
Frontiers in Aging Neuroscience www.frontiersin.org August 2010 | Volume 2 | Article 36 | 1

AGING NEUROSCIENCE
Review aRticle

published: 13 August 2010
doi: 10.3389/fnagi.2010.00036

and both, aged humans and aged rodents exhibit spatial memory 
deficits (Barnes, 1987). In rodents, age-related impairments have 
been described for hippocampus-dependant spatial as well as for 
contextual learning tasks, such as water maze and fear conditioning 
(Ward et al., 1999; Rosenzweig and Barnes, 2003). Moreover, it has 
been shown that learning deficits in aged rats are accompanied by 
a decrease in hippocampal volume (Sykova et al., 2002).

Spatial navigation is a complex cognitive skill that involves the 
hippocampus of humans and it is known that navigation, as an 
aspect of cognitive function, is vulnerable to aging (Moffat, 2009). 
In this context, it is important to note that older individuals required 
more time to form a cognitive map of the environment than young 
individuals (Iaria et al., 2009). In addition, way-finding has been 
associated with the hippocampus and also for way-finding it has 
been shown that aging effects recall of landmarks, and the recogni-
tion of environmental scenes (Head and Isom 2010). Interestingly, 
the age-related changes in way-finding were significantly associated 
with hippocampal volume changes (Head and Isom 2010).

Thus, it can be concluded that aging is often accompanied by 
hippocampal-dependent learning and memory problems, many 
of which resemble deficits associated with hippocampal damage. 
Despite such evidences that age-related dysfunctions are associated 
with reductions in the volume of the hippocampal formation, the cel-
lular and morphological basis of this decline is largely unknown.

AlterAtions in the innervAtion of the Aged hippocAmpus
Since there is an association between hippocampal volume reduc-
tions and declines in hippocampus dependent learning and memory 
function, other structural changes may be related to the dysfunction 

the Aged hippocAmpus
The hippocampal formation, a brain structure involved in spatial 
memory, exhibits marked functional decline with aging in humans, 
monkeys, and rodents (Greene and Naranjo, 1987; Walker et al., 
1988; Lee et al., 1994; Rapp and Heindel, 1994; Rapp and Gallagher, 
1996; Driscoll et al., 2003). Since a long time it is well established 
that there is a reduction in the hippocampal volume during aging in 
healthy adults (Figure 1). Several studies, using e.g. magnetic reso-
nance imaging (MRI), confirmed the age-related reduction in hip-
pocampal volume (Convit et al., 1995; Mu et al., 1999; Driscoll et al., 
2003; Malykhin et al., 2008; Raz et al., 2010). This age- dependant 
shrinkage of the hippocampus was found to be accelerated with 
time (Raz et al., 2010; Zhang et al., 2010). Age-related deficits could 
e.g. be observed in the performance on hippocampus-dependent 
tasks in humans and it has been shown that these deficits were 
accompanied by decreased hippocampal volume (Driscoll et al., 
2003). This hippocampal shrinkage has been attributed to hip-
pocampal atrophy and to neuronal losses or decreases in neuronal 
densities (Driscoll et al., 2003). In early morphometric studies that 
determined the number of human hippocampal neurons directly, 
it was found that normal aging was accompanied by a more or less 
pronounced gradual loss of hippocampal neurones (Ball, 1977; 
Mani et al., 1986). These as well as other results suggest that the 
hippocampus undergoes structural and biochemical changes dur-
ing normal aging.

These alterations in the hippocampus during aging are par-
alleled by behavioral and functional deficits in hippocampus-
dependent learning and memory tasks (Rosenzweig and Barnes, 
2003). The hippocampus is involved, e.g. in spatial learning tasks 
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of the aged hippocampus. The analysis of the aged hippocampus 
revealed indeed several structural changes that may be associated 
with reductions in the hippocampal volume.

During aging, there is e.g. an increase in the density of fragments 
of degenerated axons within the hippocampus (von Bohlen und 
Halbach and Unsicker, 2002). This increased density of degenerated 
fibers is indicative for a loss of fibers within the aged hippocampus. 
Thus, a reduction in fibers projecting into the aged hippocampus 
may contribute to the volume reductions in the aged hippocampus. 
The hippocampal formation is innervated by cortical and subcorti-
cal areas; however, within the aged forebrain, cell losses in cortical 
areas that project to the hippocampus, as e.g. the entorhinal cortex, 
seem not to represent a hallmark of aging (Gazzaley et al., 1997; 
Merrill et al., 2001).

The noradrenergic system projects into the hippocampal 
formation. The source for these fibers is located in the locus 
coeruleus (Robinson et al., 1977; Ader et al., 1980). Data con-
cerning a possible loss of neurons within the locus coeruleus 
are not consistent; thus, no cell loss as well as cell losses in that 
nucleus have been reported in the context of aging (Lohr and 
Jeste, 1988; Chan-Palay and Asan, 1989; Manaye et al., 1995; 
Ohm et al., 1997). Nevertheless, there is evidence to suggest that 
there is a decline in the density of noradrenergic fibers innervat-
ing the aged dentate gyrus (DG) (Ishida et al., 2000). A further 
system that projects into the hippocampus is the dopaminergic 
(DAergic) system. Concerning the DAergic system and the hip-
pocampus, it is known that the hippocampus is innervated by 
DAergic neurons, located in the ventral tegmental area and the 
substantia nigra (Gasbarri et al., 1994). This DAergic mesolim-
bic system is sensitive to aging (Miguez et al., 1999) and might 
be implicated in age-related impairments (Barili et al., 1998). 
Indeed, the total number of DAergic neurons in the substantia 
nigra decreases with age (Naoi and Maruyama, 1999; Siddiqi 

et al., 1999). Based on that, it may be possible that there is an 
age-related loss of DAergic fibers within the hippocampus. One 
enzyme, tyrosine-hydroxylase (TH) is involved in the biosynthe-
sis of both, dopamine and noradrenalin. TH is located not only in 
the soma, but also in the processes of DAergic and noradrenergic 
neurons. Using TH-immunohistochemistry, it has been shown 
that there is an age-related decline in the density of TH-positive 
fivers within the DG (von Bohlen und Halbach and Unsicker, 
2003). Along this line, it has been shown that aged rats display 
reduced concentration of dopamine and noradrenalin in the 
hippocampus (Miguez et al., 1999).

Serotonin, another transmitter, is also produced in areas that 
are sensitive to aging. For example, it has been shown that the 
numbers of serotonergic neurons within different raphe nuclei 
of rats decrease during aging (Tatton et al., 1991; Lolova and 
Davidoff, 1992). This age-related cell loss might be responsible 
for the marked decrease in the density of serotonergic fibers within 
the DG (Nishimura et al., 1995).

Furthermore, the hippocampus is also innervated by cholin-
ergic fibers that stem from the septum. These septo-hippocampal 
projections are e.g. involved in the modulation of short-term 
spatial (working) memory processes (Everitt and Robbins, 1997). 
Whereas the number and size of cholinergic neurons within the 
septum is not altered in the context of aging (Ypsilanti et al., 2008; 
Niewiadomska et al., 2009), there is a marked decrease in cholin-
ergic fibers projecting into the hippocampus (Gilad et al., 1987; 
Ypsilanti et al., 2008; Niewiadomska et al., 2009), indicating that 
cholinergic axonal degeneration occurs during aging.

Thus, axonal degeneration in the hippocampus is likely to be due 
to reductions in the amount of fibers that supply the hippocampus 
with different transmitters. The loss of these fibers could contribute 
to hippocampal dysfunctions and may contribute to volume losses 
of the aged hippocampus.

Figure 1 | Hippocampal volume reduction is the sum of different morphological changes. Volume shrinkage seen during normal aging (yellow) or in major 
depression (orange) is not due to a severe loss of hippocampal neurons. Hippocampal volume reduction together with severe losses of hippocampal neurons could 
e.g. bee seen in Alzheimer’s disease (red).
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branching, but increased proximal dendritic branching. However, 
the total dendritic length, number of dendritic branch points, and 
total segment number did not differ significantly from cells in the 
DG of young monkeys (Luebke and Rosene, 2003).

Concerning area CA1 of the hippocampus, a marked age-related 
reduction (nearly 40%) in the dendritic branch profiles (located in 
the stratum lacunosum-moleculare) of CA1 pyramidal neurons has 
been found that is accompanied by a marked decrease in the total 
volume fraction and total surface of dendrites per volume neuropil 
(Lolova, 1989). Somewhat comparable to the results obtained for 
area CA1, neurons located in subiculum also show reductions in 
their dendritic complexity (Uemura, 1985).

The dendrites of the hippocampal pyramidal and granular neu-
rons are covered by small protrusions known as dendritic spines. 
Dendritic spines – at least in area CA1 – are the predominant site of 
excitatory synapses in the hippocampus (Megias et al., 2001). The 
density of dendritic spines is related to the amount of connectiv-
ity between the neurons with the dendritic spines and the axons 
from other neurons that built up synaptic contacts (von Bohlen und 
Halbach, 2009). One role of the dendritic spines is to establish and 
to maintain these connections. In addition, these small structures 
seem also to be involved in other functions, since they compartmen-
talize calcium and other signaling components that are involved in 
synaptic efficacy (Fiala et al., 2002). Thus, it is not surprisingly that 
dendritic spines are thought to play a role in neuronal plasticity. 
Indeed, some forms of learning have been shown to increase the 
number of dendritic spines (Geinisman, 2000; Yuste and Bonhoeffer, 
2001; Nimchinsky et al., 2002; Leuner et al., 2003).

It is thought that the spine densities reflect the excitatory input 
density (Konur et al., 2003), since some forms of learning as well as 
hippocampal LTP have been associated with increased spine densi-
ties in the hippocampus (Engert and Bonhoeffer, 1999; Muller et al., 
2000; Leuner and Shors, 2004). Moreover, LTP has been shown to 
promote the formation of new, mature, and probably functional 
synapses (Toni et al., 1999).

Thus, it may be speculated that dendritic spines might be altered in 
the time-course of aging in the whole hippocampus or within specific 
hippocampal sub-regions. No difference in spine densities have been 
detected within the DG of aged rats (Curcio and Hinds, 1983) as well 
as no changes in spine densities have been found in apical dendrites of 
CA1 neurons in aged rats (Lolova et al., 1989; Markham et al., 2005). 
Likewise, no age-related changes have been observed in spine densi-
ties of dendrites of the DG or of apical dendrites of area CA1 in mice 
(von Bohlen und Halbach et al., 2006b, 2008). In contrast, age-related 
reductions in spine numbers of hippocampal CA1 neurons have been 
noted by comparing senescence-accelerated mice (SAMP1TA/Ngs) 
at an age of 5 and 7 months (Kawaguchi et al., 1995). By comparing 
young adult (3-months-old) and aged (27-month-old) rats, spine 
densities of both basal and apical dendrites of CA1 have been found 
to be decreased in the old rats (Nunzi et al., 1987). Concerning mice, 
it has been shown that there is an age-related impairment in spatial 
learning as well as a decrease in the densities of basal dendrites of 
area CA1 (von Bohlen und Halbach et al., 2006b). In this context 
it is of interest to note that basal dendrites of area CA1 display an 
increase in spine densities, e.g. after spatial learning in rats (Moser 
et al., 1994). The observed age-related changes in dendritic spines 
may contribute to age-related impairments in synaptic plasticity, 

neurogenesis And the Aged hippocAmpus
Neurogenesis has long been believed only to occur during brain 
development. However, in some areas within the forebrain, namely 
the subventricular zone and the DG, neurogenesis persists in the 
postnatal brain. The rate of neurogenesis within the DG can be 
altered under various physiological and pathophysiological condi-
tions. Interestingly, neurogenesis within the DG seems to be linked 
to hippocampus-dependent learning and memory.

Neurogenesis within the DG is increase in mice that were housed in 
an enriched environment (Kempermann et al., 1997). Increased neu-
rogenesis within the DG is also observed in a variety of hippocampus-
dependent learning and memory tasks (Drapeau et al., 2003; Ming and 
Song, 2005; Snyder et al., 2005). Furthermore, enriched environment 
not only increases neurogenesis in the DG, but also improves spatial 
memory (Nilsson et al., 1999). Thus, functional neurogenesis seems 
to have a profound impact upon neuronal plasticity within the hip-
pocampus. Along this line, it has also been shown that long-term 
potentiation (LTP), a well characterized form of synaptic plasticity 
believed to play a critical role in memory formation, stimulates neu-
rogenesis within the hippocampus (Bruel-Jungerman et al., 2006).

Since the hippocampus exhibits marked functional decline with 
aging, it could be speculated that neurogenesis within the aged DG 
is altered. Indeed, it has been shown that neurogenesis is drastically 
reduced in aged animals (e.g. rats Kuhn et al., 1996 and monkeys 
Gould et al., 1999). Neurogenesis therefore seems to be linked to 
hippocampal functions and an age-related decline in hippocampal 
functions seems to be accompanied by a reduction in neurogenesis. 
Given that neurogenesis occurs throughout the postnatal life, one 
would expect that the DG would increase in size during adulthood 
and that therefore the number of granule cells is increased in aged 
animals as compared to adult animals. However, this is not the case. 
Granule cell number of the DG do not increase with age (Rapp and 
Gallagher, 1996; Rasmussen et al., 1996; von Bohlen und Halbach 
and Unsicker, 2002), indicating that proliferation is balanced by 
cell death. Thus, not the addition of new neurons into the DG 
seemed to be linked to hippocampal functions, but the rate of the 
turnover of granule cells within the DG. Based on that, the reduced 
rate of neurogenesis within the aged DG seems not to contribute 
to volume reductions in the aged hippocampus.

Age-relAted chAnges in the morphology of neurons in the 
Aged hippocAmpus
Aside from age-related changes in the innervation pattern of the 
hippocampus, other structural changes may contribute to the vol-
ume reductions seen in the aged hippocampus. These structural 
changes may be related to the number of neurons within the aged 
hippocampus (see “Age-related changes in neuronal numbers in 
the aged hippocampus”) or may be associated directly with the 
neurons located in the aged hippocampus. Structural changes of 
individual neurons in the aged hippocampus could e.g. be observed 
in altered branching patterns of neurons.

Concerning the DG, it has been described that volume frac-
tion and surface area of dendritic shaft profiles are significantly 
decreased in senescent rats, relative to young adults (Geinisman 
et al., 1978) as well as the number of synapses (Bondareff, 1979). A 
morphometric analyses showed that cells from aged monkeys had 
significantly reduced vertical dendritic extents and distal dendritic 
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receptors. These factors, as e.g. the neurotrophins are involved in 
the maintenance of the architecture of the postnatal brain as well 
as they play a role in neuronal plasticity.

BrAin-derived neurotrophic fActor (Bdnf)
The family of neurotrophins consists of nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), 
and neurotrophin 4 (NT4). The neurotrophins bind to specific 
receptors that belong to the class of the Trk family of tyrosine 
protein kinase receptors. NGF specifically recognizes trkA, whereas 
BDNF and NT4 specifically activate trkB receptors. NT3, finally, 
primarily activates trkC receptors (Figure 2). In addition, all the 
neurotrophins can signal through a low-affinity receptor (which 
is structurally unrelated to the trk receptors), known as p75 recep-
tor (Barbacid, 1994; Teng and Hempstead, 2004). In the context 
of age-related structural changes within the hippocampus, BDNF 
and its receptors may be of particular interest.

Age-relAted expression of Bdnf
Levels of BDNF are not constant during the postnatal period. 
However, whether BDNF is up- or down-regulated in the context 
of aging seems to be region-dependent and species specific. It has 
been described that BDNF increases in the murine hippocampus 
during normal aging, but not during aging of mice with patho-
logical changes (Katoh-Semba et al., 1998), whereas in aged rats a 
decline in hippocampal BDNF levels, as compared to young adult 
rats, has been observed (Karege et al., 2002). In aged monkeys (26, 
30, and 32 years), the intensity of BDNF-immunoreactivity has 
been found to decline in cell bodies and dendrites of the neurons 
in the hippocampal formation (Hayashi et al., 2001). In humans, 
BDNF levels in plasma have been found to decrease with increasing 
age (Lommatzsch et al., 2005), but within the human hippocam-
pus, levels of BDNF mRNA seem not to change significantly with 

including deficits in LTP. These alterations may impair the encoding 
of memories and thus may contribute to cognitive deficits observed 
in aged mammals (Rosenzweig and Barnes, 2003). Altered synaptic 
plasticity may also change the dynamic interactions among cells in 
hippocampal networks, causing deficits in the storage and retrieval 
of information about the spatial organization of the environment 
(Rosenzweig and Barnes, 2003). Thus, loss of dendritic spines dur-
ing normal aging mainly occurs in area CA1, but nevertheless has 
a profound effect upon neuronal plasticity and seems to represent 
a morphological correlate of age-dependent declines in neuronal 
plasticity and hippocampus-dependent functions.

Age-relAted chAnges in neuronAl numBers in the Aged 
hippocAmpus
Loss of neurons in the forebrain has been widely viewed as a 
hallmark of normal aging (Landfield et al., 1992). Indeed, early 
morphometric studies provided evidence that normal aging is 
accompanied by a more or less pronounced gradual loss of hip-
pocampal neurons (Ball, 1977; Mani et al., 1986). However, cell 
counting and estimation of neuronal densities is not trivial, since – 
among  others – cutting artifacts, tissue artifacts, and other factors 
could bias the results. The development of unbiased stereological 
counting rules (Sterio, 1984; Gundersen et al., 1999; West, 1999) 
has enabled scientists to estimate neuronal numbers more pre-
cisely. By using stereological counting rules, no significant cell losses 
in the DG or in the pyramidal layers of the hippocampal areas 
CA1–CA3 have been detected (West, 1993; Rapp and Gallagher, 
1996; Rasmussen et al., 1996; Calhoun et al., 1998; von Bohlen 
und Halbach and Unsicker, 2002). Thus, cell loss in the hippocam-
pal formation seems not to represent the cellular basis for volume 
shrinkage of the aged hippocampal formation.

In summary, volume reduction of the aged hippocampus is not 
an event that can be attributed to a single parameter. Instead, volume 
reductions seem to be the sum of different morphological changes 
(reduction in the innervation pattern of the hippocampus; changes 
in the branching pattern of distinct neuronal populations within 
the hippocampus; reduction of spine densities) that all contribute 
to the hippocampal volume reduction in the context of aging.

It is very unlikely that a single factor or a single class of effector 
molecules is responsible for all these age-related morphological 
changes in the hippocampus. Nevertheless, it would be of advantage 
to identify possible neuromodulators or neuropeptides that may 
contribute to these age-related changes. Such a substance should 
meet at least some of the following requirements:

1) its expression should be altered in the context of aging
2) it should influence directly hippocampal neurons (branching 

patterns and/or dendritic spines of hippocampal neurons)
3) it should have an impact upon transmitter systems projecting 

to the hippocampal formation
4) it should have an impact upon neuronal plasticity
5) it should have an impact upon hippocampal volume

In this context, a family of trophic factors can be of interest, since 
this family of neuropeptides meets several of these criteria. Growth 
factors not only play a role during development, but several of them 
are also expressed in the postnatal brain, along with their cognate 

Figure 2 | The family of neurotrophins consists of nerve growth factor 
(NgF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), 
and neurotrophin 4 (NT4). NGF specifically binds to trkA receptors, BDNF 
and NT4 specifically bind to trkB and NT3 primarily activates trkC receptors. All 
these neurotrophins also bind and signal through the low-affinity receptor p75.
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These data, as well as others (Matsunaga et al., 2004, 2006; Traver 
et al., 2006) suggest that BDNF is necessary for the maintenance 
of noradrenergic innervations in the aged brain.

BDNF is also known as a neurotrophic factor for DAergic 
neurons of the substantia nigra (Hyman et al., 1991; Hagg, 1998; 
Dluzen et al., 1999). Inhibition of BDNF expression (Porritt et al., 
2005) as well as a reduction of trkB expression (Zaman et al., 2004) 
can cause a loss of nigral DAergic neurons. The DAergic system is 
also sensitive to aging; thus, there is a reduction in the number of 
DAergic neurons during aging. This age-related cell loss is increased 
in aged heterozygous trkB mutant mice (von Bohlen und Halbach 
et al., 2005).

BDNF can promote the survival of developing cholinergic fore-
brain neurons and is able to attenuate the loss of neurons following 
excitotoxic lesions (Burke et al., 1994). Concerning the cholinergic 
innervation of the hippocampus, it has been shown that young 
BDNF−/− mice have a reduced cholinergic innervation as compared 
to age-matched controls (Ward and Hagg, 2000) as well as reduced 
numbers of cholinergic cells in the medial septum that is accom-
panied by a decrease in the activity of choline acetyltransferase in 
the hippocampus (Grosse et al., 2005). Comparable to these results, 
it also has been shown that mice with reduced BDNF expression 
display decreased choline acetyltransferase activity (Chourbaji 
et al., 2004).

Thus, BDNF is capable of influencing the transmitter systems 
projecting towards the hippocampus.

Bdnf is involved in hippocAmpAl neuronAl plAsticity
BDNF at low nanomolar range exited neurons in the cerebellum, 
cortex and hippocampus as rapidly as the neurotransmitter gluta-
mate (Kafitz et al., 1999). Moreover, application of BDNF produces 
a sustained enhancement of synaptic strength at Schaffer collateral-
CA1 synapses and this enhancement can be blocked by K252a (Kang 
and Schuman, 1995). The induction of LTP increases BDNF mRNA 
(Castren et al., 1993) as well as trkB mRNA (Dragunow et al., 1997) 
in the DG. In addition, it has been shown that hippocampal LTP 
and spatial learning are impaired in mice lacking BDNF (Korte 
et al., 1995; Linnarsson et al., 1997) as well as in mice lacking trkB 
(Minichiello et al., 1999).

Collectively, these data indicated that BDNF via trkB plays an 
essential role in neuronal plasticity within the hippocampus. Along 
this line it has been shown in 2008 that BDNF is necessary and suf-
ficient to induce long-lasting structural changes at dendritic spines 
that are associated with synaptic plasticity (Tanaka et al., 2008). 
Thus, BDNF seems to play an important role in synaptic plasticity, 
probably through induction of morphological changes.

Based on the age-related decline in the expression of BDNF and 
trkB in the hippocampus, one would expect that BDNF-induced 
LTP may be weaker in aged than in adult animals. Concerning 
this, it has been shown that in aged rats, BDNF-LTP is significantly 
impaired within the hippocampus and that the activation of trkB 
is reduced in hippocampal tissue derived from aged rats (Gooney 
et al., 2004).

Given the importance of BDNF for spatial learning and synap-
tic plasticity, it is not surprisingly that adult heterozygous BDNF-
deficient mice have problems in solving spatial tasks such as the 
Morris water maze (Linnarsson et al., 1997). Given the age-dependent 

age (Webster et al., 2006), but the levels of trkB mRNA decreased 
over the life span (Webster et al., 2006). In accordance with these 
results, it has been shown that the levels of trkB decrease in the rat 
hippocampus during aging (Croll et al., 1998; Silhol et al., 2005). 
In summary, there is evidence that suggest that the BDNF-trkB 
system in the hippocampus is sensitive to aging.

Bdnf And its impAct upon neuronAl morphology
Transfection of granule cells from the DG with BDNF produces 
significant increases in axonal branch and basal dendrite numbers 
relative to empty vector controls. In addition, it has been shown by 
the same group that these structural changes could be prevented by 
the tyrosine kinase inhibitor K252a (Danzer et al., 2002). Thus, an 
increased expression of BDNF is sufficient to induce these morpho-
logical changes and it is likely that these morphological alterations 
are induced by an activation of trkB receptors. Results obtained by 
using mice that over-express BDNF confirmed these observations, 
since an increase in the dendrite complexity of DG cells could be 
observed in these mice (Tolwani et al., 2002).

BDNF, however, has not only an impact upon the branching 
pattern of hippocampal neurons. It has been demonstrated that 
BDNF is capable of increasing spine density in apical dendrites 
of CA1 neurons in slice cultures (Tyler and Pozzo-Miller, 2003; 
Alonso et al., 2004). Conditional trkB-deficient mice display a 
reduction in spine densities within the hippocampus (von Bohlen 
und Halbach et al., 2006a), indicating that BDNF-trkB signal-
ing plays a critical role in the maintenance of dendritic spines 
within the hippocampus. In heterozygous trkB-deficient mice, a 
reduction in dendritic spines has also been noted (but to a lower 
extent) and – in addition – there is a further reduction in den-
dritic spine densities in aged heterozygous trkB mice (von Bohlen 
und Halbach et al., 2008). Therefore, BDNF via its action through 
trkB receptors has profound effects upon the morphology of 
hippocampal neurons.

does Bdnf influence trAnsmitter-systems projecting 
towArds the hippocAmpus?
BDNF, acting through trkB receptors, is known to enhance growth 
and survival of serotonergic neurons (Galter and Unsicker, 2000; 
Mattson et al., 2004). In the adult rat brain, BDNF is able to 
promote regenerative sprouting of serotonergic fibers, but not 
the survival of injured serotonergic axons (Mamounas et al., 
2000). In aged heterozygous BDNF+/− mice the age-related loss 
of serotonin axons in the hippocampus was potentiated as com-
pared to age-matched wild-type mice (Luellen et al., 2007), 
indicating that BDNF may play a role in the maintenance of the 
serotonergic system.

The noradrenergic system is also sensitive to aging. Exogenous 
BDNF infusion in rats caused a marked increase in the density of 
noradrenergic axons in the aged frontal cortex, whereas no trophic 
action of BDNF was observed in young and middle-aged brains 
(Matsunaga et al., 2004). Neutralization of endogenous BDNF with 
specific antibody to BDNF led to a reduction in noradrenergic 
axons in the frontal cortex of aged rats (Matsunaga et al., 2004). 
Furthermore, it has been shown that aged BDNF+/− mice showed 
reduced numbers of cell bodies and fibers in the locus coeruleus 
compared with age-matched wild-type mice (Luellen et al., 2007). 
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amyloid beta-peptide (Aß), a 40–42 amino acid fragment of the 
beta-amyloid precursor (APP), whereas the tangles are mainly com-
posed of helical filament of hyperphosphorylated tau.

Concerning a possible role of BDNF in Alzheimer’s disease, there 
is a controversy, whether polymorphisms in the BDNF gene are 
associated with Alzheimer’s disease. Thus, there are reports indicat-
ing that there exists an association between the BDNF gene poly-
morphisms and Alzheimer’s disease (Kunugi et al., 2001; Ventriglia 
et al., 2002; Feher et al., 2009), whereas other groups did not find 
an association in various populations (Combarros et al., 2004; 
Nishimura et al., 2004; Li et al., 2005; He et al., 2007).

Concerning the hippocampus, it has been shown that BDNF 
mRNA expression (Phillips et al., 1991; Murray et al., 1994) as well 
as BDNF protein (Connor et al., 1997) are decreased in individuals 
that had suffered from Alzheimer’s disease. Post-mortem brains 
from Alzheimer’s disease patients display an absence of BDNF in 
reactive glia cells of microglia cells (Soontornniyomkij et al., 1999) 
and an absence of BDNF in neurons containing neurofibrillary tan-
gles, whereas most neurons, intensely immunoreactive for BDNF, 
did not exhibit massive neurofibrillary degeneration (Murer et al., 
1999). Thus, the age-related decline in BDNF could contribute to 
age-related changes seen in conditions of normal aging, whereas fur-
ther disturbances in the BDNF-system may be related to pathological 
changes in the brain. Along this line, there is not only evidence to 
suggest that disturbances in the hippocampal BDNF-system con-
tribute to neurodegenerative diseases, as e.g. Alzheimer’s disease, but 
also to psychopathological conditions, as e.g. depression.

Bdnf And depression
Depression is a disorder of the representation and regulation of 
mood and emotion. Depression has profound impact upon several 
brain structures, as e.g. the hippocampal formation (Campbell and 
Macqueen, 2004). Concerning the hippocampus, several groups 
have reported that the hippocampal volume is smaller in depressed 
patients as compared to controls (Mervaala et al., 2000; Frodl et al., 
2002; Lange and Irle, 2004). An interesting aspect of antidepressant 
treatment is that it is capable of blocking or reversing hippocampal 
atrophy that is observed in patients with depression (Schmidt and 
Duman, 2007). The dendritic spines represent a possible anatomical 
substrate for the depression-induced changes in the hippocampus. A 
variety of studies indicate that depression is accompanied by reduc-
tions in dendritic arborization (Lucassen et al., 2006) and in the spine 
densities within the hippocampus and that treatment with antide-
pressants can ameliorate or reverse these reductions in spine densities 
(Norrholm and Ouimet, 2001; Pittenger and Duman, 2008; Hajszan 
et al., 2009). Moreover, in animal models of depression (“learned 
helplessness”), an exacerbated age-related loss of serotonergic fiber 
density in area CA1 has been observed (Aznar et al., 2010).

Antidepressant treatment increases hippocampal BDNF mRNA 
expression (Garza et al., 2004) as well as BDNF-immunoreactivity 
(Chen et al., 2001). In addition, BDNF produces antidepressant 
effects in behavioral models of depression (Shirayama et al., 2002). 
Moreover, activation of trkB receptors is induced by antidepressant 
drugs and this receptor activation is required for antidepressant-
induced behavioral effects (Saarelainen et al., 2003). Since BDNF is 
capable of increasing dendritic spine densities, it is likely that BDNF 
has a beneficial effect upon the disturbed neuronal plasticity seen in 

reduction in the BDNF-system, aged heterozygous BDNF-deficient 
mice should have great problems to solve spatial memory tasks. 
Indeed, by comparing adult and aged heterozygous BDNF knockout 
mice with age-matched BDNF+/+ mice, Linnarsson et al. (1997) could 
show that aged wild-type mice performed significantly worse than 
young wild-type mice and the effect was even more pronounced in 
the aged BDNF mutant mice, which did not learn at all.

Bdnf And hippocAmpAl volume
The above-mentioned involvements of BDNF in structural changes 
and in neuronal plasticity in the hippocampus could indeed hint that 
BDNF via trkB has an impact upon hippocampal volume. Since BDNF 
seems also to be involved in several age-related alterations within the 
hippocampus, it is possible that age-related changes in hippocampal 
volume will be influenced by the action of this neurotrophin.

In humans, several polymorphisms of the BDNF gene have been 
discovered, as e.g. the functional Val66Met polymorphism in the 
coding region of the BDNF gene. Currently, there is a controversy 
whether the Val66Met polymorphism is associated with hippocam-
pal volume change and depression or schizophrenia (Szeszko et al., 
2005; Jessen et al., 2009; Koolschijn et al., 2009; Toro et al., 2009; 
Benjamin et al., 2010). However, there are reports indicating that 
the BDNF Val66Met allele is associated with reduced hippocampal 
volume in healthy subjects (Bueller et al., 2006; Erickson et al., 
2010). Thus, reduced levels or lack of functional BDNF may con-
tribute to volume reductions in the hippocampus. Data obtained 
from heterozygous BDNF knockout mice indicate a hippocampal 
volume reduction (Lee et al., 2002; Magarinos et al., 2010), likewise 
heterozygous trkB mice also display a reduction in hippocampal 
volume (von Bohlen und Halbach et al., 2003). Based on these 
results it can be speculated that there is a link between hippocam-
pal volume and BDNF, but is BDNF associated with age-related 
declines in hippocampal volume? This question is answered by a 
study from Erickson and coworkers. They found that increasing age 
was associated with smaller hippocampal volumes, reduced levels 
of serum BDNF, and poorer memory performance in humans. 
According to their results, reduction in hippocampal volume medi-
ates the age-related decline in spatial memory and BDNF mediates 
the age-related decline in hippocampal volume (Erickson et al., 
2010). Thus, there is evidence to suggest that BDNF is a critical 
player, involved in the maintenance of the hippocampal volume 
in the adult hippocampus. Such a role for BDNF may not only be 
postulated for hippocampal volume changes seen during aging, 
but may also be proposed for hippocampal volume changes that 
are associated with psychopathological conditions.

Bdnf And Alzheimer diseAse
Alzheimer’s disease and Parkinson’s disease are the most common 
age-related degenerative disorders of the human brain. A hallmark 
of Alzheimer’s disease is the progressive reduction of the hippoc-
ampal volume and stereological investigations have confirmed the 
substantial hippocampal cell loss seen in AD (West et al., 2000; 
Price et al., 2001).

Alzheimer’s disease is further characterized by a strong reduc-
tion of the cholinergic innervation of the brain, including the 
hippocampus, and the occurrence of beta-amyloid plaques and 
Tau/neurofibrillary tangles. The plaques are mainly composed of 
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could represent a new generation of antidepressants (Altar, 1999).

summAry
BDNF is required in the postnatal brain, playing an important 
role in the maintenance of the brain architecture. Reductions in 
BDNF, seen either during normal aging, or in pathological condi-
tions, are related to declines in neuronal plasticity and changes in 
the morphology of hippocampal neurons. These alterations could 
result in hippocampal dysfunctions and could contribute to hip-
pocampal atrophy, seen during normal aging or in Alzheimer’s dis-
ease. Concerning depression, a variety of studies suggests a critical 
role of neurotrophins, such as BDNF, in regulating neuronal mor-
phology and neuronal plasticity. Alterations in neuronal plasticity 
accompanied by changes in the architecture of the hippocampus 
are also observed during normal aging (Table 1). Since there is an 
age-related decline in the expression of BDNF and since alterations 
in BDNF levels have effects upon the morphology of hippocampal 
neurons as well as on hippocampal neuronal plasticity, BDNF may 
represent a candidate that plays a critical role in age-related changes, 
at least in the hippocampus.
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Table 1 | Changes in the hippocampus or in hippocampus-dependent 

functions.

 Aging Alzheimer Depression trkB- or 

  disease  BDNF- 

    deficient 

    mice

Hippocampal Reduced Reduced Reduced Reduced 

volume

Loss of No Yes No Minor 

hippocampal 

neurons

Hippocampal Reduced  Reduced Reduced 

spine 

densities

Neurogenesis Reduced Increased 1 Reduced Reduced2

LTP Reduced Reduced 3 Reduced4 Reduced

Spatial learning Reduced Reduced5 Reduced6 Reduced

Several of these alterations are also seen in trkB- or BDNF-deficient mouse 
models.
1Jin et al. (2004).
2As determined by a trkB-deficient mouse line (Li et al., 2008).
3Data from mouse models of AD (Nalbantoglu et al., 1997; Smith et al., 2009; 
Auffret et al., 2010; Gengler et al., 2010).
4Data from “learned helplessness”, an animal model of depression (Ryan et al., 
2009).
5Data from mouse models of AD (Moran et al., 1995; Nalbantoglu et al., 1997; 
Gordon et al., 2001).
6Data from “learned helplessness” (Song et al., 2006).
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