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nine. The met allele inhibits the intracellular trafficking and the 
regulated secretion of the BDNF protein at synapses (Egan et al., 
2003). Several lines of evidence suggest that BDNF might be relevant 
for olfactory processing. It has been found to regulate the prolif-
eration and survival of olfactory receptor neurons (ORN) in vivo 
(Simpson et al., 2002). In addition, the expression of BDNF is high 
in various parts of the CNS, including the hippocampus and the 
olfactory bulb (OB) although the level of expression may decrease 
with increasing age (Katoh-Semba et al., 1998). There is some sup-
port linking the polymorphism to olfactory functioning in animals. 
Bath et al. (2008) identified the BDNF val66met variant as a critical 
factor in the disruption of OB neurogenesis in adult BDNF and 
tyrosine receptor kinase (TkrB) knock-out mice. The results suggest 
that an absence of BDNF and its receptor TkrB results in olfactory 
impairment. While BDNF appears necessary for the integrity of 
olfactory function in mice, little is known about the possible influ-
ence of the BDNF val66met polymorphism on olfactory function 
in humans. Behavioral association studies have demonstrated a 
role of the val66met polymorphism on human cognitive function. 
For example, individual variance in episodic memory performance 
and hippocampal activity has been related to the allelic combina-
tion of val66met (Egan et al., 2003). Subjects with at least one met 
allele have lower declarative memory performance accompanied 
with reduced hippocampal engagement, and smaller hippocampal 
volume (Egan et al., 2003; Hariri et al. 2003; Pezawas et al., 2004; 
Bueller et al., 2006). Although studies have reported that the met 
allele is a risk factor for cognitive impairment also in older adults 

IntroductIon
Of perceptual and cognitive functions, olfactory abilities are among 
the most sensitive to age-related impairments (Doty et al., 1984; 
Stevens and Cain, 1987). According to normative studies, that used 
cued identification of common household odors as a measure of 
functional olfactory ability, a majority of community-dwelling 
elderly are impaired (Murphy et al., 2002; Brämerson et al., 2004). 
During the last two decades, the scientific understanding of the 
structure and function of the olfactory sense has developed greatly, 
in part due to an increasing knowledge about the genetics of the 
olfactory system (Keller and Vosshall, 2008). However, although 
normal genetic variability in the population is likely to influence 
olfactory abilities (Whissel-Buechy and Amoore, 1973), knowledge 
is sparse regarding specific genetic influences underlying individual 
differences in human olfaction (Keller et al., 2007). To our knowl-
edge, no previous study has reported genetic effects on longitudinal 
change in general olfactory function. Here, we targeted the brain-
derived neurotrophic factor (BDNF) as a potential moderator of 
age-associated olfactory impairment.

Brain-derived neurotrophic factor is a member of the neuro-
trophin family, representing growth factors that support neuronal 
survival, transmission, and synaptic plasticity in the central nervous 
system (CNS) (Poo, 2001). A specific single nucleotide polymor-
phism of the BDNF, the val66met, modulates intracellular trafficking 
and activity-dependent secretion of BDNF protein (Poo, 2001). The 
val66met is located at nucleotide 196 (G/A) in the pro-protein of 
BDNF and produces an amino acid substitution, valine to methio-
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(Miyajima et al., 2008; Nagel et al., 2008; Raz et al., 2009), opposite 
findings of poorer cognitive performance in older val homozygotes 
compared to met carriers have been reported, suggesting that the 
met allele may protect against cognitive decline (Erickson et al., 
2008; Harris et al., 2006).

To the best of our knowledge, no study has investigated the 
effects of val66met on human olfactory performance. BDNF has 
been linked to Alzheimer’s and Parkinson’s disorders, which are 
both characterized by olfactory impairment (Phillips et al., 1991; 
Mesholam et al., 1998; Siegel and Chauhan, 2000). Although evi-
dence is mixed, the val/val carriers of the val66met polymorphism 
were associated with higher prevalence rates for Alzheimer’s 
disease (AD) (Ventriglia et al., 2002; Combarros et al., 2004). 
Since sub-clinical levels of AD-related neuropathology is prob-
ably present in a majority of elderly individuals (del Tredici and 
Braak, 2008), and since the disorder affects olfactory function 
also in preclinical stages (Bacon et al., 1998; Tabert et al., 2005; 
Olofsson et al., 2010), effects of neuropathology are related to 
olfactory identification ability in community-dwelling elderly 
(Wilson et al.,, 2007).

The general aim of this study was to investigate the possible 
relation between age-related decline in olfactory function and the 
BDNF val66met genotypes in a sample of community-dwelling 
adults. Although age-related deficits in olfactory function are 
well documented, there are remarkably few studies that have 
investigated longitudinal olfactory change in aging. Specifically, 
we wanted to investigate if BDNF val66met influences olfactory 
decline and if the change varied as a function of the individuals’ 
baseline age.

MAtErIALS And MEthodS
PArtIcIPAntS
All participants were derived from the Betula project, an ongo-
ing population-based longitudinal project focusing on memory, 
health, and aging. The Betula data is sampled from the popula-
tion of Umeå, a city located in the north of Sweden with 110,000 
habitants (Nilsson et al., 1997, 2004). The participants gave their 
informed consent and the Betula Project obtained approval from 
the regional board of the ethics committee in Umeå, Sweden. The 
data analyzed in this study were obtained from two stratified ran-
dom samples (S1 and S3), where odor identification had been tested 
two times over 5 years. In Betula, extensive psychological testing 
and health assessment is conducted every 5 years and the odor 

identification test was added in the third wave of testing (T3). The 
first test occasion for the odor identification assessment took place 
between the years 1998 to 2000 and 5 years later the subjects were 
retested with the same procedure. At T3, 1323 participants had been 
BDNF genotyped, completed the MMSE, the odor identification 
and the vocabulary tests. Five years later, 980 participants in the 
study sample completed the same tests at the fourth wave of data 
collection (T4), resulting in a drop-out rate of 26%. Among the 
drop-outs, 42% had died and 9% had become demented. When 
taking death and dementia under consideration the drop-out rate 
was reduced to 17%.

Participants with a dementia diagnosis 10 years after first 
olfactory testing were removed from the present sample (n = 29). 
Also, participants diagnosed with Parkinson’s disease (n = 2) were 
removed. Longitudinal studies indicate that a decline in global cog-
nitive ability reliably predicts an impending dementia (Amieva 
et al., 2005; Bäckman et al., 2005; Small and Backman, 2007). 
Impending dementia is furthermore associated with impaired 
olfaction (Olofsson et al., 2009). To minimize influences from 
preclinical dementia on the results, subjects with an MMSE score 
below 24 in the two test occasions (n = 26) or exhibiting a decrease 
of the MMSE score by 3 points or more during the two test occa-
sions (n = 86) were excluded.

The final sample comprised 836 cognitively intact subjects (447 
females and 389 males) who were tested on both test occasions. 
With regard to the genetic information, the frequencies across the 
different genotypes of the BDNF val66met polymorphism corre-
spond to the frequencies earlier reported (Egan et al., 2003). The 
subjects were grouped according to genotype: val/val homozygous 
carriers, val/met heterozygous carriers, and met/met homozygous 
carriers. Due to the low population frequency of the met/met geno-
type (<5%), homozygous met carriers were collapsed with the met 
heterozygote carriers into one group referred to as the met carriers 
(Hariri et al., 2003).

Reports based on cross-sectional as well as longitudinal data 
indicate that olfactory function shows an accelerated age-related 
impairment from ages around 65–70 years compared to younger 
ages (Doty et al., 1984; Murphy et al., 2002; Olofsson et al., 2010). 
To investigate the combined effects of age and BDNF genotype, 
the participants were divided into two age groups: middle-aged 
subjects ranging from 45 to 65 years, and old subjects ranging from 
70 to 90 years of age. See Table 1 for descriptive data across age 
and genotype groups.

Table 1 | Sample characteristics. Descriptive data across age and genotype groups (mean ± SD).

 Middle-aged Old

 val/val val/met met/met val/val val/met met/met

Gender (F/M) 208/197 112/88 12/13 75/56 34/33 6/2

Age 54.3 ± 6.95 54.6 ± 7.31 58.0 ± 6.46 74.1 ± 4.84 74.4 ± 5.19 73.8 ± 4.43

Education 12.7 ± 4.02 12.7 ± 3.82 12.1 ± 4.52  8.3 ± 2.79 8.7 ± 3.20 8.5 ± 3.85

MMSE 28.2 ± 1.37 28.3 ± 1.37 28.2 ± 1.33 27.5 ± 1.57 27.8 ± 1.45 27.4 ± 1.77

Vocabulary 24.3 ± 3.43 23.9 ± 4.15 23.8 ± 4.21 21.7 ± 4.46 22.4 ± 4.24 21.6 ± 6.80

Odor id at T3 0.6 ± 0.15 0.6 ± 0.14 0.6 ± 0.18 0.5 ± 0.15 0.5 ± 0.14 0.5 ± 0.21

Odor id at T4 0.5 ± 0.16 0.5 ± 0.16 0.5 ± 0.19 0.4 ± 0.15 0.5 ± 0.15 0.5 ± 0.15
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are evaluated by a psychiatrist. An earlier study from the Betula 
project revealed that odor identification performance was nega-
tively affected by diabetes and cardiovascular disorders (Olofsson 
et al., 2010). Consequently, these factors were controlled for statisti-
cally. Further, ear, nose, and throat disorders may affect olfactory 
functioning negatively (Deems et al., 1991) and were hence also 
controlled for statistically.

BdnF gEnotyPIng
Genomic DNA was isolated from samples of whole blood and 
diluted to 2.5–5.0 ng/μl. Genotyping was performed using the 
Sequenom iPLEX® Gold assay and MassARRAY® MALDI-TOF 
mass spectrometry platform in accordance with the manufactur-
er’s instructions. Primers for PCR amplification (5′-ACGTTGG 
ATGTTTTCTTCATTGGGCCGAAC-3′ and 5′-ACGTTGGATG 
CATCATTGGCTGACACTTTC-3′), unextendend primer (5′-CC 
AACAGCTCTTCTATCA-3′) and extension primers (5′-CCA 
ACAGCTCTTCTATCAC-3′ and 5′-CCAACAGCTCTTCTATC 
AT-3′) were designed using the Sequenom MassARRAY® System 
Designer software.

rESuLtS
IntErcorrELAtIonS AMong vArIABLES
In order to determine the relationships among the demographic, 
health, cognitive, genetic variables, and odor identification, zero-
order Pearson correlations were calculated. The BDNF × age inter-
action term represents the residuals of the interaction effect after 
the main effects were partialled out. Thus, the interaction does not 
correlate with either age or BDNF status. The correlations among 
variables are displayed in Table 2.

The BDNF val66met did not correlate significantly with any 
variables. However, the interaction term comprising age and BDNF 
val66met correlated with odor identification performance at fol-
low-up. Based on these observations, we carried out a hierarchical 
regression analysis to examine if the relation between age and BDNF 
val66met on odor identification at follow-up was related to a 5-year 
change in olfactory performance.

The allelic distribution of the BDNF val66met polymorphism 
fits the Hardy–Weinberg equilibrium for the middle-aged group 
(χ2 = 0.002, p = 0.96), and for the old group (χ2 = 0.05, p = 0.82). 
Also, the observed genotype frequencies did not differ between the 
two age groups (χ2 = 0.12, p = 0.94).

rEgrESSIon AnALySES
The data were analyzed with a hierarchical regression model 
comprising six blocks. Olfactory identification at follow-up was 
selected as the criterion measure. In the first block, the olfactory 
identification scores at baseline were added in order to control for 
baseline performance, and hence the variables of the following 
blocks would, if significant, predict olfactory change from T3 to 
T4. Then a block of demographic variables including age, sex, and 
years of formal education was added to the model. The third block 
consisted of health-related predictors, such as diabetes, cardiovas-
cular disorders, and ear, nose, and throat disorders. The cognitive 
measure (i.e., vocabulary) was added in the fourth block. The fifth 
block contained information on the genetic variant of the BDNF 
val66met with two levels (i.e., the val/val homozygotes and the met 

ProcEdurE
Specific details regarding the test procedure have previously been 
reported (Nilsson et al., 1997, 2004). In every test wave all partici-
pants were tested individually in two sessions, 1 week apart. The 
first test session was conducted by a nurse, and included blood 
sampling for genetic analyses, an extensive health examination, and 
some cognitive tests. Also, information regarding health-related and 
social factors was collected. In the second session, participants car-
ried out a large battery of psychological tests, drawing on different 
cognitive domains. For the T3 and T4 this session also included the 
odor identification test. The test sessions lasted for approximately 
2 h each, and the olfactory and psychological tests were adminis-
tered by well-trained research assistants.

oLFActory And cognItIvE ASSESSMEnt
The Betula study includes a modified version of the Scandinavian 
Odor Identification Test (SOIT) (Nordin et al., 1998). The test 
consists of 13 odor stimuli specifically chosen to fit a Scandinavian 
population: almond (bitter), anise, apple, cinnamon, clove, juniper 
berry, lilac, lemon, orange, pine-needle, tar, vanilla, and violet. The 
selection of odors is empirically based on their identifiably, familiar-
ity, intensity, and pleasantness. All odors are considered as predomi-
nantly olfactory stimulants and provide a good basis to generalize 
test performance to olfactory status. In order to minimize the cogni-
tive demands, each stimulus is presented in conjunction with four 
force-choice response alternatives. The response alternatives were 
chosen based on a confusion matrix of identification responses. 
The SOIT has been demonstrated to constitute a valid and reliable 
test of odor identification ability (Nordin et al., 1998).

The liquid odorants were injected into a cotton pad and placed 
in an opaque, 80 ml glass jar. The stimuli were presented birhina-
lly 1–2 cm under the participant’s nose for as long as required to 
accomplish the task. For each stimulus, the participant was pro-
vided with a written list of the four response alternatives and was 
instructed to choose the correct target odor name. To avoid ceiling 
effects, the distractor labels among the response alternatives were 
carefully chosen to be perceptually similar to the corresponding 
test odor. The stimulus order was randomized between subjects by 
randomly assigning one out of ten different stimulus orders to each 
subject. There was a 30-s inter-stimulus interval between stimuli to 
limit adaptation effects. The test took 10–15 min to administer.

As noted above, the MMSE was included as a screening test for 
global cognitive function and cognitive impairment. The MMSE 
is a brief 30-point questionnaire that assesses general cognitive 
function (Cockrell and Folstein, 1988).

A 30-item multiple-choice synonym test (SRB) was used to assess 
verbal knowledge that draws on semantic memory. Here, the partici-
pants were instructed to select a synonym for each target word out of 
five alternatives. A time limit was set to 7 min to complete the test. Since 
odor identification draws on semantic memory, the vocabulary test 
was included in the analyses to control for word knowledge that might 
influence odor identification performance (Larsson et al., 2004).

hEALth ASSESSMEnt
The participants in the Betula study undergo an extensive health 
evaluation conducted by nurses in order to provide an overview 
the of health status of each participant. Dementia diagnoses 
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olfactory decline. In contrast, no accelerated age-related decline 
in olfactory performance occurred in the older age groups among 
the met carriers (p = 0.62).

In order to explore the impact of age and BDNF val66met on 
the raw data scores for each test occasion, two separate between-
group (Age × BDNF val66met status) ANOVAs were conducted, 
one on olfactory performance at baseline and the other on olfactory 
performance at follow-up. For the baseline measure, there was a 
significant effect of age [F(1,832) = 51.88, p = 0.000, η2 = 0.06], 
such that middle-aged participants outperformed the older adults. 
The main effect of BDNF status and the Age × BDNF interaction 
effect were not reliable (ps > 0.10) on olfactory baseline perform-
ance. For the follow-up olfactory test, there was a reliable age-effect, 
[F(1,832) = 36.25, p = 0.0001, η2 = 0.05] with poorer performance 
among the older than the middle-aged participants. Also, there was 

carriers). Finally, in the sixth block, the age by BDNF val66met 
interaction term was included. The hierarchical regression model 
is illustrated in Table 3.

The predictor variables altogether accounted for 19.7% of the 
explanatory variance in odor identification performance at follow 
up. Odor identification proficiency at baseline (i.e., T3) was a sig-
nificant predictor of odor identification at follow up (β = 0.376; 
p = 0.000) and explained 14.1% of the variance alone. In the second 
block, age, and education influenced olfactory decline, indicating 
that higher age and less years of formal education were related 
to faster olfactory decline. Sex affected the rate of the olfactory 
decline such that males declined more than females over the 5-year 
interval. None of the health predictors were related to olfactory 
decline. Semantic ability at baseline testing did not predict larger 
odor identification change. The genetic variable did not signifi-
cantly contribute to odor identification change, suggesting that 
the BDNF val66met polymorphism alone has no general effect on 
odor identification decline in the age-range of 45–90 years at base-
line. However, the interaction between age and val66met showed 
a highly significant contribution to olfactory decline (β = −0.167; 
p = .002). Importantly, the main variables in the age × val66met 
interaction were partialled out before the interaction term was 
added to the model.

The source of the interaction effect was investigated by splitting 
up the sample based on age cohort and BDNF val66met geno-
type. Four separate one-way ANOVAs were conducted with the 
standardized residuals from the regression model used above as a 
dependent variable. In the first and second ANOVAs, the sample 
was split based on age-cohorts and BDNF val66met was entered 
as between-group factor. The results showed that the effect of 
BDNF val66met on olfactory decline was non-significant in the 
middle-aged age cohort (p = 0.56), whereas BDNF val66met had 
a significant effect in the older age cohort [F(1,205) = 10.53, 
p = 0.001, η2 = 0.05]. Specifically, older val/val carriers displayed 
a significantly larger olfactory decline than the older met carriers. 
The third and fourth ANOVAs used age as a between-group factor. 
Separate analyses of the two genotype groups indicated a reli-
able age effect for the val homozygote carriers [F(1,534) = 18.44, 
p = 0.000, η2 = 0.03], with the older group exhibiting a larger 

Table 2 | Intercorrelations among variables.

Variable 1 2 3 4 5 6 7 8 9 10 11

1. Odor id T3 –          

2. Odor id T4 0.38** –         

3. Age −0.26** −0.25** –        

4. Sex −0.20** −0.15** −0.03 –       

5. Education 0.26** 0.25** −0.44** −0.04 –      

6. Cardiovascular −0.13** −0.09* 0.16** −0.04 −0.20** –     

7. Diabetes −0.06 −0.02 0.08* 0.08* −0.06 0.12** –    

8. ENT disorder −0.00 −0.02 0.04 −0.02 −0.05 −0.03 0.03 –   

9. Vocabulary 0.25** 0.22** −0.24** −0.08* 0.50** −0.16** −0.03 −0.01 –  

10. BDNF  0.06 −0.01 −0.00 0.02 −0.01 −0.01 −0.00 0.06 0.02 – 

11. Age × BDNF −0.05 −0.11** 0.00 −0.03 −0.02 0.04 0.03 −0.04 −0.05 0.00 –

The interaction variables represent the residuals of the interaction effects after the main effects were partialled out.
*p < 0.05, **p < 0.01.

Table 3 | Hierarchical regression analysis for predicting odor 

identification ability (SOIT) at 5-year follow-up (n = 836).

 R 2 ∆ R 2 β p

1. SOIT score at baseline 0.141 0.141  

 Odor identification   0.376 0.000***

2. Demographics 0.042 0.183  

 Age (1 =  older, 0 = younger)   −0.123 0.001***

 Sex (0 = m, 1 = f)   −0.085 0.008**

 Education (years)   0.116 0.001**

3. Health 0.000 0.184  

 Cardiovascular disease   −0.012 0.714

 Diabetes   0.018 0.570

 Ear, nose, and throat disorder   −0.010 0.745

4. Cognition 0.004 0.188  

 Vocabulary   0.070 0.057

5. Genetics 0.001 0.188  

 Val66Met   −0.031 0.329

6. Two-way interaction 0.009 0.197  

 Age × Val66Met   −0.167 0.002**

The β weights are the standardized regression coefficients at each step.
*p < 0.05, **p < 0.01, ***p < 0.000.
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a main effect on BDNF status [F(1,832) = 4.24, p = 0.04, η2 = 0.01], 
such that val/val carriers outperformed met carriers on olfactory 
follow-up testing. The Age × BDNF interaction on olfactory fol-
low-up performance was statistically significant [F(1,832) = 11.11, 
p = 0.001, η2 = 0.01] such that met carriers outperformed val/val 
carriers in the older age group whereas no difference was observed 
among the middle-aged adults.

Figure 1 displays raw data of the identification performance as 
a function of age and BDNF for baseline (A) and follow-up (B). 
Here, an impairment of the val/val carriers in the older age cohort 
is present in the follow-up testing. Figure 1C illustrates the 5-year 
olfactory decline as a function of BDNF genotype across four age 
cohorts. In this graph the selective olfactory decline of the val/val 
carriers in the older age cohorts becomes apparent.

To explore whether the Age × BDNF val66met effect was driven 
by the met/met homozygotes (n = 33) in the collapsed met group 
the same regression analysis without the met/met carriers was con-
ducted. The results showed that the Age × val66met interaction 
on olfactory decline remained significant (β = −0.176; p = 0.003) 
although met/met carriers were excluded from the sample. This 
observation suggests that met/met homozygosity is not of major 
influence for the observed interaction.

Also, to investigate whether the Age × BDNF interaction would 
be attenuated by dementia and cognitive decline, we performed an 
additional hierarchical regression analysis that included this group 
(n = 132) as a predictor variable. Dementia and cognitive decline 
had a significant effect on olfactory change (β = 0.150; p = 0.001). 
Interestingly, this factor did not affect the observed Age × BDNF 
effect on olfactory change (β = −0.214; p = 0.003), suggesting that 
dementia and cognitive decline are of minor importance for the 
Age × BDNF effect on olfactory change.

dIScuSSIon
The aim of this study was to explore the impact of the BDNF 
val66met polymorphism, a gene involved in neural proliferation 
and survival, on olfactory change using a large, population-based 
sample assessed longitudinally. The main findings suggest that the 
val66met affects the magnitude of the age-related decline in olfac-
tory functioning. Specifically, the BDNF val66met did not affect 
the rate of decline in middle-aged subjects, whereas older val/val 
carriers showed a relatively higher age-related decline. The older 
carriers of the met allele displayed no accelerated decline over a 
5-year-interval, whereas carriers of the val homozygote allele dis-
played an accelerated olfactory decline in the oldest age cohort 
compared to the middle-aged cohort.

Males exhibited a larger decrease in odor identification ability than 
females, corroborating previous work (Doty et al., 1984). Also, educa-
tion influenced the rate of olfactory change, such that fewer years of 
education predicted a greater olfactory decrease. The included health-
related factors, cardiovascular disease, diabetes, and ear, nose, and 
throat disorders proved unrelated to the rate of olfactory change.

It is important to note that the BDNF genotypes did not affect 
olfactory change overall but interacted with participants’ age. 
Specifically, the old (70–90 years of age) val/val carriers exhibited 
a steeper olfactory decline than the old met carriers. The current 
finding of an age by BDNF interaction on olfactory decline could 
be due to several reasons. It could be interpreted in the context of 

FIgure 1 | Odor identification performance (mean + SD) at baseline 
testing (A) and at follow-up testing (B) as a function of age and BDNF 
val66met status. (C) Displays the change in odor identification score 
(mean ± SE) from baseline to follow-up as a function of age and BDNF 
val66met status.
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