various
mechanisms can be understood and quantified, leading to enhanced
process control and quality assurance.

1. Melt Pool Geometry: The precise measurement and
characterization of the melt pool geometry are crucial for
evaluating the stability and behavior of the deposition process.
By capturing and analyzing real-time melt pool images, the
circularity of the pool, as well as dimensions such as major
and minor axis lengths, can be quantified.

2. Temperature Distribution: This information is critical for
assessing the thermal profile and heat dissipation
characteristics during the deposition process. Real-time
monitoring of temperature distribution aids in identifying
potential temperature variations or gradients that may affect
the material’s solidification behavior, resulting in defects such as
porosity, cracking, or incomplete fusion.

3. Thermal Gradients: The algorithms integrated with the thermal
camera enable the calculation of thermal gradients within the
melt pool as shown in Figure 11. Thermal gradients represent the
rate of temperature change across the material. Monitoring these
gradients in real-time provides valuable information on heat
transfer phenomena, including cooling rates and heat dissipation
patterns. Ripple phenomena, observed in DED processes, are
often influenced by thermal gradients, alloying effects, and recoil
pressure. By quantifying thermal gradients, the dynamics of
ripple formation (Balhara et al., 2023) and its correlation with
process parameters can be analyzed, contributing to improved
process optimization and defect detection.

Optical cameras have provided an excellent means of in-situ
monitoring due to their convenience, affordability, and accessibility
for a long time. The advancement in the smartphone industry has
made it even more convenient given the instrumentation of these
modern smartphones with high-tech sophisticated optical cameras
with easy-to-use interfaces and the form factor. Smartphones can
capture high resolution videos or images during manufacturing
giving a great overall picture of the process. This translates to a
foundation for operators to visually inspect the process, identify any
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artifacts of interest, and monitor several metrics associated with the
process.

By using appropriate filters or image post-processing
techniques, smartphones are even capable of capturing the
thermal history of the process. This thermal monitoring allows
for the identification of abnormal heating or cooling patterns in the
process. By strategically positioning the smartphone camera,
operators can capture close-up images and videos of the process.
Moreover, there are a lot of computer vision techniques that can be
used to further analyze the images or videos, opening a possibility for
analyses such as object detection and tracking. In-situ monitoring
using smartphone cameras (see Figure 12) can also allow for process
optimization by extracting valuable data in the form of adjustable
and refinable process parameters for the operators. Over time, this
iterative feedback assists in improving the overall process in terms of
quality and efficiency.

3.2 Product defects

Defects in manufacturing manifest in varied forms and
attributes which add to the woes of developing one-shot
detection methodologies, while it is also expensive to generate a
dataset of images capturing the variety to train these models.
Therefore, many image processing techniques have been
implemented that specialize in detecting certain defects due to
the surface’s nature. Indeed, while in-situ imaging techniques
offer numerous advantages, post-process imaging techniques are
equally, and sometimes more, important for analyzing specific
properties of manufactured components. Advanced imaging
methods, such as 3D optical profilometry, Scanning Electron
Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS),
play a significant role in providing high-resolution images
suitable for detailed analysis.

Post-process imaging techniques enable the examination of
manufactured components at a higher level of magnification and
resolution, facilitating the inspection of fine details and surface
characteristics. 3D optical profilometry, for instance, allows for
the precise measurement of surface profiles, enabling the
evaluation of dimensional accuracy, surface roughness, and
features at a microscale level. Scanning Electron Microscopy
(SEM) provides exceptional imaging capabilities with high-
resolution and magnification. It allows for the observation of
surface morphology, microstructure, and topographical features
at nanoscale levels (see Figure 13A). SEM coupled with EDS
provides valuable elemental analysis, enabling the identification
and mapping of different chemical elements present in the sample.

Recent advancements in machine learning and artificial
intelligence have further enhanced post-process imaging
techniques. These technologies enable defect localization and
analysis based on imaging data. Machine learning algorithms can
be trained to detect and classify various types of defects, aiding in
quality control and process optimization.

The utilization of big data in post-process imaging techniques
offers significant contributions to the field. It enables efficient
collection, storage, and management of large-scale imaging
datasets, while advanced analytics techniques facilitate automated
feature extraction, defect detection, and classification. Integration

with other data sources allows for a comprehensive analysis of the
manufacturing process, while predictive analytics models based on
historical imaging data assist in forecasting potential defects. Real-
time monitoring and feedback are facilitated through the streaming
and processing of data, enabling timely intervention and corrective
actions. Furthermore, big data technologies provide tools for data
visualization and reporting, aiding in the interpretation and
communication of findings.

Pores and voids in DED processes exhibit a stochastic formation
pattern as they emerge from multiple physical mechanisms over
multiple sizes (ranging 10−5–10−3 m), and at diverse locations
including the surface, sub-surface or between deposited layers
(see Figure 13C). Digital images and optical micrographs can be
used to characterize surface porosity that manifest as a result of
various mechanisms such as (a) micro-void formations caused due
to insufficient overlap and fusion between adjacent printing tracks,
and (b) pore formation due to the spatter events during the DED
process.

In the past decade, deep learning models have been widely used
in the manufacturing sector for real-time process monitoring and
anomaly detection, leveragingmultimodal sensor data. However, the
complex, non-linear nature of these models often results in a lack of
transparency, making it difficult to interpret their predictions and
thereby reducing trust in the model. In response to this challenge,
there has been a significant shift towards the use of Explainable AI
(XAI) techniques, which aim to increase the interpretability and
transparency of AI models. XAI techniques along with thermal
images of the melt pool proved to better understand the laser-
material interactions and discover the nature of spatter events that
result in the occurrence of porosity in localized surface elements
(Karthikeyan et al., 2023). Recently, Karthikeyan et al. (Karthikeyan
et al., 2022) developed an approach that integrates explainable AI
(XAI) into ultrasound imaging for rapid detection of artifacts,
including product defects, in 3D printed components. Leveraging
ultrasound imaging offers a non-destructive means of inspecting the
internal structure of 3D printed parts, particularly useful for
identifying defects that are not visible on the surface. The
incorporation of XAI into this process serves to validate AI-
driven decisions, providing decision-makers with an enhanced
transparency into the discernible features within the images that
contribute to defect classification.

Although advanced machine learning techniques have been
employed to analyze manufacturing data and enhance production
strategies, the challenge of labeling data for supervised learning
methods remains a significant obstacle. Defects in manufacturing
exhibit diverse forms and characteristics, complicating the
development of one-shot detection methodologies. Furthermore,
the generation of an extensive dataset encompassing the various
defect types for model training purposes can be prohibitively costly.
Consequently, numerous specialized image processing techniques
have been implemented to address this issue, focusing on the
detection of specific defects based on the surface properties.

With the emergence of Manufacturing-as-a-Service (MaaS)
paradigm, it becomes imperative to secure essential products
against counterfeiting and cyber-attacks (Tiwari et al., 2021).
Anticounterfeit tags, such as QR codes introduced on the surface
of physical products can be tampered with, thus destroying the
ability to identify these parts. Hence, in order to introduce
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anticounterfeit tags inside the physical product, the 3D printed parts
were embedded with spherical markers of diameter 0.48 mm (see
Figure 13F). The markers were dispersed at both shallow (1–3 mm
depth) and deeper (9–12 mm depth) locations, emulating the
occurrence of defects (e.g., internal pores and voids) and
embedded authentication codes in a product. The authors
employed a fast-scanning ultrasound imaging technique coupled
with a convolutional deep learning software framework to obtain
speed and accuracy in scanning the internal markers present inside
3D printed parts. They were able to accurately detect the internal
markers at different locations within the product to accuracies
exceeding 80%.

In Iquebal et al. (Iquebal and Bukkapatnam, 2022), the authors
propose a fully unsupervised segmentation approach using a
continuous max-flow formulation over the image domain while
optimally estimating the flow parameters from the image
characteristics. Image segmentation approaches based on the
energy minimization framework, particularly graph-based
methods, offer an elegant means to segment images without
extensive training. The framework is based on iteratively
estimating the image labels by solving the maxflow problem
while optimally estimating the flow capacities from the image
characteristics. The segmentation problem is set up as a
maximum posteriori estimation (MAP) of the image labels and
shows that it is equivalent to solving the max-flow problem given the
flow capacities are known. By using the current optimum of the
max-flow problem, the flow capacities are estimated by employing a
Markov random field (MRF) prior over the flow capacities. For a
detailed understanding of the framework and algorithm, we direct
the readers to their paper (Iquebal and Bukkapatnam, 2022).

The current case study presents the segmentation capabilities of
the above-mentioned framework for common defects on additively
manufactured surfaces, namely, balling effect, and porosity.
Figure 14A and Figure 15A show the representative surface from
two samples that were additively manufactured. Figures 14B–F,
Figures 15B–F give the comparative results from different
segmentation algorithms, namely-means with 2 clusters, Gaussian
mixture model with expectation maximization, spatially constrained
Gaussian mixture model with k-means initialization (Nguyen and
Wu, 2013), mean shift (Comaniciu and Meer, 2002), and
Unsupervised min cut (Iquebal and Bukkapatnam, 2022).

Numerous studies have proposed various techniques in image
processing, machine learning, and neural network models to address
defect detection and segmentation in specific defect domains.
However, the diverse nature and characteristics of defects in
manufacturing pose challenges in developing comprehensive one-
shot detection methods. Furthermore, creating a dataset
encompassing the wide range of defect variations is costly when
training a one-shot machine learning model. Nakkina et al.
(Nakkina et al., 2022) introduces a framework that comprises
three mind-maps aimed at capturing the fundamental aspects of
defect detection.

The first mind-map proposes a classification system for
manufacturing defects based on their visual attributes. The
objective of the second mind-map is to identify relevant image
processing methodologies including thresholding, Fourier analysis,
line detection, neural networks, and more. The third mapping aims
to establish connections between specific defect classes and

corresponding image processing techniques. These three mind-
maps collectively serve as a foundation for developing or
adapting defect detection approaches tailored to specific use
cases. Additionally, the authors introduce an empirical
recommendation formula utilizing three image metrics: entropy,
universal Quality Index (UQI), and Rosenberger’s. This formula
facilitates the evaluation of method performance across a given class
of images. Nakkina et al. (Nakkina et al., 2022) showcases the
implementation of a Smart Defect Segmentation Toolbox
assimilating methodologies like Wavelet Analysis, Morphological
Component Analysis (MCA), Basic Line Detector (BLD) and
presents case studies to support the working of the
recommendation formula.

Score � 1
2
Rosenberger′s( ) + 1

4
UQI( ) − 1

4
Entropy( )

The MVTecAD dataset identifies industrial inspection tasks as
the ideal scenarios introducing a comprehensive dataset for
unsupervised anomaly detection (Bergmann et al., 2019).
Figure 16 tabulates the findings of the toolbox when tested on
three sample images from a wooden, metal nut, and tile categories
from the MVTecAD dataset respectively. The recommendations
based on the formula given by the toolbox for defect detection in
each of these cases are also mentioned.

4 Conclusions and future work

This chapter delves into the rapidly increasing significance of
advanced imaging techniques, specifically in the domain of fusion-
based additive manufacturing. Optical cameras, thermal cameras,
and via high-speed cameras can enable real-time monitoring,
facilitating prompt defect detection, deviations from standard
operating procedures, or any anomalous behavior. Thereby,
timely intervention is possible which can lead to improved
product quality, reduction in downtime, and improved uptime
and productivity. Such monitoring also allows for a deeper
understanding of the underlying physics involved in the
manufacturing process, offering neat opportunities for process
optimization. Key takeaways from the chapter are listed as follows.

• High-speed imaging demonstrates its efficacy in capturing
spatter particles expelled from the melt pool during the
additive manufacturing process. The real-time detection
and quantification of spatters using high-speed cameras,
combined with advanced filtering techniques like the
Kalman filter, offer valuable insights into the spattering
phenomenon. This information can then be leveraged to
implement closed-loop control strategies within the
manufacturing system. Furthermore, the high-speed
imaging technique proves effective in identifying deviations
in the laser focus, such as when it moves away from the
intended printing track. This timely identification enables
prompt optimization of process parameters to mitigate
defects such as dimensional inaccuracies and surface waviness.

• The thermal camera exhibits its capability to monitor key
characteristics of the melt pool, including peak temperature
and melt pool geometry during additive manufacturing
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processes. Deviations from the standard characteristics serve
as indicative signatures for optimizing process parameters.
Real-time analysis of thermal data allows for the assessment of
heat distribution and thermal gradients within the melt pool,
providing insights for the implementation of closed-loop
control strategies. By adjusting the laser power in real-time
based on the observed thermal information, tailored
properties of the components can be achieved.

• Digital cameras integrated into smartphones offer a practical
solution for recording the complete manufacturing process.
The captured data from these cameras can subsequently be
utilized to synchronize and align the multi-modal sensor data
collected during the process. Leveraging the capabilities of
smartphone cameras in this manner provides a cost-effective
and accessible means to enhance data fusion and analysis in
smart manufacturing.

• Ex-situ imagingmethods, when combined with the integration
of machine learning/artificial intelligence (ML/AI) techniques,
offer the opportunity to analyze data with enhanced depth and
sophistication. The high-resolution images captured via ex-
situ imaging systems serve as excellent inputs to state-of-the-
art deep learning models for a variety of applications.

Given the remarkable progress and use of advanced imaging
technology in smart manufacturing, there is potential for future
research work in several avenues. One such area involves integration
of the imaging data with advanced ML/AI methodologies. Another
aspect lies in the use of multimodal nature of data. Given the
plethora of imaging options, most manufacturers employ more
than one at the same time to monitor their process.
Multimodal data fusion that incorporates diverse types of
image-based data is a blooming area of research, especially in
healthcare and wearable devices industry. By fusing data from
optical, thermal, high-speed, and other types of cameras with ex-
situ imaging, researchers can extract synergistic information to
have a more holistic understanding of the process. Another
challenge lies in the fact that the data resulting from such
advanced imaging techniques is usually large and can
sometimes slow down real-time processing and analyses.
Developing data pipelines that provide capabilities for real-
time processing of such data without any latency issues or lag
is essential for immediate decision-making in such scenarios. To
further optimize the processes, creation of seamless and data-
driven ecosystem comprised of integrated imaging technologies
and IoT sensors is preferred. A common disadvantage that is
being tackled is the heavy cost expense that comes from some of
these imaging systems. Developing cost-effective yet reliable
imaging technologies will lead to widespread adoption in the

industry, especially for small- and medium-sized enterprises. By
lowering the entry barriers and easy-to-use interfaces of such
imaging systems will democratize access to advanced capabilities,
empowering a broader range of industries.
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