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Low HDL cholesterol is associated with lower gray matter 
volume in cognitively healthy adults
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Dyslipidemia is common in adults and contributes to high rates of cardiovascular disease and may 
be linked to subsequent neurodegenerative and neurovascular diseases. This study examined 
whether lower brain volumes and cognition associated with dyslipidemia could be observed in 
cognitively healthy adults, and whether apolipoprotein E (APOE) genotype or family history of 
Alzheimer’s disease (FHAD) alters this effect. T1-weighted magnetic resonance imaging was 
used to examine regional brain gray matter (GM) and white matter (WM) in 183 individuals 
(58.4 ± 8.0 years) using voxel-based morphometry. A non-parametric multiple linear regression 
model was used to assess the effect of high-density lipoprotein (HDL) and non-HDL cholesterol, 
APOE, and FHAD on regional GM and WM volume. A post hoc analysis was used to assess 
whether any significant correlations found within the volumetric analysis had an effect on 
cognition. HDL was positively correlated with GM volume in the bilateral temporal poles, middle 
temporal gyri, temporo-occipital gyri, and left superior temporal gyrus and parahippocampal 
region. This effect was independent of APOE and FHAD. A significant association between HDL 
and the Brief Visuospatial Memory Test was found. Additionally, GM volume within the right 
middle temporal gyrus, the region most affected by HDL, was significantly associated with the 
Controlled Oral Word Association Test and the Center for Epidemiological Studies Depression 
Scale. These findings suggest that adults with decreased levels of HDL cholesterol may be 
experiencing cognitive changes and GM reductions in regions associated with neurodegenerative 
disease and therefore, may be at greater risk for future cognitive decline.
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systemic effects, which have been implicated as protective against 
dementia. Oxidative stress, including lipid peroxidation, has been 
shown to be the mediator of the pathologic effects of numerous 
risk factors of Alzheimer’s disease (AD; Guglielmotto et al., 2010). 
Lastly, lifestyle interventions proven to increase HDL cholesterol 
levels (Ashen and Blumenthal, 2005) including “healthy” diet, 
regular exercise, weight control, and smoking cessation have also 
been shown to provide neuroprotective effects (Panza et al., 2004; 
Ward et al., 2005; Kramer et al., 2006; Swan and Lessov-Schlaggar, 
2007). Together these findings suggest that individuals with low 
HDL cholesterol levels may be more susceptible to neuropatho-
logical changes and future development of neurodegenerative and 
neurovascular diseases.

In addition to the positive effects of HDL and brain health, 
there appear to be associations between low HDL cholesterol and 
the neuropathologic mechanisms inherent to neurodegenerative 
disease. HDL contains apolipoprotein E (APOE) and facilitates 
reverse cholesterol transport, which implies the transport of other 
types of cholesterol from various tissues, including the brain, to 
the liver. APOE has a major physiological role in the regulation of 
lipid and lipoprotein homeostasis and additionally, the APOE-ε4 

IntroductIon
Low levels of high-density lipoprotein (HDL) cholesterol, a form 
of dyslipidemia, is common within the United States population, 
afflicting greater than 25% of Americans (Ghandehari et al., 2008) 
and is associated with cardiovascular and neurodegenerative dis-
ease. The cardiovascular benefits of HDL cholesterol are well estab-
lished; however, its role in neurological and cognitive health, along 
with the role of other lipids, is still not well known and is a topic 
of clinical interest.

Numerous epidemiological studies have shown a protective 
association between HDL cholesterol and cognitive impairment 
and dementia (Bonarek et al., 2000; Merched et al., 2000; van Exel 
et al., 2002; Singh-Manoux et al., 2008). However, imaging studies 
attempting to show a relationship between HDL levels and brain 
pathology have been inconclusive (Wolf et al., 2004; den Heijer 
et al., 2005). Beyond the risk of stroke, cardiovascular disease, which 
is closely linked to dyslipidemia, has been shown to be a major 
risk factor for neuropathology and dementia (Meyer et al., 1999; 
Luchsinger and Mayeux, 2004; Rosendorff et al., 2007). Further, 
HDL cholesterol has shown anti-inflammatory (Cockerill et al., 
2001; Trompet et al., 2008) and antioxidant (Paterno et al., 2004) 
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cognition, brain structure, and brain function in individuals with 
risk factors for AD. Ninety-eight (54%) of these participants were 
recruited from the Wisconsin Registry for Alzheimer’s Prevention 
(WRAP; Sager et al., 2005). The WRAP is a longitudinal cohort evalu-
ated for pre-clinical markers of AD. Forty-eight of the WRAP partici-
pants had a parent with either autopsy-confirmed or probable AD 
as defined by NINCDS-ADRDA criteria (McKhann et al., 1984) and 
the remaining fifty had no known first-degree FHAD (with parents 
surviving until at least age 70 without dementia). The remaining 85 
participants were recruited from the community and were selected 
to match the demographics of the subjects from the WRAP.

Participants were administered a comprehensive battery of neu-
ropsychological tests and structural MRI scans to examine changes 
in cognition and brain structure associated with various vascular 
risk factors. All participants completed a detailed health history 
questionnaire and had blood laboratory tests collected. Data col-
lected were APOE genotype, non-fasting lipid panel (including 
LDL, HDL, and total cholesterol), systolic and diastolic blood pres-
sure (BP), and height and weight (for BMI calculation). APOE 
genotype was determined using enzyme-linked immunosorbent 
assay (ELISA) and non-fasting lipid panel was measured using 
enzymatic procedures with standard reagents. BP was measured 
with the participant seated and at rest using an automated BP 
machine. Body height and weight were collected to the nearest 0.5-
inch and 1 pound respectively. The battery of neuropsychological 
tests (Spreen and Strauss, 1998) included the following: portions 
of the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III); 
the Rey Auditory Verbal Learning Test (RAVLT); Trail Making Test 
A and B; the Mini-Mental State Examination (MMSE); the Wide 
Range Achievement Test (WRAT-3); the Brief Visuospatial Memory 
Test-Revised (BVMT-R); the Judgment of Line Orientation (JLO); 
the Controlled Oral Word Association Test (COWAT); the Boston 
Naming Test (BNT); the Center for Epidemiological Studies 
Depression (CESD) Inventory.

Exclusion criteria included: self-reported history of current 
major Axis I psychiatric disease or history of major medical con-
ditions (i.e., traumatic brain injury, cancer, diabetes, or diagnosed 
neurological condition); evidence of dementia based on neuropsy-
chological test performance; contraindications for MRIs; inges-
tion of anti-depressants, mood stabilizers, anti-psychotics, and/or 
anxiety medications.

All subjects gave written informed consent under a proto-
col approved by the University of Wisconsin Human Subjects 
Institutional Review Board. This study was performed in a manner 
that was in accordance with the Declaration of Helsinki.

BraIn ImagIng
Magnetic resonance imaging was performed using a General 
Electric 3.0 Tesla SIGNA (Waukesha, WI, USA) MRI system. A 3D 
inversion recovery prepared fast gradient echo pulse sequence pro-
vided high-resolution T1-weighted structural images. The whole 
brain was imaged in the axial plane with the following parameters: 
inversion time = 600 ms, fast gradient echo read-out with TR/
TE/flip = 9 ms/1.8 ms/20°; acquisition matrix = 256 × 192 × 124 
(interpolated to 256 × 256 × 124); field of view = 240 mm; slice 
thickness = 1.2 mm (124 slices); ± 16 kHz receiver bandwidth. A 
neuroradiologist examined all images for evidence of any major 

isoform is a well-known risk factor for AD (Raber et al., 2004). The 
ε2 and ε4 isoforms have been shown to influence HDL cholesterol 
levels in opposite directions (Mahley, 1988) and multiple find-
ings indicate that the association between APOE-ε4 and decreased 
levels of HDL increase the susceptibility to AD (Hoshino et al., 
2002; Raygani et al., 2006). Further, low HDL and the APOE-ε4 
genotype are both associated with increased incidence of athero-
sclerosis, a significant contributor to cerebral hypoperfusion (de la 
Torre, 2004), and stroke (Schneider et al., 2005; Saidi et al., 2007). 
Cerebrovascular and Alzheimer’s pathological changes frequently 
coincide in cases of dementia and may act synergistically in pro-
ducing cognitive decline (Xuereb et al., 2000). Beta-amyloid (Aβ), 
a pathological hallmark of AD, binds to HDL, maintaining its 
solubility in cerebrospinal fluid (CSF) and plasma. This HDL-Aβ 
interaction prevents the deposition of Aβ into the brain and can 
serve as a marker for neurodegenerative disease (Koudinov et al., 
2001). APOE-ε4 has been shown to adversely affect this HDL-Aβ 
interaction and has been implicated as a risk factor for cerebral 
amyloid angiopathy, another prominent pathologic hallmark of 
AD (Mulder and Terwel, 1998).

Systemic HDL cholesterol is highly correlated with HDL found 
in CSF (Fagan et al., 2000). HDL is the only lipoprotein type found 
within CSF and has the critical role of maintaining intracellular 
cholesterol homeostasis between brain cells (Pitas et al., 1987). This 
transportation of lipids has an effect on membrane biosynthesis 
during neuronal regeneration, synaptic remodeling, and synaptic 
vesicle biogenesis, and has been implicated as a potential player 
in the development of neurodegenerative disease (Koudinov and 
Koudinova, 2001). An interesting association exists between cho-
lesterol and various tauopathies, classically observed in specific 
neurodegenerative diseases, including the production of neurofi-
brillary tangles (NFT) in AD and Niemann–Pick type C disease 
and the formation of glial fibrillary acidic protein and lipoxidative 
damage in some frontotemporal dementias (FTD; Distl et al., 2001; 
Fan et al., 2001; Ohm et al., 2003). Since HDL is the lipoprotein 
responsible for the efflux of cholesterol within cells of the brain, 
it may be that deficient levels or dysfunction of HDL cholesterol 
may contribute to certain tauopathies or dysgenesis of synaptic 
processes, such that individuals with dyslipidemia may be more 
susceptible to neurodegenerative disease.

Dyslipidemia is a known risk factor for neuropathology, how-
ever, the association between lipids and voxel-wise brain volume 
markers in late middle-age have not been studied. In this report, we 
examine regional associations between HDL and non-HDL choles-
terol levels, APOE genotype, and family history of AD (FHAD) on 
brain gray matter (GM) and white matter (WM) volume in cogni-
tively healthy late middle-aged and older adults using voxel-based 
morphometry (VBM). We hypothesized that subjects with more 
significant vascular risk factors would have detectable differences 
in brain volume even during middle-age. This result would suggest 
that interventions to reduce dyslipidemia may also reduce the risk 
of neurodegenerative disease.

materIals and methods
One hundred eighty-three participants (62 men, 121 women) with 
a mean age of 58.4 years (SD = 8.0) underwent magnetic resonance 
imaging (MRI) and cognitive testing as part of a study analyzing 
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the model. FHAD was entered into the model as a dichotomous 
variable; history/no history of first degree relative with AD. Age, 
education, gender, systolic and diastolic BP, and BMI were also 
included as covariates because of their known or potential effects 
on brain structure. Additionally, total GM and WM volume were 
entered into their respective models to ameliorate total GM or WM 
volume as possible confounders of regional volume differences.

Individual effects of interest were assessed for statistical signifi-
cance via the permutation method. For each test conducted, the 
effect under consideration was randomly permuted leaving the 
remaining effects in the model 1000 times. The maximal statistic 
across the entire brain was then saved to generate an empirical 
distribution of the effect of interest under the null hypothesis thus 
providing strong control over the Type I error rate. Observed statis-
tics at each voxel were then compared to the empirical distribution. 
The empirical threshold (p < 0.05) was used to assess the GM areas 
affected by the vascular risk factors considered.

The relationship between HDL cholesterol, GM volume, and 
several measures of cognition were assessed using a non-parametric 
Wilcoxon-score general linear model (Hettmansperger and McKean, 
1998) for each neuropsychological variable. The relationship between 
raw scores on Trail Making Test A and B, the Digit Span portion 
of the WAIS-III, the RAVLT total and delayed recall, the BVMT-R 
total, COWAT, BNT, JLO, and CESD and HDL cholesterol and GM 
volume were examined while controlling for the effects of other 
vascular risk factors (BMI, systolic and diastolic BP, and non-HDL 
cholesterol), age, depression (using CESD scores), gender, and intel-
ligence (education and WRAT reading performance).

The GM volume values used for the cognition analysis were 
extracted from a voxel that maximally represented the correlation 
between HDL and GM volume. This region was determined by the 
following: (1) significant Z-scores were submitted to a peak (local 
extremum) search algorithm that identified multiple loci; (2) loci 
separated by less than 10 mm were consolidated by a center of 
mass calculation (Burton et al., 2004); (3) the maximum Z-score 
found through the center of mass calculation defines the voxel of 
maximal representation.

results
Participant demographics and vascular risk factors are shown in 
Table 1. We found that HDL cholesterol was positively correlated 
with GM volume in the bilateral temporal poles, middle temporal 
gyri, temporo-occipital gyri, and left superior temporal gyrus and 
parahippocampal region (Figure 1). Table 2 shows the maximum 
Z-scores before center of mass consolidation, cluster size, and voxel 
MNI coordinates of these significant areas. This effect was inde-
pendent of APOE and FHAD, age, education, gender, systolic and 
diastolic BP, BMI, and total GM volume. HDL cholesterol had no 
effect on WM volume and non-HDL cholesterol had no effect on 
either GM or WM volume in this sample. Figure 2 displays GM 
volume as a function of HDL cholesterol corrected for by calculated 
residuals from APOE, FHAD, non-HDL cholesterol, age, education, 
gender, systolic and diastolic BP, BMI, and total GM volume at the 
voxel of maximal representation.

There was a significant association between HDL cholesterol 
and BVMT and GM volume and COWAT and CESD (depres-
sion) for this cross-sectional study group. Table 3 summarizes 

neurovascular disease or structural abnormality that would affect 
brain function or structural anatomy (i.e., neoplasms, traumatic 
brain injury, or major infarctions) that would exclude the subject 
from the analysis.

gloBal Volume measurements
Global brain volumes were calculated from T1-weighted images 
using the cross-sectional method of Structural Image Evaluation, 
using Normalization, of Atrophy (SIENAX) within the FSL 3.3 soft-
ware suite (Smith et al., 2002). The SIENAX parameters were set for 
a three-class segmentation of tissue type and at a 0.3 threshold for 
segmenting the brain from extra-axial soft tissue. SIENAX analysis 
yielded whole-brain volumetric data, in units of cubic millimeters, 
for three different tissue types: CSF, GM, and WM.

Voxel-Based morphometry
T1-weighted MR scans were processed with statistical parametric 
mapping software (SPM5) using the following supervised proto-
col: (a) T1-weighted images were segmented using VBM5/SPM5 
to obtain segmentation parameters; (b) T1-weighted images were 
segmented into GM and WM [using the parameters from step 
(a)] and rigidly aligned using the rigid-body component of the 
transformations produced in step (a); (c) rigidly aligned segments 
were coregistered using a fast diffeomorphic image registration 
algorithm (DARTEL; Ashburner, 2007), which included estimating 
the flow fields, warping the images, and modulating the images; (d) 
the modulated images from DARTEL were normalized to Montreal 
Neurological Institute (MNI) space using an affine transformation 
estimated from the DARTEL GM segments and the a priori GM 
probability maps in SPM5; and (e) the images were smoothed with 
an 8 mm FWHM Gaussian filter.

Statistical output for VBM analyses was constrained in a tissue 
specific way using WM and GM masks. The GM mask was defined 
as the intersection between: (1) voxels with GM probability exceed-
ing 40% or a combined gray plus WM probability of 80% and 
GM probability being greater than WM probability; and (2) voxels 
identified as brain using Wake Forest University Pick Atlas regions 
for all lobes, the cerebellum, midbrain, and brainstem (Maldjian 
et al., 2003). The WM mask was defined as the intersection between: 
(1) voxels with WM probability exceeding 40% or a combined WM 
plus GM probability of 80% and WM probability being greater than 
GM probability; and (2) voxels identified as brain as above. The 
resulting percentage thresholds were applied to the a priori SPM5 
templates using ImCalc to create the masks.

statIstIcal analysIs
A non-parametric Wilcoxon linear model was used to analyze the 
effect of non-fasting lipids on GM and WM separately (Trivedi 
et al., 2008). The models included the statistical predictors HDL 
cholesterol and non-HDL cholesterol, as well as the two-way inter-
actions between these predictors and FHAD status and APOE sta-
tus. APOE status was separated into three genotypical subgroups: 
ε2) one or both alleles containing the ε2 genotype; ε3) both alleles 
containing the ε3 genotype; ε4) one or both alleles containing the ε4 
genotype. One subject possessed a ε2/ε4 genotype and was excluded 
from the model. APOE genotype was defined as three dichoto-
mous variables (presence/absence of a genotypical subgroup) in 
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Currently, in the United States alone, more than 5 million people 
suffer from AD. By the year 2050 this number is expected to triple 
(Alzheimer’s Association, 2008; Tschanz et al., 2004). Statins have 
been linked to reduction of AD in epidemiologic studies, but clinical 
trials have not shown a disease modifying effect (van Marum, 2008). 
Statins are traditionally a treatment for dyslipidemia, but produce 
modest to no specific change in HDL cholesterol levels (Hausenloy 
and Yellon, 2008). The effect of traditional HDL-increasing medica-
tions such as niacin (Kamanna et al., 2009) and fibrates, on neu-
ropathological markers of AD should be explored further. One 
recent study in mice found that nicotinamide, a niacin metabolite, 
lowered tau related neuropathology (Green et al., 2008).

Low HDL cholesterol is associated with risk for cognitive decline 
and dementia (Bonarek et al., 2000; Merched et al., 2000; van Exel 
et al., 2002; Singh-Manoux et al., 2008). However, at the time of 
writing, only two studies have examined regional brain volume as 
a function of HDL cholesterol. Wolf et al. found a positive relation-
ship between HDL cholesterol and hippocampal and total brain 
volume in 86 older adults (age 75–85) across a range of cognitive 
impairment from normal to demented. In non-demented older 
adults, lower HDL was associated with smaller hippocampal 
volume(Wolf et al., 2004). A larger study attempted to replicate 
this finding but did not find any change in hippocampal volume 
with respect to HDL, regardless of cognitive status (den Heijer et al., 
2005). Consistent with the larger study, we did not find an associa-
tion between hippocampal volume and HDL levels; our findings 
were mostly localized to the anterior temporal lobes bilaterally. 
However, our study population was significantly younger [mean 
age 58 years versus 78 (Wolf et al., 2004) and 72 (den Heijer et al., 
2005) years] but similar to Wolf et al., contained a disproportionate 
fraction (66%) of women. Neither of the aforementioned stud-
ies explored regional volumetric associations in areas outside of 
the hippocampus.

the mean, standard deviation, F-value, and p-value for each 
 neuropsychological measure with respect to HDL cholesterol 
and GM volume.

dIscussIon
The present findings suggest that low levels of HDL cholesterol 
are associated with lower cognitive function and lower bilateral 
anterior temporal and temporo-occipital GM volume. These 
findings were in regions associated with neurodegenerative 
disease.

Figure 1 | Axial slices from (Z = −48.4 to −16.7 mm in 4.47 mm 
increments) overlaid with regions showing a significant association 
between gray matter (gM) volume and high-density lipoprotein (HDL) 
cholesterol at a p < 0.05 (corrected with a permutation test) using a 
non-parametric Wilcoxon linear model. Age, education, gender, systolic and 
diastolic blood pressure, body mass index, non-HDL cholesterol, family history 
of Alzheimer’s disease, and apolipoprotein E genotype were entered into the 

model as covariates of no interest. The location of axial slices are displayed on 
a lateral view of the cortical surface of the right hemisphere from CARET (Van 
Essen, 2005). Significant regions included the temporal pole, middle temporal 
gyrus, and temporo-occipital gyrus bilaterally as well as the left superior 
temporal gyrus and parahippocampal region. These brain images are viewed 
as left equal to left and right equal to right. Data are presented for 
183 participants.

Table 1 | Participant demographic and cardiovascular measures.

Demographic and Mean (SD) range 

cardiovascular variables

Age (years) 58.4 (8.0) 40–84

Sex (male/female) 62/121 –

Education (years) 16.4 (2.7) 12–20

APOE genotype (ε2/ε3/ε4) 26/115/42 –

Family history AD (yes/no) 48/135 –

HDL cholesterol (mg/dL) 60.6 (12.8) 33–99

Non-HDL cholesterol (mg/dL) 138.5 (32.1) 51–273

Systolic BP (mm Hg) 128.7 (16.6) 94–173

Diastolic BP (mm Hg) 78.2 (10.5) 51–110

BMI (kg/m2)a 25.8 (4.1) 18.5–39.1

Data are presented as mean (standard deviation) for 183 participants.
APOE, apolipoprotein E; AD, Alzheimer’s disease; HDL, high-density lipoprotein; 
Non-HDL cholesterol = total cholesterol minus HDL cholesterol; BP, blood 
pressure; BMI, body mass index.
aNormal, overweight, and obese body types are defined using the World Health 
Organization’s classification system. BMI Classification: n = normal/overweight/
obese → 88/68/27.
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Our study demonstrated a significant association between 
HDL cholesterol level and visuospatial memory, as measured by 
the BVMT-R. Previous studies have shown low HDL cholesterol 
levels to be a risk factor for cognitive deficits and decline (van Exel 
et al., 2002; Singh-Manoux et al., 2008). The temporal pole, the most 
anterior region of the temporal lobe, has many limbic connections 
and plays a role in facial recognition and interpretation of other 
visual stimuli (Olson et al., 2007). Additionally, a study examining 
the cognitive effects of bilateral lesions in the lateral temporal neo-
cortex sparing medial temporal structures, similar to our regions 
of interest, found deficits in both verbal and visuospatial memory 
when compared to controls (Cheung and Chan, 2003).Therefore, 
it may be that deficits in visuospatial function may be an early 
sign of deleterious anterior or lateral temporal lobe changes and 
that deficient HDL cholesterol levels may play a role in this subtle 
cognitive change.

The ε4 isoform of APOE and positive FHAD are both well-
known risk factors for the development of dementia; however, our 
study found no effect of APOE or FHAD on brain GM or WM and 
no interactive effect with HDL cholesterol. The subjects in this 
study were on average younger than the typical age of onset in AD 
and others have observed that APOE effects on the brain may be 
age-dependent and occur later in life (Cherbuin et al., 2007). In our 
study only 10% of subjects were older than 65 years and of these 
subjects only three individuals were ε4 carriers.

Mesiotemporal brain regions are classically affected in prodro-
mal AD (Bell-McGinty et al., 2005; Whitwell et al., 2007). Given 
the added risk for development of AD within our study popula-
tion, changes were hypothesized to be found within the mesio-
temporal region. With the exception of a small cluster within the 
parahippocampal gyrus, the affected regions in our study involve 
mostly the anterolateral portions of the temporal lobes, a pattern 
more closely representing areas affected in the semantic form of 
FTD (Rosen et al., 2002). Although mesiotemporal regions are 
considered the hallmark for prodromal AD, atrophy within the 
temporal pole and to a lesser extent the middle temporal gyrus 
significantly predict pre-clinical AD (Desikan et al., 2008). The 
temporal pole and middle temporal gyrus have also been described 
as regions susceptible to NFT formation in both normal aging and 
pre-clinical dementia (Braak and Braak, 1995; Delacourte et al., 
1999). Lastly, small bilateral clusters within the temporo-occipital 
gyrus were associated with HDL levels in our study. The temporo-
occipital cortex, in particular the fusiform gyrus, is affected in AD 
(Halliday et al., 2003) and in posterior variants of AD (Tang-Wai 
and Mapstone, 2006).

There were some limitations of this study. First, non-fasting, 
instead of the more accurate fasting cholesterol values were col-
lected for this study. However, it should be noted that studies have 
shown insignificant clinical differences between fasting and non-
fasting levels of HDL and non-HDL cholesterol (Craig et al., 2000). 
Non-fasting measurements are used in the clinical setting and are 
supported by the United States Preventive Services Task Force 
(2002). Next, medications for the management of dyslipidemia 
were not included in this analysis secondary to the wide range of 
medication types, dosages, and periods of use. Next, the design of 
this study was cross-sectional, which only allowed for inferences at 
a single time point. Temporal lobe volume may be influenced by 

Table 2 | regions where gM volume is positively associated with HDL 

cholesterol.

Cluster regions Z-score MNi coordinates 

size 

(mm3)

   x y z

1166 L. temporo-occipital gyrus 3.43 −37 −8 −44

 L. temporo-occipital gyrus 4.25 −35 −16 −36

530 R. temporo-occipital gyrus 3.02 34 −11 −42

 R. temporo-occipital gyrus 3.43 35 −13 −31

12393 L. middle temporal gyrus 3.14 −62 −5 −27

 L. middle temporal gyrus 3.17 −58 −14 −20

 L. superior temporal gyrus 3.29 −51 8 −19

 L. temporal pole 3.60 −28 11 −35

 L. temporal pole 3.78 −43 19 −34

 L. temporal pole 3.79 −42 10 −29

 L. parahippocampal gyrus 3.97 −17 4 −29

 L. middle temporal gyrus 4.12 −59 4 −31

 L. middle temporal gyrus 4.17 −47 −3 −24

7040 R. temporal pole 3.05 39 20 −34

 R. temporal pole 3.51 28 12 −33

 R. middle temporal gyrus 3.61 57 −8 −24

 R. middle temporal gyrus* 4.59 46 8 −26

83 R. middle temporal gyrus 2.74 60 2 −33

Table describes brain gray matter (GM) regions positively associated with 
high-density lipoprotein (HDL) cholesterol, including the cluster size, coordinates 
of the maxima in affected regions, and the voxel-level significance of these 
regions. Age, education, gender, systolic and diastolic blood pressure, body 
mass index, family history of Alzheimer’s disease (FHAD), and apolipoprotein E 
genotype (APOE) were covariates; n = 183, L. represents left and R. represents 
right; MNI, Montreal Neurological Institute.
*Represents the location for which GM volume values were correlated with 
measures of cognition.

Figure 2 | Plot of brain gray matter (gM) volume versus high-density 
lipoprotein cholesterol at the region which maximally represented the 
correlation between HDL and gM volume. This plot is adjusted for 
covariates in the model and shows the positive association between HDL and 
brain GM volume.



Frontiers in Aging Neuroscience www.frontiersin.org July 2010 | Volume 2 | Article 29 | 6

Ward et al. HDL cholesterol and gray matter

references
Alzheimer’s Association. (2008). 

Alzheimer’s disease facts and figures. 
Alzheimers Dement. 4, 110–133.

Ashburner, J. (2007). A fast diffeomor-
phic image registration algorithm. 
Neuroimage 38, 95–113.

Ashen, M. D., and Blumenthal, R. S. 
(2005). Clinical practice. Low HDL 
cholesterol levels. N. Engl. J. Med. 353, 
1252–1260.

Bell-McGinty, S., Lopez, O. L., Meltzer, 
C. C., Scanlon, J. M., Whyte, E. M., 
Dekosky, S. T., and Becker, J. T. (2005). 
Differential cortical atrophy in sub-
groups of mild cognitive impairment. 
Arch. Neurol. 62, 1393–1397.

Bonarek, M., Barberger-Gateau, P., 
Letenneur, L., Deschamps, V., Iron, 
A., Dubroca, B., and Dartigues, J. F. 
(2000). Relationships between cho-
lesterol, apolipoprotein E polymor-
phism and dementia: a cross-sectional 
analysis from the PAQUID study. 
Neuroepidemiology 19, 141–148.

Braak, H., and Braak, E. (1995). Staging 
of Alzheimer’s disease-related neurofi-
brillary changes. Neurobiol. Aging 16, 
271–278; discussion 278–284.

Burton, H., Sinclair, R. J., and McLaren, D. 
G. (2004). Cortical activity to vibro-
tactile stimulation: an fMRI study in 
blind and sighted individuals. Hum. 
Brain Mapp. 23, 210–228.

Cherbuin, N., Leach, L. S., Christensen, H., 
and Anstey, K. J. (2007). Neuroimaging 
and APOE genotype: a systematic 
qualitative review. Dement. Geriatr. 
Cogn. Disord. 24, 348–362.

Cheung, M. C., and Chan, A. S. (2003). 
Memory impairment in humans 
after bilateral damage to lateral 
temporal neocortex. Neuroreport 
14, 371–374.

Cockerill, G. W., Huehns, T. Y., 
Weerasinghe, A., Stocker, C., Lerch, 
P. G., Miller, N. E., and Haskard, D. 
O. (2001). Elevation of plasma high-
density lipoprotein concentration 
reduces interleukin-1-induced expres-
sion of E-selectin in an in vivo model 

of acute inflammation. Circulation 
103, 108–112.

Collins, P. (2008). HDL-C in post-menopau-
sal women: an important therapeutic 
target. Int. J. Cardiol. 124, 275–282.

Craig, S. R., Amin, R. V., Russell, D. W., 
and Paradise, N. F. (2000). Blood cho-
lesterol screening influence of fasting 
state on cholesterol results and man-
agement decisions. J. Gen. Intern. Med. 
15, 395–399.

Delacourte, A., David, J. P., Sergeant, N., 
Buee, L., Wattez, A., Vermersch, P., 
Ghozali, F., Fallet-Bianco, C., Pasquier, 
F., Lebert, F., Petit, H., and Di Menza, 
C. (1999). The biochemical pathway of 
neurofibrillary degeneration in aging 

conducted to analyze the potential interactive effect of gender and 
age on HDL cholesterol in relation to neurodegenerative disease. 
Finally, this study population was self-selected from a group of 
educated volunteers; these findings may not be representative of 
the general population.

In summary, these findings suggest that adults with lower 
levels of HDL also have lower GM volumes in temporal regions 
with related deficits in cognitive function. Whether the effects 
we observed place individuals at greater risk for future cognitive 
decline and dementia is still unknown and a topic of continued 
research in our laboratory.

acknowledgments
This study was supported by NIH R01 AG021155, NIH P50 
AG033514 (Wisconsin Alzheimer’s Disease Research Center) and 
a Merit Review grant from the Department of Veterans Affairs. The 
resources and use of facilities at the Wm. S. Middleton Memorial 
Veterans Hospital, Madison, WI is also gratefully acknowledged. 
We thank Maritza Dowling, PhD, Jodi Barnet, MS, and Andrew 
Alexander, PhD for their contributions.

(unmeasured) genetic or lifestyle factors such as diet and exercise 
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in our statistical model, the relatedness of the changes inherent to 
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