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explosion in NDD. The effects of exercise and diet on brain function 
has previously been elaborated on (Gomez-Pinilla, 2008), and may 
be used as strategies to combat the above problem. The rationale 
for these shall be discussed later.

With that background, we shall provide below a review for 
Alzheimer’s disease (AD), and Parkinson’s disease (PD), the impli-
cations of the “Iron hypothesis” and to highlight the efficacy of 
exercise (mental and physical) and dietary restriction in slowing 
the progression of these diseases.

Types of NeurodegeNeraTive diseases
alzheimer’s disease
Alzheimer’s disease is the leading neurodegenerative disease. It is a 
progressive neurological disorder of broad etiology with a strong 
genetic influence, and with varied presentation according to age, sex 
and life style factors (Mattson, 2004). The disease primarily affects 
the aged population above the age of 65 in the USA (Leifer, 2003), 
although there are instances of early onset. In Singapore, the demo-
graphic profile is as follows: 0.8% amongst the 60- to 64-year-old 
cohort, to a staggeringly 32.2% amongst individuals above 84 years 
of age (Ministry of Health, Singapore, 2007). Sporadic form of AD 
(>90%) arises from a combination of various genetic, behavioral, 
dietary and environmental factors; hence there is no single magic 

iNTroducTioN
Neurodegenerative diseases (NDD) in on the rise, as the global 
population grows older, since aging is a prominent risk factor 
(Yankner et al., 2008). Needless to say, human’s sufferings are con-
siderable, and the associated socioeconomic losses are enormous 
(Leifer, 2003). It is also reasonably clear that the different NDD (AD/
PD) may share some similarities in genetic, histopathology and/or 
behavioral traits. This inevitably leads to problems with diagno-
sis, as subjective family history profiling, supported by objective 
genetic testing is not the optimal approach. To further compound 
this problem, there is a lack of suitable biomarkers for AD/PD. 
Even with post-mortem histopathology, there are still many gaps 
in knowledge that need to be addressed. This is exemplified by the 
positive immuno-staining of brain samples of PD and AD patients 
for alpha synuclein (α-syn) (Crews et al., 2009), although the find-
ings in the latter are an exception, rather than a rule. In addition, 
genetic profiling without complementary evidence cannot fully 
clarify the above problem, as common mutations can be found for 
both AD and PD (Bertoli-Avella et al., 2004).

Prevailing sedentary lifestyle in this modern era has defi-
nitely contributed to the increase in age-related problems such as 
dementia (2009). This trend coupled with overindulgence in food 
consumption is worrying and may inevitably set the stage for an 
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remedy to tackle this problem. Inevitably, this presents a significant 
problem, in view of the extended life expectancies, and rapidly 
graying populations (Ministry of Health, Singapore, 2007).

In terms of clinical manifestations, AD affects the mental faculty 
of a patient with severe consequences inclusive of socioeconomic 
cost (Leifer, 2003). Typically, an AD patient loses normal cogni-
tive function over time, including emotion, learning and memory 
processing skills (Mattson, 2004), ultimately leading to what is 
generally termed as “dementia” (Jalbert et al., 2008). In terms 
of pathology, there is the characteristic accumulation of inter-
neuronal “Plaques” and intra-neuronal “Tangles” (Maccioni et al., 
2001; Mudher and Lovestone, 2002; Mattson, 2004; Halliwell and 
Gutteridge, 2007). “Plaques” form when the peptide, β-Amyloid 
(Aβ), aggregate outside of the neuron, while the “Tangles” that 
build up within the cell are mainly composed of hyper-phos-
phorylated microtubule-associated tau protein (Mattson, 2004; 
Halliwell and Gutteridge, 2007). Although “Plaques and Tangles” 
are also found in normal aged brains, soluble Aβ is at least 5 times 
higher, while precipitated Aβ may be about 100 times higher in 
an AD patient (Halliwell and Gutteridge, 2007). Accumulation of 
these intra- and extra-cellular proteins coupled with poor clear-
ance of it seems to interfere with neuronal function and induce 
neuronal death. However, there is still no consensus as to whether 
which of the two factors plays a more significant role (Mudher 
and Lovestone, 2002). Nonetheless, these factors are obviously 
the most prominent therapeutic targets (Mudher and Lovestone, 
2002; Soto, 2003; Mattson, 2004; Roberson and Mucke, 2006; Bates 
et al., 2009).

There are known mutations in a few genes that are closely linked 
to AD. Some genes (APP, PSEN1, PSEN2, ApoE) (Bertram and 
Tanzi, 2008; Sando et al., 2008), related cholesterol and inflamma-
tory factors have also been extensively investigated (Beffert et al., 
1998; Bales et al., 2002; Lott and Head, 2005). However, it has 
been suggested that oxidative damage is one of the most integral 
neurotoxic mechanisms in both Aβ accumulation (Halliwell and 
Gutteridge, 2007) and tau pathologies (Ballatore et al., 2007). In 
that connection, we shall be reviewing some studies in relation to 
oxidative stress and mitochondria dysfunction in AD, to neurode-
generative disorders in general, and we shall discuss how exercise 
may be a promising therapy.

Specifically, increased oxidative damage to brain lipids, carbo-
hydrates, proteins and DNA in AD has been reported (Markesbery, 
1999; Varadarajan et al., 2000; Butterfield and Kanski, 2001; 
Butterfield and Lauderback, 2002; Mariani et al., 2005). Hence, 
the management of oxidative stress level is highly likely to play an 
important role, in the overall disease course. As such, there has been 
much interest in investigating ROS generation, and how this may 
be minimized. Of the various sources of oxidative stress proposed 
for AD: Aβ, mitochondria dysfunction, and redox-active metal ions 
like iron (Fe2+) and copper (Cu2+) ions play important roles. There 
is a current view suggesting that exercise could in fact moderate AD 
(Rolland et al., 2008). This is presented in Table 2.

parkiNsoN’s disease
Although described about a century before AD, PD (a move-
ment disorder) is the second most common neurodegenerative 
disorder worldwide. It affects approximately 1% of the aged 

population (≥ age of 70) in the USA. In addition to the classical 
resting tremor, other symptoms include bradykinesia, rigidity, 
and postural instability with accompanying dementia or auto-
nomic dysfunction (Olanow and Tatton, 1999). These symptoms 
are clinically defined as “parkinsonism”. However, a distinction 
should be drawn between the latter and PD itself, as display of 
“parkinsonism” does not equate someone with the disease. In 
terms of pathology, the classical lesion occurs in the brain region 
called Substantia Nigra pars compacta (SNpc). Here, selective 
death of dopaminergic neurons occurs, thereby resulting in a 
reduction in the release of neurotransmitters such as dopamine. 
This frequently translates into impairment of gait and move-
ments. The other cardinal pathology is the presence of Lewy 
bodies which are largely composed of aggregated proteins (Irvine 
et al., 2008), such as alpha (α) synuclein.

It is now believed that genetics influenced the etiology of 
this disease substantially (Hardy et al., 2006). A leap toward the 
understanding of PD pathogenesis took place after the discovery 
of mutations in α-synuclein in 1997 (Polymeropoulos et al., 1997; 
Kitada et al., 1998). This was followed by discoveries of mutations 
in other genes, including Parkin, PINK1, LRRK2 and DJ-1 (Hardy 
et al., 2006). In addition to the mutations in the α-synuclein gene, 
duplication (Chartier-Harlin et al., 2004; Ibanez et al., 2004; Eriksen 
et al., 2005) and triplication (Singleton et al., 2004) of the gene 
have also been linked to familial forms of PD. There is substantial 
evidence suggesting the positive role of exercise toward slowing the 
progression of PD (Crizzle and Newhouse, 2006; Falvo et al., 2008; 
Goodwin et al., 2008). This is presented in Table 2.

ad versus pd
As mentioned earlier, PD patients exhibit much movement dys-
function, and other related issues such as balance. In that context, 
PD is essentially a movement disorder, primarily due to the death 
of dopaminergic neurons in the striatum. On the other hand, AD 
is a dementia disorder compounded by mood swings, depression, 
irritability, and learning dysfunction. Toward the terminal phase 
of the disease, movement disorders will also be featured. In the 
following section, the major differences and similarities will be 
discussed (Table 1).

Table 1 | Differences and similarities between AD and PD.

AD PD

DiFFereNces

Dementia disorder Movement disorder

Tangles and Plagues made up Lewy bodies made up 

of Tau and Aβ of alpha-synuclein and ubiquitin

Genetic mutation in APP, PSEN1,  Genetic mutation in α-synuclein, 

PSEN2, ApoE Parkin, PINK1, LRRK2 and DJ-1

similAriTies

Presence of misfolded and 

insoluble proteins

Axonal transport dysfunction

Iron induced oxidative stress

Dysfunctional L-type voltage 

gated calcium channel
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primarily via the Fenton reaction in producing the highly reactive 
hydroxyl radicals, which are involved in causing damage to DNA, 
lipid and protein (see box below). Aptly, “The iron hypothesis” 
deserves special attention as it is tightly linked to aging and the 
various NDD (Egana et al., 2003; Ke and Ming Qian, 2003; Zecca 
et al., 2004).

NeurodegeNeraTioN diseases – “The iroN hypoThesis” 
aNd oThers
It is obvious that old age alone is a key factor in the onset of 
NDD (Yankner et al., 2008). A simplistic notion would be aging 
results in the accumulation of iron, which will increase oxida-
tive stress, thus causing diseases like AD and PD. This occurs 

Table 2 | selected literatures on the effects of exercise on the brain (from a Pubmed search: keywords – Alzheimer’s, Parkinson’s disease,  

exercise, brain).

Targeted 

disease

methodology 

(epidemiological, 

review, meta-

analysis, etc)

implications references comments

PD and AD, 

and other 

diseases 

A review on the 

biological evidences

Exercise could promote neuroregenerative, 

neuroadaptive, and neuroprotective responses 

via neurotrophic factors. Other implications 

include the prevention of depression, cognitive 

decline associated with aging, AD and PD. The 

exact mechanisms are not known but possibly 

include metabolic and neurochemical pathways 

in the spinal cord and brain

Dishman et al. 

(2006)

The effects of exercise are wide reaching, 

and are not confined to neurological 

diseases. Exercise may also counteract 

the effects of stress via the autonomic and 

neuroendocrine system

AD Epidemiological 

study

Adults with subjective memory impairment (at 

risk of AD), after undergoing a 24-weeks 

program of physical activity showed a modest 

improvement in cognition over an 18-month 

follow-up period

Lautenschlager 

et al. (2008)

This is one of the few randomized 

controlled trial. Importantly, the 

experimenters were blinded to the study

AD Epidemiological, 

+meta-analysis 

review

Exercise could improve cognitive function in the 

aged and AD patients. This may alter the rules 

governing lifestyles habits such as diet, 

cognitive activity and physical activity, in 

combating AD 

Rolland et al. 

(2007, 2008)

In the Rolland et al. (2007), the authors 

concluded in this randomized, controlled 

trial that exercise helped to reduce 

activities of daily living (ADL) score. They 

recommended a simple exercise program 

twice a week, up to an hour

Dementia Epidemiological 

study

It was reported in this prospective study that 

aged people adopting a sporting (physical) and 

reading (mental) habit reduces the risk of 

dementia by 25%, over a period of 15 years

Le Goff et al. 

(2009)

The authors concluded that an active 

lifestyle could in fact prevent dementia. 

This article is in French

PD Meta-analysis review Strengthening exercise is beneficial for PD 

patients. It will help to improve activities of daily 

living (ADL) functions such as balance and 

movements. Specifically, muscle and bone 

health will also improve

Falvo et al. (2008) It is recommended that resistive exercise 

be incorporated into treatment approaches 

for PD patients

PD Review + meta-

analysis

Exercise helps improve physical functioning, 

health-related quality of life, strength, balance 

and gait for PD patients

Goodwin et al. 

(2008)

Correctly pointed out that there is a lack of 

consensus on exercise parameters 

(dosing, component exercises etc) at 

different stages of the disease

PD Review Exercise resulted in improvements in postural 

stability and balance task performance in PD 

patients. However, the optimal delivery and 

extent of exercise (dosing, types of activities) at 

different stages of the disease are not clear

Dibble et al. 

(2009)

There is a need to have longer-term 

studies to investigate if exercise related 

gains are retained long term

AD/PD Review Exercise could reduce the risk of age-associated 

neurological disorders such as Alzheimer’s and 

Parkinson’s diseases. However, the 

mechanisms underlying these beneficial effects 

remain poorly understood

Garraux (2008) This is a need to conduct more scientific 

research to elucidate the working 

mechanisms of exercise in the aging brain. 

This article is in French
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Moving away from iron as a causative agent, one has to be mind-
ful of the interaction between environmental (iron is considered 
to be an environmental influence) and genetic factors in causing 
diseases such as PD (Wszolek et al., 1997). These factors are often 
cited in an attempt to differentiate NDD into the familial and spo-
radic subtypes (Goldberg et al., 1993; Rossor et al., 1996; Gros-Louis 
et al., 2006; McNaught and Olanow, 2006).

Without dwelling into the other NDD such as ALS or HD, there 
are other genetic factors which play important roles in the patho-
genesis of AD and PD. Such include the influences of misfolded 
proteins (Apolipoprotein E, α-synuclein, etc), mitochondrial dys-
function and defective myelination (Figure 1). For instance, the 
role of ApoE (Apolipoprotein E) has been implicated in both AD 
and PD (Masliah et al., 1996; Gallardo et al., 2008). Other proteins 
such as α-syn are also known to affect AD and PD. The importance 
of protein aggregation and misfolding has also been thoroughly 
reviewed in NDD such as AD, PD, ALS, HD (Agorogiannis et al., 
2004; Ross and Poirier, 2004; Irvine et al., 2008). Similarly, there are 
also interesting studies suggesting the role of certain pro-inflamma-
tory cytokines (TNF-α) in causing AD and PD (Figure 1). Indeed, 
there are now initiatives to find suitable ways to combat NDD via 
anti-inflammatory strategy (Tweedie et al., 2007). For instance, the 
use of non-steroidal anti-inflammatory drugs (NSAID) to reduce 
exceedingly high level of age-related neuroinflammation has been 
undertaken. Unfortunately to this date, there is still a lack of consen-
sus regarding its efficacy (Aisen et al., 2003; de Craen et al., 2005). 
This was further confounded by the controversies involving C0X-2 
inhibitors in recent years.

On another note, dysfunctional axonal transport in NDD (De 
Vos et al., 2008) has been reported suggesting a possibility that 
there may be defective myelination. However, other damaged 

 In AD, iron does not only contribute to oxidative stress (Mattson, 
2004), but it is also involved in plaque pathology, and the result-
ing plaque-related oxidative damage (Zecca et al., 2004). This is 
important because it was shown that physiological iron accumula-
tion in AD brains is independent of normal age-related increase in 
ferritin (Zecca et al., 2004). Specifically, iron can participate directly 
in Aβ plaque formation by modulating the ability of α-secretase 
to cleave APP (Zecca et al., 2004) or by facilitating Aβ aggregation 
(Maccioni et al., 2001). Oxidative stress contributed by iron or from 
Aβ plaque, may also further promote amyloidogenesis (Mattson, 
2004). These processes are likely taking place concurrently with iron 
build up during the aging process. Furthermore, iron accumulation 
is both regional- and cell-specific (e.g., hippocampus and astro-
cytes) possibly accounting for the preferential oxidative damage 
characteristic in AD (Zecca et al., 2004). In summary, the role of 
iron related oxidative stress in relation to NDD is significant and 
have been thoroughly discussed previously by others (Emerit et al., 
2004; Mariani et al., 2005; Shibata and Kobayashi, 2008).

Figure 1 | AD versus PD with overlapping causative factors. Salient signs of the disease are shown here together with key genetic/environmental influences. 
The overlaps were intentionally meant to suggest possible contribution by the same factor to both scenarios.

Fe2+ + H2O2→Fe3++ OH-+•OH
Fe3+ + O2

•-→Fe2++ O2

H2O2+O2
•-→ OH-+•OH + O2

Fenton reaction. This involves the conversion of iron (II)(Fe2+ ) to 
iron (III) (Fe3+ ) through the reaction with hydrogen peroxide (H2O2). 
Hydroxyl radical (•OH) is generated as a by-product. Additonally, 
in the presence of superoxide anion (O2

•-), Fe3+  can be converted 
back to Fe2+ , which in turn can go through another cycle of reaction 
with H2O2 to generate more •OH. Besides, •OH could be generated 
through the reaction between H2O2 and O2

•
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Furthermore, sustained exercise could in fact facilitate axonal 
transport of certain proteins such as acetylcholinesterase (Jasmin 
et al., 1988). Pertinent to this review, there is some evidence from 
animal studies that exercise could help to alter the antioxidant 
status in the brain under certain circumstances (Ozkaya et al., 
2002). Collectively, this could well alleviate symptoms or even delay 
the progression of AD/PD. However, even with all these scientific 
knowledge, there is still no agreement concerning the optimal 
exercise intensity, and prescription strategy for patients suffering 
from AD/PD.

In summary, numerous epidemiological studies have pointed 
out that exercise is efficacious in reducing the risk of most age-
related diseases such as AD and PD. However, there are still many 
gaps to be filled between biological findings and translating that 
understanding to situations in the clinic and community (Garraux, 
2008). Furthermore, there is still no standardization for optimal 
outcomes, such as duration of exercise, intensity, point of interven-
tion, and whether exercise could reverse the course of the disease 
after onset. These are issues, which undoubtedly will need further 
investigations and research. The following section presents a non-
exhaustive review of selected literatures on the effects of exercise 
(mental and physical) on AD and PD.

dieT aNd braiN fuNcTioN
It has been reported recently that caloric restriction and exercise 
could result in a myriad of systemic effects, including anti-in-
flammatory, reduction of oxidative stress; promotion of synaptic 
plasticity, and induction of neuroprotective factors in the brain 
(Gillette-Guyonnet and Vellas, 2008; Hofer et al., 2008). This is 
indeed promising, as oxidative stress has long been an underlying 
factor to trigger the onset of NDD (Linseman, 2009). In terms of 
mechanisms, since the mitochondria is known as the major source 
of ROS in the cell, dietary restriction would directly reduce the 
generation of it by minimizing proton leakage (Hagopian et al., 
2005; Civitarese et al., 2007). Conversely, a high fat diet is capable 
of inducing the activation and expression of certain transcrip-
tion factors like NF-kappa B and hence inflammation (Liao et al., 
1993), which might lead to increased cellular stress. Free radical 
damage also underlies age-related diseases (Egana et al., 2003; 
Stankiewicz and Brass, 2009). The damage due to exposure to free 
radical throughout life, especially ROS generated by the mitochon-
dria (Bayir and Kagan, 2008), is ameliorated by a repertoire of 
antioxidant systems acting at the cellular level to protect the integ-
rity of biomolecules from oxidative damage. Emerging evidences, 
both in in vitro and in vitro studies have shown that increased 
energy expenditure (ATP usage) and dietary (calorie) restriction 
could exert beneficial effects on bodily systems, working primarily 
through improved antioxidant systems, upregulated growth fac-
tors (BDNF and NGF) as well as cytoprotective proteins (Lane 
et al., 1996; Hofer et al., 2008). As a consequence, these molecular 
mechanisms work to enhance the efficiency of free radical neu-
tralization so as to reduce the risk factor of age-related oxidative 
load and diseases.

On another note, caloric restriction could also promote 
adult neurogenesis, and hence prevent AD (Levenson and Rich, 
2007) although the neurobiological mechanism is still unknown. 
Selecting diet enriched with Omega 3 fatty acids could also help 

structures such as mitochondria, kinesin and microtubules may 
also  contribute to compromised axonal transport (De Vos et al., 
2008). There are now studies alluding to the role of dysfunc-
tional myelin in AD and other NDD (Bartzokis, 2004; Bartzokis 
et al., 2007) (Figure 1). Typically, in NDD there is myelin break-
down in the CNS or PNS. It is also interesting to note that 
myeloarchitecture may be laden with iron deposits (Fukunaga 
et al., 2010), again reaffirming the possible contributory role of 
iron dysregulation in NDD. Another recurring theme in AD/
PD pathology is the involvement of mitochondrial dysfunc-
tion. This often leads to severe consequences such as impaired 
calcium buffering, generation of free radicals, activation of the 
mitochondrial permeability transition and secondary excito-
toxicity (Beal, 1998). There is a chance that via the buffering of 
intracellular ATP and free radicals, the onset of NDD may be 
prevented (Beal, 1998).

Perhaps, more importantly, in considering the vast overlapping 
causative agents for AD and PD (Figure 1), we have to ask how NDD 
patients may be genetically predisposed to developing dementia 
(Novakovic et al., 2005). Knowing some of these factors may help 
in early diagnosis and treatment for these patients.

exercisiNg To preveNT ad/pd
The benefits of exercise to the brain and its cognitive functions 
are voluminous, and have been thoroughly reviewed by others 
(Dishman et al., 2006; Ang and Gomez-Pinilla, 2007; Winter et al., 
2007). In AD patients, recent randomized controlled trials have 
shown that exercise could in fact help slow disease progression both 
directly and indirectly (Rolland et al., 2007, 2008; Lautenschlager 
et al., 2008). It is postulated that exercise could help to clear amy-
loid-beta peptide (main pathological driver) in AD patients (Bates 
et al., 2009). Via exercise induced nerve growth factor production, 
the death of cholinergic neurons could be prevented and perhaps 
attenuate cognitive decline (Scott and Crutcher, 1994). With aging, 
the basal metabolism will naturally fall, and it is speculated that 
with exercise, this may also help to reverse some of the risk factors 
(such as lower testosterone) for AD.

In PD patients, exercise could also alter the course of the disease 
(Crizzle and Newhouse, 2006; Dishman et al., 2006; Falvo et al., 
2008; Goodwin et al., 2008). Exercise could help to improve pos-
tural stability, balance (Dibble et al., 2009), and tremor (Schalow 
et al., 2005) in this group of patients. It could also help to overcome 
musculoskeletal deficiencies (Falvo et al., 2008). At the basic level, it 
has been found that exercise could reduce the production of reac-
tive oxygen and nitrogen species in this group of patients (Bloomer 
et al., 2008). Exercise could also possibly alleviate depression or neg-
ative mood (Peluso and Guerra de Andrade, 2005) often associated 
with AD and PD. It may also maintain cerebral blood flow in the 
retirees (Rogers et al., 1990) thereby preventing cognitive decline. 
It is also possible that exercise induced growth hormone changes 
may play a role in promoting neuroregeneration (by increasing 
neural stem cells) (Blackmore et al., 2009).

From animal studies, the benefits of exercise are even more 
startling. It has been reported that exercise could help with learn-
ing and memory (Winter et al., 2007). There are also evidences to 
suggest that exercise could in fact enhance neurogenesis (Aberg 
et al., 2008; Naylor et al., 2008; Van Praag, 2008; Wu et al., 2008). 
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