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and LeDoux, 1990; Rogan et al., 1997; Sigurdsson et al., 2007), cor-
tex (Artola and Singer, 1987; Teyler, 1989; Jung et al., 1990; Tsumoto, 
1990; Kirkwood et al., 1993; Fox, 2002), striatum (Calabresi et al., 
1992; Charpier and Deniau, 1997; Lovinger, 2010), ventral teg-
mental area (Nugent et al., 2007, 2008), cerebellum (Salin et al., 
1996; Lev-Ram et al., 2002), and nucleus accumbens (Pennartz 
et al., 1993; Kombian and Malenka, 1994; Schotanus and Chergui, 
2008). LTP can be observed both in vitro as well as in vivo condition.

The pioneering work of Bliss and Lomo (1973) encouraged 
numerous investigators to pursue research in understanding the 
attributes of LTP. The relevance and great amount of interest within 
the neuroscience community in researching LTP can be easily 
established by performing a simple search on PubMed; there were 
hardly 30 publications just after the discovery of LTP (1973–1980) 
but currently, there are over 8000 research articles published on 
the topic and this list is growing every day. Although it has been 
almost 40 years since the discovery of LTP, it is still a remarkably 
attractive research topic and a paragon of immense importance to 
all of us who are involved in understanding its clandestine nature. 
Many outstanding full-length review articles have been published 
on LTP (Bliss and Collingridge, 1993; Bear and Malenka, 1994; 
Malenka, 1994, 2003; Collingridge and Bliss, 1995; Malenka and 
Nicoll, 1999; Sanes and Lichtman, 1999; Malenka and Bear, 2004; 
Cooke and Bliss, 2006; Joels and Krugers, 2007; Sigurdsson et al., 
2007; Abraham and Williams, 2008; Blundon and Zakharenko, 
2008; Kerchner and Nicoll, 2008; Sacktor, 2008; Feldman, 2009; 
Minichiello, 2009; O’Dell et al., 2010; Vogt and Canepari, 2010; 
Baudry et al., 2011). This current article intends to present a brief 
summary of the research findings on LTP in the hippocampus, 
including induction, characteristics, cellular mechanisms, and 
modulation with special emphasis on aging, pathological condi-
tions, and stress.

IntroductIon
Over the past 30 years, extensive research has provided an enor-
mous amount of data on the characteristics underlying the cel-
lular and molecular mechanisms of synaptic plasticity. The Polish 
psychologist, Konorski (1948), first introduced the term “synaptic 
plasticity” to describe persistent and activity-dependent changes 
in synaptic strength. Several forms of long-lasting synaptic plastic-
ity have been observed in the mammalian central nervous system 
(CNS); long-term potentiation (LTP); and long-term depression 
(LTD) represent two major forms of neuronal plasticity. LTP is a 
long-lasting activity-dependent enhancement in excitatory synaptic 
strength following the delivery of a brief, high-frequency train of 
electrical stimulation, while LTD is long-lasting decrease in syn-
aptic efficacy following a low-frequency stimulation. LTP, along 
with other forms of synaptic plasticity is generally considered the 
closest neural model for the cellular mechanism involved in learn-
ing and memory storage (Bliss and Collingridge, 1993; Abel et al., 
1997; Malenka and Nicoll, 1999; Martin et al., 2000; Lynch, 2004; 
Malenka and Bear, 2004).

Originally, LTP was discovered at excitatory glutamatergic syn-
apses between perforant path fibers originating from the entorhinal 
cortex and granule cells in the dentate gyrus of the hippocampus of 
a rabbit in vivo (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 
1973). Subsequently, LTP has been investigated in a variety of mam-
malian species utilizing in vitro approaches including rat (Douglas 
and Goddard, 1975), mouse (Nosten-Bertrand et al., 1996), guinea 
pig (Harris and Cotman, 1986), monkey (Urban et al., 1996), and 
human (Chen et al., 1996; Beck et al., 2000; Cordoba-Montoya et al., 
2010). Since its initial demonstration in the hippocampus (Bliss 
and Gardner-Medwin, 1973; Bliss and Lomo, 1973; Douglas and 
Goddard, 1975), LTP has been observed in various brain regions 
throughout the mammalian CNS, including the amygdala (Clugnet 
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InductIon Protocols
Since the pioneering discovery of LTP induction via a brief burst 
of high-frequency (100 Hz) electrical stimulation, various physi-
ological stimulation paradigms have been employed to induce LTP. 
Because 100 Hz is not a rate at which neurons normally fire, the 
pursuit of more physiological naturally occurring firing patterns 
led to the discovery of several stimulation protocols. Under natu-
ral conditions, when a mouse or rat is exploring, hippocampal 
pyramidal neurons fire action potentials at a frequency of about 
5 Hz, resulting in what is known as “theta rhythm,” a sinusoidal 
oscillation of the hippocampal electroencephalography, which is 
critical for mnemonic processing (Bland, 1986). This frequency led 
investigators to develop theta burst stimulation (TBS) and primed-
burst stimulation (PBS) protocols (Larson and Lynch, 1986; Rose 
and Dunwiddie, 1986). TBS consists of three trains of stimuli deliv-
ered 20 s apart. Each train is composed of 10 stimulus epochs 
delivered at 5 Hz (200 ms apart) with each epoch consisting of four 
pulses at 100 Hz (Figure 1A). PBS includes a single priming pulse 
followed 170–200 ms later by a burst of stimuli delivered at 100–
200 Hz, 200 ms apart (Figure 1B). Various modifications have been 
made to these protocols in many different studies. Although less 
physiological, another stimulation protocol used to elicit LTP is a 
200-Hz stimulation (Grover and Teyler, 1990). Thus, brief and high-
frequency stimulation protocols are usually employed to induce 
LTP, but there are several studies that have reported induction of 
LTP by low-frequency stimulation (Mayford et al., 1995; Thomas 
et al., 1996; Lante et al., 2006; Huang and Kandel, 2007; Habib 
and Dringenberg, 2009, 2010). For example, O’Dell’s lab demon-
strated LTP induction by single pulse at 5 or 10 Hz stimulation 
(900 pulses; Mayford et al., 1995; Thomas et al., 1996), and other 
studies have established LTP following prolonged 1 Hz  stimulation 

(Li et al., 1998; Lante et al., 2006; Huang and Kandel, 2007; Habib 
and Dringenberg, 2009, 2010). Our work also demonstrates induc-
tion of LTP following low-frequency stimulation (5 Hz, 900 pulses) 
under a blockade of Ca2+ release from intracellular stores (ICS) 
during senescence (Kumar and Foster, 2004). However, the low-
frequency stimulation paradigm is not usually used to induce LTP, 
and more research is needed to clearly delineate the mechanisms 
that contribute to this type of LTP and learn how they may differ 
from those underlying high frequency-induced LTP.

tyPes and Phases of ltP
Different areas of the brain exhibit different forms of LTP, which 
further depend on a number of factors including age of the organ-
ism and stimulation protocol. Depending upon the reliance of LTP 
on the N-methyl-d-aspartate (NMDA) receptor, two major types of 
LTP, NMDA receptor-dependent, and NMDA receptor-independ-
ent, have been identified (Grover and Teyler, 1992; Cavus and Teyler, 
1996). For example, LTP induced at the CA3–CA1 hippocampal 
synapses employing high-frequency stimulation or TBS is depend-
ent on the NMDA receptor (Collingridge et al., 1983; Harris et al., 
1984; Morris et al., 1986), while an NMDA-independent form of 
LTP can be induced at the same synapse by using either a 200-
Hz stimulation protocol (Grover and Teyler, 1990; Grover, 1998), 
tetraethylammonium application (Powell et al., 1994), or activa-
tion of metabotropic G-protein coupled receptors (Bashir et al., 
1993; Bortolotto and Collingridge, 1993; Bortolotto et al., 1999; 
Fernandez de Sevilla et al., 2008; Anwyl, 2009; Fernandez de Sevilla 
and Buno, 2010). LTP at mossy fiber-CA3 synapses is sustained by 
NMDA receptors (Rebola et al., 2008). Another example of NMDA-
independent LTP is that which is induced by high-frequency stimu-
lation at the mossy fiber pathway in the hippocampus (Harris and 
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Figure 1 | Schematic depiction of standard theta burst stimulation and primed-burst stimulation. (A) TBS consists of three trains of stimuli delivered 20 s 
apart. Each train is composed of 10 stimulus epochs delivered at 5 Hz (200 ms apart) with each epoch consisting of four pulses at 100 Hz. (B) PBS consists of a single 
priming pulse followed 170–200 ms later by a burst of stimuli delivered at 100–200 Hz (200 ms apart).
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Multiple molecular and cellular mechanisms throughout the 
CNS contribute to induction, expression, and maintenance of LTP. 
An array of amino acid receptors including the NMDA receptor are 
involved in the induction of LTP. Induction of E-LTP occurs when 
the intracellular concentration of Ca2+ inside the postsynaptic cell 
exceeds a critical threshold. The transient influx of Ca2+ into the cell 
requires the NMDA receptors, which are ionotropic non-selective 
cationic glutamate receptors that play a central role in the rapid 
regulation of synaptic plasticity. Activation of NMDA receptors 
requires binding of a ligand (glutamate), membrane depolariza-
tion to remove the Mg2+ block of the channel, and binding of a 
co-agonist (glycine). Thus, these receptors behave like a molecular 
coincidence detector by allowing ionic flux only when the above 
conditions are met. Since the NMDA receptor is a non-selective 
cation channel, its activation and opening leads to simultaneous 
influx of Na+ and Ca2+ ions (Chen et al., 2005), although they are the 
predominant ionotropic glutamate receptor subtype most perme-
able to Ca2+ ions (Jahr and Stevens, 1993; Garaschuk et al., 1996).

A tetanic stimulation of presynaptic fibers causes release of 
neurotransmitters, mainly glutamate, onto the postsynaptic cell 
membrane. The binding of glutamate to postsynaptic α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors triggers the influx of positively charged sodium ions into the 
postsynaptic cell and causes the cell to depolarize. The magnitude 
of depolarization determines the amount of Ca2+ entry into the 
postsynaptic cell. If the degree of depolarization is sufficient to 
remove the Mg2+ block of the NMDA receptor, then the channel 
will allow influx of Ca2+ into the cell. Ca2+ signal is necessary for 
the induction of LTP, which determines the degree and duration of 
LTP. The rapid rise in intracellular Ca2+ concentration triggers the 
activation of several enzymes, specifically kinases, such as calcium/
calmodulin-dependent protein kinase II (CaMKII) and protein 
kinase C (PKC), that mediate induction of E-LTP (Sweatt, 1999). 
CaMKII is a multi-subunit (10–12) enzyme and each of the subu-
nits has a catalytic domain and an autophosphorylation domain. 
Activation of CaMKII by Ca2+ and calmodulin can autophospho-
rylate the enzyme, which will remain active independent of the 
continued presence of Ca2+ (Lisman, 1994). PKC has a regulatory 
domain and a catalytic domain and can be activated by a variety 
of second messengers including Ca2+, diaglycerol, arachidonic acid, 
and other phospholipids (Nishizuka, 1992). Activation of PKC in 
response to a rise in Ca2+ is transient, but PKC can be phosphoryl-
ated in an autonomous manner without the continued presence 
of Ca2+ (Inoue et al., 1977). CaMKII and PKCs play an important 
role in induction of E-LTP, and their ability to autophosphorylate, 
independent of second messengers, plays an essential role in main-
tenance of E-LTP (Klann et al., 1993; Sacktor et al., 1993; Lisman, 
1994; Sacktor, 2008).

Late LTP is the natural extension of E-LTP and represents the 
final phase of LTP. The hallmark of L-LTP is the requirement of 
gene transcription and its dependence upon protein synthesis (Frey 
et al., 1988; Frey and Morris, 1997; Kelleher et al., 2004). A transient 
rise in Ca2+ concentration, due to influx through NMDA receptors, 
stimulates Ca2+-sensitive adenylyl cyclase enzymes, which catalyze 
production of 3′,5′-cyclic adenosine monophosphate (cAMP; 
Chetkovich et al., 1991; Chetkovich and Sweatt, 1993; Frey et al., 
1993; Xia and Storm, 2005). The rise in cAMP activates another 

Cotman, 1986). To avoid ambiguity, this review will focus on the 
NMDA receptor-dependent form of LTP at Schaffer-collateral/
commissural synapses in area CA1 of rat and mouse hippocampus.

Long-term potentiation is a multiphasic phenomenon and cur-
rent models divide LTP into at least three different phases: an initial 
LTP (I-LTP), early LTP (E-LTP), and late LTP (L-LTP; Frey et al., 
1993; Roberson et al., 1996; Sweatt, 1999), although an intermediate 
phase of LTP has also been suggested (Winder et al., 1998). I-LTP, 
also referred to as short-term potentiation, represents the foremost 
stage of LTP and is a continual form of NMDA receptor-depend-
ent synaptic plasticity. I-LTP lasts about 30–60 min and does not 
require protein kinase activity (Roberson et al., 1996). E-LTP, which 
is evoked by fewer tetanic stimuli and lasts 2–3 h, is also independ-
ent of protein kinase activity (Frey et al., 1993). L-LTP, induced by 
delivery of multiple tetanic stimuli, lasts 5–6 h and requires protein 
synthesis and gene expression (Frey et al., 1993). For more details 
regarding phases of LTP, readers are recommended to consult two 
recently published books (Sweatt, 2003; Andersen et al., 2007).

ProPertIes of nMda recePtor-dePendent ltP
Long-term potentiation at the Schaffer-collateral pathway exhibits 
several basic characteristics which make it an attractive neural can-
didate for the storage of information; these include the principles 
of associativity, cooperativity, input-specificity, and persistence. 
The associativity principle indicates that a weak tetanic stimula-
tion, activating few fibers, is insufficient for the induction of LTP. 
However, simultaneous strong stimulation of a neighboring path-
way will trigger LTP at both synaptic pathways (Levy and Steward, 
1979). Cooperativity occurs when a weak stimulation is paired 
with a strong postsynaptic depolarization. In this case, LTP will 
occur only when depolarization of postsynaptic cell occurs within 
about 100 ms of transmitter release from the presynaptic cell. Input-
specificity stipulates that LTP will occur only in synapses which 
received tetanic stimulation, but inactive synapses that contact 
the same neuron will not share synaptic enhancement (Andersen 
et al., 1977; Lynch et al., 1977). Thus, these properties entail the 
conditional requirements needed for information storage. Finally, 
regarding persistence, LTP can last for several hours in the in vitro 
slice preparation and for many months in the freely moving animals 
(in vivo; Abraham, 2003), suggesting an ability for sustained physi-
ological change consistent with memory formation.

cellular/Molecular MechanIsMs Involved In ltP
Coincidence detection and temporal integration, two major 
aspects of dendritic integration, depend critically on the spatial 
and temporal properties of the dendritic summation of synaptic 
inputs (Magee, 2000; Segev and London, 2000). Changes in neu-
ronal activity capable of inducing LTP lead to enhanced linearity 
of the spatial summation of synchronous excitatory postsynaptic 
potentials. Neuronal activity is likely to regulate dendritic integra-
tion of synaptic inputs. Bidirectional changes in the summation of 
excitatory postsynaptic potentials accompanying synaptic plasticity 
(LTP/LTD) are induced by correlated presynaptic and postsynaptic 
activity; induction of LTP at CA3–CA1 hippocampal synapses leads 
to persistent augmentation of dendritic summation of two Schaffer-
collateral inputs and summation occurs only at the potentiated 
input (Wang et al., 2003; Xu et al., 2006).
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synaptic modification (Foster and Norris, 1997; Norris et al., 1998; 
Wilsch et al., 1998; Rose and Konnerth, 2001; Foster and Kumar, 
2002; Raymond and Redman, 2002; Kamsler and Segal, 2003; 
Kumar and Foster, 2004). Readers are referred to many excellent 
previously published articles for more details about the role of Ca2+ 
in LTP (Foster and Kumar, 2002; Atkins et al., 2005; MacDonald 
et al., 2006; Miyamoto, 2006; Tonkikh et al., 2006; Foster, 2007; 
Kumar et al., 2009; Simons et al., 2009; Barnes et al., 2010; Burke 
and Barnes, 2010; Diez-Guerra, 2010; Yoshioka et al., 2010; Munoz 
et al., 2011).

regulatIon/neuroModulatIon of ltP
Neuromodulators, such as norepinephrine, serotonin, dopamine, 
acetylcholine, and histamine affect the induction of LTP and control 
the endurance of synaptic facilitation at Schaffer-collateral syn-
apses. The hippocampus is densely innervated with noradrenergic 
(Cooper et al., 2003), cholinergic (Lewis et al., 1967; Amaral and 
Kurz, 1985; Frotscher and Leranth, 1985; Gaykema et al., 1990), 
dopaminergic (Gasbarri et al., 1994a,b; Goldsmith and Joyce, 1994), 
serotonergic (Storm-Mathisen and Guldberg, 1974; Azmitia and 
Segal, 1978), and histaminergic (Panula et al., 1989) nerve terminals 
from the locus coeruleus, the medial septum–diagonal band com-
plex, the substantia nigra–ventral tegmental area, dorsal–medial 
raphe nuclei, and tuberomammillary nucleus of the posterior hypo-
thalamus, respectively. The endogenous release of neurotransmit-
ters or agents acting on the receptors of these transmitter systems 
has the potential to regulate the induction of LTP. Readers inter-
ested in more details of the roles of various neurotransmitters in 
modulating LTP are advised to consult several previously published 
articles (Williams and Johnston, 1988; Blitzer et al., 1990; Staubli 
and Otaky, 1994; Brown et al., 1995; Otmakhova and Lisman, 1996; 
Wang and Arvanov, 1998; Costenla et al., 1999, 2010; Leung et al., 
2003; Li et al., 2003; Tachibana et al., 2004; Doralp and Leung, 2008; 
Rebola et al., 2008; Buchanan et al., 2010; Fernandez de Sevilla 
and Buno, 2010; Luo and Leung, 2010; O’Dell et al., 2010; Swant 
et al., 2010).

Long-term potentiation can be modulated by a range of other 
agents, including corticosteroids (Foy et al., 1987; Diamond et al., 
1989; Pavlides et al., 1993; McEwen, 1994; Sabeti et al., 2007; Maggio 
and Segal, 2010), caffeine (Lee et al., 1987; Lu et al., 1999a; Martin 
and Buno, 2003; Sajikumar et al., 2009; Alhaider et al., 2010; 
Costenla et al., 2010; Maggio and Segal, 2010), estrogen (Foy et al., 
1999, 2001, 2008a,c), endocannabinoids (Terranova et al., 1995; 
Misner and Sullivan, 1999; Carlson et al., 2002; Chevaleyre and 
Castillo, 2004; Slanina et al., 2005; Chevaleyre et al., 2006, 2007; 
Abush and Akirav, 2010), flavonoids (Wang et al., 2011), inhibi-
tors of histone deacetyltransferase activity (Alarcon et al., 2004; 
Haettig et al., 2011), neurotrophic factors (Kang and Schuman, 
1995; Gottschalk et al., 1998; Korte et al., 1998; Xu et al., 2000; 
Kovalchuk et al., 2002; Fontinha et al., 2008; Sallert et al., 2009; Xie 
et al., 2010), nitric oxide/carbon monoxide (Bohme et al., 1991; Bon 
et al., 1992; Izumi et al., 1992, 2008; Zhuo et al., 1993, 1994, 1999; 
O’Dell et al., 1994; Arancio et al., 1996; Lu et al., 1999b; Taqatqeh 
et al., 2009; Carlini et al., 2010), purines (Wieraszko and Ehrlich, 
1994; Costenla et al., 1999, 2010; Yamazaki et al., 2003; Fujii, 2004; 
Rebola et al., 2008; Maggi et al., 2009; Dias et al., 2011), orexin 
(Aou et al., 2003; Akbari et al., 2011), reducing agents (Tauck and 

group of protein kinases, including protein kinase A (PKA; Huang 
et al., 1996). The phosphorylated PKA can activate mitogen-acti-
vated protein kinases, specifically extracellular regulated kinase 
(ERK). Once activated, ERK phosphorylates transcription factors, 
such as cAMP-response element-binding protein (CREB). Results 
suggest that transducers of regulated CREB (TORC), which are 
potent regulators of CREB activity, play a pivotal role in molecular 
mechanisms involved in L-LTP (Kovacs et al., 2007). The phospho-
rylated CREB activates the cAMP-response element, which induces 
changes in gene transcription and triggers synthesis of new proteins 
(Impey et al., 1996; Sweatt, 1999), many of which are yet to be 
determined. Downstream regulatory element antagonist modula-
tor (DREAM) protein, calsenilin, has been recently suggested to be 
involved in LTP at perforant path-dentate gyrus molecular layer 
synapses; an impairment in LTP has been observed in calsenilin 
knockout mice (Lilliehook et al., 2003). However, a recent study 
demonstrated that LTD but not LTP was impaired in DREAM 
knockout mice at the hippocampal CA1 region (Wu et al., 2010).

The basic question as to whether the mechanisms underlying 
LTP, both the causes and locus of expression, result from changes 
in presynaptic or postsynaptic function remains contentious, for 
more details see Bekkers and Stevens (1990), Kullmann and Nicoll 
(1992), Isaac et al. (1995), Liao et al. (1995), Bolshakov et al. (1997), 
Debanne et al. (1997), Routtenberg (1999), Zakharenko et al. (2001), 
Emptage et al. (2003), Martin and Buno (2003), Nicoll (2003), 
Huang et al. (2005), Bayazitov et al. (2007), Lauri et al. (2007), 
Fernandez de Sevilla et al. (2008), Kerchner and Nicoll (2008), 
and Cabezas and Buno (2011). For more details about molecular-
cellular mechanisms of LTP, readers are referred to several informa-
tive reviews published over the course of three decades (Madison 
and Schuman, 1991; Bliss and Collingridge, 1993; Malenka, 1994, 
2003; Roberson et al., 1996; Nicoll and Malenka, 1999; Sanes and 
Lichtman, 1999; Sweatt, 1999; Bredt and Nicoll, 2003; Malenka and 
Bear, 2004; Shi et al., 2005; Miyamoto, 2006; Kerchner and Nicoll, 
2008; Minichiello, 2009; Li et al., 2010a; Baudry et al., 2011; Kelly 
et al., 2011a).

the role of ca2+ In InductIon of ltP
As stated previously, LTP can be induced by a wide variety of 
stimulation paradigms, and in all cases, induction of LTP requires 
a substantial rise in intracellular Ca2+. Thus, a Ca2+ signal is neces-
sary for the induction of LTP and its regulation plays a significant 
role in determining the degree and duration of LTP. The major 
sources of intracellular Ca2+ include Ca2+ influx through ligand-
gated glutamate receptors, such as NMDA receptors or various 
voltage-dependent Ca2+ channels (VDCCs), as well as the release 
of Ca2+ from ICS (Ghosh et al., 1994; Geiger et al., 1995; Berridge, 
1998; Kumar and Foster, 2004).

It is generally accepted that at CA1 hippocampal synapses, NMDA 
receptors provide the foremost source of Ca2+ for LTP induction 
following stimulation frequencies near the threshold for synap-
tic modification (Johnston et al., 1992; Cavus and Teyler, 1996). 
However, the level of Ca2+ in dendritic spines can be influenced 
by VDCCs, ICS, and other glutamate receptors (Jaffe et al., 1994; 
Christie et al., 1996, 1997; Dingledine et al., 1999; Korkotian and 
Segal, 1999). Interestingly, several studies have shown that VDCCs 
and ICS are involved in regulating the threshold for  induction of 
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et al., 1993; Moore et al., 1993; Lynch and Voss, 1994; Auerbach and 
Segal, 1997; Lynch, 1997, 1998a,b; McGahon et al., 1997; Murray 
and Lynch, 1998a,b; Shankar et al., 1998; Hsu et al., 2002; Watson 
et al., 2002, 2006; Blank et al., 2003; Rosenzweig and Barnes, 2003; 
Watabe and O’Dell, 2003; Griffin et al., 2006; Kelly et al., 2011b). 
It has been suggested that impairment of LTP may begin in mid-
dle age (Rex et al., 2005) and a shift in synaptic plasticity, favoring 
LTD over LTP, contributes to the decrease in synaptic transmission 
observed in aged animals (Foster, 1999). Aged, memory-impaired 
animals exhibit deficits in LTP induction, and altered hippocampal 
synaptic plasticity is one of the hallmarks of age-associated memory 
impairment in mammals (Foster, 1999; Tombaugh et al., 2002; 
Barnes, 2003; Rosenzweig and Barnes, 2003; Burke and Barnes, 
2010). Results also suggest that aging is associated with an increase 
in LTP (Costenla et al., 1999).

In considering synaptic transmission during aging, it is impor-
tant to note that the observed shift in synaptic modifiability is not 
due to a change in the expression mechanisms. For example, there is 
no age-related difference in the maximal LTP magnitude observed 
under conditions in which a strong burst of synaptic stimulation 
is delivered (Diana et al., 1994b; Norris et al., 1996; Shankar et al., 
1998). In addition, significant LTP can be observed in aged animals 
when single pulses are combined with strong postsynaptic depo-
larization or weak stimulation is combined with increased Ca2+; 
our work, too, demonstrates that asymptotic LTP can be induced 
in aged animals by employing multiple episodes of TBS (Figure 2; 
Barnes et al., 1996; Watabe and O’Dell, 2003; Kumar et al., 2007). 
This suggests that signaling pathways for the induction of LTP are 
intact during senescence. In contrast, it has been shown that the 
threshold for LTP induction is increased in aged memory-impaired 
animals (Landfield et al., 1978; Deupree et al., 1993; Moore et al., 
1993; Barnes et al., 1996; Norris et al., 1996; Foster and Kumar, 
2007), due in part to impaired postsynaptic depolarization. Thus, 
during aging, there may be a shift in the mechanisms that regulate 
the induction (i.e., threshold) of synaptic plasticity rather than 
a loss of expression mechanisms (Kumar et al., 2007). This shift 

Ashbeck, 1990; Gozlan et al., 1995; Cai et al., 2008; Bodhinathan 
et al., 2010b; Cowley et al., 2011; Kelly et al., 2011b), and oxidizing 
agents (Watson et al., 2006). The presence of action potentials in 
the dendrites, which are mainly regulated by A-type potassium 
channels, can modulate induction of LTP (Magee and Johnston, 
1997; Murphy et al., 1997; Johnston et al., 2000, 2003; Watanabe 
et al., 2002; Kim et al., 2007; Jung et al., 2011). Finally, metaplastic-
ity, which refers to activity-dependent modulation of subsequent 
synaptic plasticity (Abraham and Bear, 1996; Abraham and Tate, 
1997), can modulate LTP. In this case, previous activity/experience 
can influence the ability of hippocampal CA1 synapses to undergo 
subsequent synaptic facilitation, for details see Abraham and Bear 
(1996), Abraham and Tate (1997), Wang and Wagner (1999), 
Abraham et al. (2001), Jung et al. (2008), Sajikumar et al. (2009), 
Motanis and Maroun (2010), and Narayanan and Johnston (2010).

ltP durIng agIng
Aging is associated with decline in cognitive function, including 
learning and memory. Hippocampal-dependent spatial and epi-
sodic memory tasks, such as recently acquired verbal recall, are 
significantly impaired as a result of aging (Hulicka and Rust, 1964; 
Bruning et al., 1975; Giambra and Arenberg, 1993; Head et al., 
2008; Lister and Barnes, 2009). Senescent physiology, including 
altered hippocampal synaptic plasticity, is thought to contribute 
to the decline in cognitive function associated with aging and 
age- associated neurodegenerative diseases (Barnes, 1979, 2003; 
Disterhoft et al., 1994; Lynch, 1998a; Rosenzweig and Barnes, 2003; 
Tombaugh et al., 2005; Disterhoft and Oh, 2006; Foster and Kumar, 
2007; Lister and Barnes, 2009). In general, no age-related differ-
ences are observed in the magnitude of LTP (Landfield et al., 1978; 
Barnes, 1979; Deupree et al., 1993; Moore et al., 1993; Diana et al., 
1994a; Norris et al., 1996; Shankar et al., 1998), however, aging is 
associated with a shift in synaptic plasticity favoring decreased syn-
aptic transmission and a reduced ability to induce LTP (Landfield 
and Lynch, 1977; Landfield et al., 1978; Barnes, 1979, 1990, 1994; 
de Toledo-Morrell and Morrell, 1985; Davis et al., 1993; Deupree 

Figure 2 | Multiple episodes of theta burst stimulation (TBS) induced 
maximal LTP, which is of similar amplitude in young adult and aged 
rats. Illustration of individual excitatory postsynaptic potentials from aged 
(gray circle) and young adult (open circle) rats before (10 min) and after 

(60 min) the last episode of TBS. Bar diagram represents mean percentage 
change in the slope of synaptic responses during the last 10 min of 
recording, 60 min following the sixth TBS episode (adapted from Kumar 
et al., 2007).
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much of the LTP impairment found in these animals (Foster and 
Norris, 1997; Foster, 1999). Our work demonstrates that large AHP 
amplitude may mask the propensity of enhanced LTP induction 
during senescence (Kumar and Foster, 2004). Normally, there is a 
relationship between the frequency of afferent stimulation required 
for LTP induction and the level of resulting depolarization (Froemke 
et al., 2005), but during aging this is obscured by an increase in 
the Ca2+-dependent, K+-mediated AHP (Landfield and Pitler, 1984; 
Pitler and Landfield, 1990; Moyer et al., 1992; Disterhoft et al., 1996; 
Kumar and Foster, 2002; Tombaugh et al., 2005; Bodhinathan et al., 
2010a). During aging, the large AHP may disrupt the integration 
of depolarizing postsynaptic potentials and the duration of this 
disruption has been proposed to be a function of the extent and 
duration of the AHP (Foster and Norris, 1997; Foster, 1999; Foster 
and Kumar, 2002). Hypothetically, the disruption would increase 
the level of stimulation needed for LTP, resulting in a plateau in the 
frequency-response function. In fact, our studies along with others, 
have demonstrated that the AHP amplitude is intimately involved 
in regulating the threshold for induction of LTP (Sah and Bekkers, 
1996; Norris et al., 1998; Cohen et al., 1999; Sourdet et al., 2003; 
Kramar et al., 2004; Kumar and Foster, 2004; Le Ray et al., 2004; 
Murphy et al., 2004; Xu and Kang, 2005; Fuenzalida et al., 2007). 
Further, other evidence shows that pharmacological manipulations 
that reduce the AHP amplitude also shift the frequency-response 
functions, such that LTP can be observed following stimulation 
frequencies that would normally not elicit LTP. For example, phar-
macological blockade of L-type Ca2+ channels, inhibition of Ca2+ 
release from ICS, or attenuation of K+ channels enables the induction 
of LTP following a modest stimulation in aged animals (Figure 3; 
Norris et al., 1998; Kumar and Foster, 2004). Similarly, our work 
also demonstrates that LTP can be inhibited by enhancement in 
the amplitude of the AHP following treatment with the L-channel 
agonist, Bay K8644 (Figure 4; Kumar and Foster, 2004). Although 
L-channel activity should provide more Ca2+, the induction of LTP 
is impaired due to L-channel-induced enhancement in the AHP 

may favor synaptic weakening and could act as a functional lesion, 
reducing the ability for information to be transmitted through the 
hippocampus.

The NMDA receptor component of the synaptic response 
is decreased in aged animals (Barnes et al., 1997; Foster, 1999, 
2007; Rosenzweig and Barnes, 2003; Billard and Rouaud, 2007; 
Bodhinathan et al., 2010b). Supporting this, several studies have 
shown that NMDA receptors contribute less Ca2+ to the induc-
tion of LTP in area CA1 of aged hippocampus when compared to 
the young hippocampus (Norris et al., 1998; Shankar et al., 1998; 
Boric et al., 2008). Changes in subunit expression, composition, 
and splice variants of NMDA receptors may also contribute to 
age-associated deficits of NMDA receptor function (Magnusson 
et al., 2002, 2005, 2006, 2010). However, there is a debate concerning 
whether NMDA receptor subunit expression actually decreases at 
hippocampal CA3–CA1 synapses (Foster, 2002). In addition, it is 
possible that functional differences result from posttranslational 
modifications associated with oxidation or phosphorylation states 
of the receptor (Foster, 2007).

Previous research examining the ability of reducing and oxi-
dizing (redox) agents to modulate NMDA receptor activity in cell 
cultures and in tissue from neonates suggests that redox state is an 
important determinant of NMDA receptor function (Aizenman 
et al., 1989, 1990; Bernard et al., 1997; Choi and Lipton, 2000; Choi 
et al., 2001), possibly through oxidation of extracellular cysteine 
residues on the NMDA receptor (Lipton et al., 2002). Intracellular 
signaling molecules that affect NMDA receptor function are also 
sensitive to redox state. The aged brain exhibits an increase in oxida-
tive damage (Harman, 1956; Beckman and Ames, 1998; O’Donnell 
et al., 2000; Kamsler and Segal, 2004; Serrano and Klann, 2004; 
Foster, 2006; Poon et al., 2006; Pieta Dias et al., 2007; Li et al., 2010b) 
and a decrease in redox buffering capacity (Parihar et al., 2008). 
Recently, our work demonstrated that the age-related decline in 
NMDA receptor-mediated synaptic responses is clearly related to 
the redox state associated with aging (Bodhinathan et al., 2010b). 
In addition, evidence has been provided that NMDA receptor func-
tion may be compromised due to altered Ca2+ homeostasis leading 
to increased activity of the Ca2+-dependent phosphatase, calcineu-
rin. Calcineurin activity depends on a modest rise in intracellular 
Ca2+, and aged memory-impaired animals exhibit an increase in 
calcineurin activity (Foster et al., 2001). In turn, calcineurin can act 
on NMDA receptors to reduce Ca2+ influx (Lieberman and Mody, 
1994; Tong and Jahr, 1994).

The idea that induction of LTP is subdued as a result of a reduc-
tion in NMDA receptor activation during aging is supported by 
research showing that induction deficits can be overcome by strong 
postsynaptic depolarization (Barnes et al., 1996). Indeed, there are 
several reasons to believe that an inability to achieve sufficient post-
synaptic depolarization, a prerequisite for NMDA receptor activa-
tion, may be more problematic for LTP induction during senescence. 
First, the reduced synaptic strength of aged animals may result in 
a reduced afferent cooperativity in depolarizing the postsynaptic 
neuron and an inability to reach the level of depolarization needed 
for NMDA receptor activation. Moreover, it has been proposed that 
the inability to depolarize the cell is compounded during patterned 
stimulation, due to the larger after hyperpolarization (AHP). In fact, 
results suggest that it is the relatively large AHP which underlies 

Figure 3 | Pharmacological inhibition of intracellular Ca2+ stores by 
cyclopiazonic acid (CPA; 3 μM) led to LTP induction by a low-frequency 
(5 Hz, 900 pulses) stimulation protocol. Illustrations of the time course of 
mean percentage change in the synaptic responses during 10 min before and 
60 min after delivery of 5 Hz stimulation (5 Hz/3 min, solid horizontal line) to 
the control and test path. LTP is observed only in test path (adapted from 
Kumar and Foster, 2004).
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GluR1 subunit of the AMPA receptor, which mediates the expres-
sion of LTP. In contrast, a modest rise in Ca2+ results in synaptic 
depression through activation of protein phosphatases that dephos-
phorylate AMPA receptors, for review, see Xia and Storm (2005). 
Thus, due to the differential level of Ca2+ involved in the generation 
of various forms of synaptic plasticity, any treatment that modifies 
Ca2+ influx to the cytoplasm can influence the direction and degree 
of synaptic plasticity. The dependence on intracellular Ca2+ levels in 
determining the specific form of synaptic plasticity coincides with 
the observation that stimulation patterns for the induction of LTP 
and synaptic depression tend to require high- and low-frequency 
patterns, respectively.

Theoretical models suggest that synaptic plasticity is a function 
of synaptic activity, such that low-frequency stimulation induces 
synaptic depression. As neural activity increases, there is a transi-
tion from net LTD to induction of LTP (Bienenstock et al., 1982; 
Artola and Singer, 1993). A basic assumption of these models is that 
the threshold frequency for synaptic modification can “slide,” or is 
modifiable. Thus, changes in synaptic plasticity thresholds can be 
identified by plotting the change in synaptic strength as a result of 
different conditioning stimulation frequencies. This is referred to 
as the frequency-response function. The thresholds for induction 
of depression and LTP, as defined by afferent activity, are thought 
to reflect activity-dependent changes in the level of intracellular 
Ca2+, which in turn activates Ca2+-dependent enzymes.

Aging is associated with altered regulation of Ca2+ homeo-
stasis (Landfield and Pitler, 1984; Gibson and Peterson, 1987; 
Khachaturian, 1989; Thibault et al., 1998, 2007; Mattson et al., 2000; 
Foster and Kumar, 2002; Toescu et al., 2004; Disterhoft and Oh, 
2006; Foster, 2006, 2007; Mattson, 2007; Toescu and Verkhratsky, 
2007; Kumar et al., 2009). The shift in Ca2+ homeostasis, increased 
amplitude of AHP, and altered Ca2+ signaling involving an alteration 
in the activity of phosphatases and kinases also give rise to increased 
susceptibility to induction of synaptic depression during senes-
cence. In aged animals, blockade of NMDA receptors can reduce, 
but does not necessarily prevent, synaptic depression (Norris et al., 
1998). These results indicate a shift in Ca2+ homeostasis such that 
aging cells exhibit reduced Ca2+ influx from NMDA receptors and 
an increased contribution from VGCCs and ICS during neural 
activity (Foster, 1999). In addition, it is likely that aged neurons 
exhibit changes in intracellular buffering and processes for extru-
sion of Ca2+. Collectively, this shift results in alterations in physi-
ology, including an increase in the AHP amplitude and impaired 
LTP induction, at least under physiological Ca2+/Mg2+ conditions.

The change in Ca2+ homeostasis, which shifts the cell away 
from Ca2+ influx through NMDA receptors may be neuroprotec-
tive against Ca2+ mediated damage and thus act as compensation 
for increased vulnerability to neurotoxicity (Phillips et al., 1999). 
Alternatively, the shift in Ca2+ homeostasis could result from age-
related increase in oxidative stress (Squier, 2001; Annunziato et al., 
2003; Serrano and Klann, 2004). Reactive oxygen species could 
induce a rise in intracellular Ca2+ through release of Ca2+ from Ca2+-
binding proteins (i.e., decreased buffering) and oxidation of Ca2+ 
regulatory proteins (such as calmodulin) would disrupt ICS and 
increase entry through Ca2+ channels (Suzuki et al., 1997; Squier, 
2001). In the hippocampus, oxidative stress has effects that mimic 
aging by increasing Ca2+ influx through L-channels (Lu et al., 2002; 

amplitude. Thus, it is interesting to note that, while induction of 
LTP depends on a large rise in intracellular Ca2+, LTP induction is 
facilitated by blocking several Ca2+ sources that contribute to the 
AHP during senescence.

Another method for investigating the relationship between the 
AHP and LTP threshold is to reduce the AHP amplitude through 
manipulation of the potassium channels. For example, blockade of 
SK-type potassium channels by apamin increases cell excitability 
and facilitates induction of LTP (Norris et al., 1998). Moreover, 
deletion of the Kvβ1.1 subunit results in enhanced cell repolariza-
tion during repetitive firing by preventing A-type potassium chan-
nel inactivation. In turn, the normal spike broadening and increased 
Ca2+ influx through VGCCs is impaired by rapid repolarization. It 
follows then, that in Kvβ1.1 knockout mice, the AHP is reduced 
and LTP is facilitated (Murphy et al., 2004). These results indicate 
that the source of Ca2+ provides an overriding control of synaptic 
modifiability, shifting the threshold frequency for LTP induction.

NMDA receptor activation following high-frequency stimula-
tion leads to a robust rise in Ca2+; this rise in Ca2+ activates Ca2+-
dependent protein kinases that phosphorylate proteins, such as the 

Figure 4 | enhance AHP amplitude during aging contributes to impaired 
LTP induction. (A) Representative intracellular current clamp recordings from 
a CA1 hippocampal pyramidal neuron in aged rat are shown after a train of five 
action potentials elicited by a 100-ms pulse of depolarizing current under 
conditions of CPA (3 μM) and following bath application of Bay K8644 (1 μM) in 
the presence of CPA. Note that under conditions of blockade of Ca2+ release 
from intracellular calcium stores by CPA, the L-channel agonist, Bay K8644 
increased the AHP amplitude. (B) Time course of the synaptic responses 
following 5 Hz pattern stimulation in presence of Bay K8644 + CPA. LTP 
induced by 5 Hz stimulation was blocked under conditions of Bay K8644 + CPA 
in which AHP amplitude was increased (adapted from Kumar and Foster, 2004).
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the body including the hippocampus (Reul and de Kloet, 1985; Patel 
et al., 2000), and produce an appropriate response to manage the 
stressful event. The classical view of the influence of stress on LTP and 
memory functions presumes an inverted U-shape curve, such that a 
low-mild stress level facilitates but a high level impairs LTP induction 
(Diamond et al., 1992; Joels, 2006); however, the inverted U-shape 
effect of stress on LTP is not fully explained by this model (Maggio 
and Segal, 2010). The discovery of membrane-bound corticosterone 
receptors, mMR and mGR, which act through novel non-genomic 
pathways, can affect ionic conductances and modify cell excitability 
and function (Karst et al., 2005; Karst and Joels, 2005; de Kloet et al., 
2008; van Gemert et al., 2009), in addition to two classical genomic 
nuclear corticosterone receptors, the MR and GR, which contribute 
to slow and persistent change in the function of cell (de Kloet et al., 
1999; Joels, 2001), further complicates the influence of stress on LTP. 
Results from a recent study demonstrate that persistently augmented 
hippocampal corticotropin-releasing hormone and its interaction 
with corticotropin-releasing hormone receptor type 1, which reside 
on dendrites of CA1 pyramidal cells, contributes to impairment in 
LTP and cognitive function associated with chronic early life stress 
(Ivy et al., 2010).

Long-term potentiation at the hippocampal synapses is virtually 
abolished following acute or chronic stress (Foy et al., 1987, 2008b; 
Shors et al., 1989; Xu et al., 1997; Pavlides et al., 2002; Alfarez et al., 
2003; Diamond et al., 2005; Artola et al., 2006; Kavushansky et al., 
2006; Foy, 2011). However, LTP can still be induced during stress 
by employing higher effective postsynaptic depolarization (Artola 
et al., 2006). Further, depending upon the brain area, stress influ-
ences LTP differently. For example, chronic psychological stress 
impairs LTP induction in hippocampal area CA1, while it has no 
effect on dentate gyrus LTP (Gerges et al., 2001). Similarly, acute 
stress or physiological concentrations of corticosterone can inhibit 
induction of LTP in dorsal hippocampus while LTP is facilitated 
in the ventral hippocampus (Maggio and Segal, 2007, 2011). In 
addition, corticosterone facilitates VDCC-dependent LTP while 
NMDA-dependent LTP is impaired in the CA1 area of the hip-
pocampus (Krugers et al., 2005; Maggio and Segal, 2007). Stress 
evoked by opiate withdrawal facilitates LTP (Dong et al., 2006). 
The concentration of cGMP depends on the rates of synthesis by 
soluble guanylyl cyclase and degradation by phosphodiesterase 
(PDE). PDEs are implicated in modulation of LTP (Barad et al., 
1998; Kuenzi et al., 2003; Navakkode et al., 2004). Results from a 
recent study suggest that enhanced cAMP-specific PDE4 activity 
contributes to impaired LTP associated with acute stress (Chen 
et al., 2010a). The effects of stress (behavior, acute, chronic, fear, 
escape, traumatic brain injury) on LTP in the hippocampus are 
well documented (Foy et al., 1987, 2008b; Shors et al., 1989, 1997; 
Diamond et al., 1994; Diamond and Rose, 1994; Garcia et al., 1997; 
Xu et al., 1997; Albensi et al., 2000; O’Donnell et al., 2000; Vereker 
et al., 2001; Alfarez et al., 2002, 2003; Pavlides et al., 2002; Gerges 
et al., 2004; Rocher et al., 2004; Hui et al., 2005; Li et al., 2005; 
Schwarzbach et al., 2006; Kim and Haller, 2007; Kohda et al., 2007; 
Artola, 2008; Ryan et al., 2008; Ivy et al., 2010; Kamal et al., 2010; 
Sterlemann et al., 2010; Tran et al., 2010; Maggio and Segal, 2011). 
Overall, results suggest that stress profoundly influences the induc-
tion of LTP; intensity of stress (mild, acute, chronic) and area of 
the hippocampus (CA1, DG, ventral or dorsal hippocampus) play 

Akaishi et al., 2004), increasing the function of Ca2+-dependent K+ 
channels (Gong et al., 2000, 2002) and decreasing NMDA receptor 
function (Lu et al., 2001). Furthermore, oxygen radicals can influ-
ence the activity of Ca2+-dependent enzymes. The unstable super 
oxide (O·) or high levels of H

2
O

2
 (beyond the physiological range) 

inhibit calcineurin in tissue homogenates (Kamsler and Segal, 2003, 
2004; Ullrich et al., 2003). However, in intact tissue, reactive oxy-
gen species increase calcineurin activity, either through changes in 
the calcineurin inhibitory protein (Lin et al., 2003) or altered Ca2+ 
regulation involving increased Ca2+ from ICS and VGCCs, leading to 
impaired induction of LTP (Kamsler and Segal, 2004). Results from 
a series of studies by Marina Lynch’s group elegantly demonstrated 
the role of oxygen free radicals and anti-oxidants in sustaining 
impaired LTP induced by age and stress associated neuroinflam-
mation (Nolan et al., 2005; Griffin et al., 2006; Lynch et al., 2007a; 
Clarke et al., 2008; Loane et al., 2009; Cowley et al., 2011; Kelly 
et al., 2011b); for reviews see Lynch (2010). Future research will 
be required in order to determine whether treatments designed to 
reduce oxidative stress can reverse age-associated impaired LTP. The 
role of Ca2+ regulation has been a major focus of research for age-
related impairment in LTP and for more details readers are advised 
to consult the following review articles: (Disterhoft et al., 1994; 
Khachaturian, 1994; Landfield, 1994; Muller et al., 1996; Foster and 
Norris, 1997; Thibault et al., 1998, 2007; Verkhratsky and Toescu, 
1998; Foster, 1999, 2006, 2007; Foster and Kumar, 2002; Toescu 
et al., 2004; Toescu and Verkhratsky, 2007; Kumar et al., 2009). Also, 
as suggested above, age-induced impairment in neuromodulation 
may contribute to the progression of senescent physiology, includ-
ing impaired LTP and decline in cognitive function; for reviews 
see Potier et al. (1993), Disterhoft et al. (1999), Wu et al. (2002), 
Disterhoft and Matthew Oh (2003), Mesulam (2004), Backman 
et al. (2006), Billard (2006), Canas et al. (2009), Duzel et al. (2010), 
and Niewiadomska et al. (2009).

Aging is associated with an increased activation of microglia 
and astrocytes (Lynch et al., 2007a; Lyons et al., 2007), which may 
contribute to impaired LTP associated with senescence (Griffin 
et al., 2006; Lynch, 2010). Results are emerging which support that 
antagonists (minocycline, atorvastatin, rosiglitazone, or the polyun-
saturated fatty acid, eicosapentaenoic acid), that inhibit glial activa-
tion, are capable of sustaining LTP in animals where it is normally 
compromised (Nolan et al., 2005; Griffin et al., 2006; Lynch et al., 
2007a; Clarke et al., 2008; Loane et al., 2009; Cowley et al., 2011; 
Kelly et al., 2011b). Future studies are required to determine the 
role of microglia in LTP and underlying mechanisms.

ltP durIng stress
Stress, from mild anxiety to mental trauma, perilously disturbs bio-
logical, physiological, and psychological dynamic equilibrium; acute 
as well as chronic stress has a profound influence on brain–body inter-
action and considerably contributes to cognitive deficits (Foy et al., 
1987; McEwen and Sapolsky, 1995; Kim et al., 1996; Kim and Yoon, 
1998; McEwen, 1999, 2008; Kim and Diamond, 2002; Artola, 2008; 
van Stegeren, 2009; Wolf, 2009; Maggio and Segal, 2010; Rothman 
and Mattson, 2010; Foy, 2011). A stimulus that has the ability to 
induce stress causes release of corticosterone from the adrenal glands. 
Corticosterone acts on the corticosterone receptors, mineralocorticoid 
(MR) and glucocorticoid (GR), which are distributed throughout 
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1990, 1991; Gagne et al., 1996). Apolipoprotein E (ApoE) is syn-
thesized predominantly by the astrocytes in the brain and plays a 
critical role in regulation of plasma cholesterol and participates in 
transport of dietary lipids (Mahley et al., 1984; Mahley, 1988); ApoE 
comprises three isoforms, apoE2, apoE3, and apoE4 and has been 
reported in the general human population with apoE4 being the 
most common isoform, which is genetically associated with late 
onset of the AD (Schmechel et al., 1993). ApoE could play a role 
in synaptic plasticity through lipid homeostasis. Altered cellular 
metabolism of ApoE knockouts contributes to the neuropathology 
and cognitive deficits that develop in AD. In some studies, LTP is 
impaired in apoE-deficient mice (Masliah et al., 1996, 1997; Krugers 
et al., 1997), but another study reported no significant change in 
LTP (Anderson et al., 1998); furthermore, one study found a sig-
nificant impairment in LTP only in young but not in aged ApoE 
knockout mice (Valastro et al., 2001). Results demonstrate that 
modulation of AMPA receptor could be a possible mechanism 
involved in impaired LTP observed in ApoE knockouts (Valastro 
et al., 2001). For further readings, see Trommer et al. (2004, 2005), 
Yun et al. (2007), Korwek et al. (2009), Chen et al. (2010b), and 
Dumanis et al. (2011).

In addition to AD, an impairment in LTP induction has been 
observed in several other pathological conditions, including 
diabetes (Biessels et al., 1996; Kamal et al., 1999, 2000, 2005; 
Valastro et al., 2002; Artola et al., 2005; Artola, 2008), Parkinson’s 
disease (Bagetta et al., 2010), Fragile X Syndrome (Lauterborn 
et al., 2007; Connor et al., 2011), Down syndrome (Costa and 
Grybko, 2005; Siarey et al., 2005), Rett syndrome (Moretti et al., 
2006; Weng et al., 2011), Huntington’s disease (Usdin et al., 1999; 
Murphy et al., 2000; Lynch et al., 2007b), Niemann–Pick disease 
type C (Zhou et al., 2011), Rubinstein–Taybi syndrome (Alarcon 
et al., 2004), brain inflammation (Min et al., 2009; Lynch, 2010), 
glioma (Wang et al., 2010), and chronic liver failure (Monfort 
et al., 2007). Also, an impaired LTP has been observed follow-
ing sleep deprivation (Campbell et al., 2002; Davis et al., 2003; 
McDermott et al., 2003; Kim et al., 2005; Ravassard et al., 2009; 
Aleisa et al., 2010; Alhaider et al., 2010, 2011; Poe et al., 2010; Xie 
et al., 2010), ethanol drinking (Randall et al., 1995; Schummers 
et al., 1997; Chandler, 2003; Wright et al., 2003; Stephens et al., 
2005; Tokuda et al., 2007), lead exposure (Gilbert and Mack, 1998; 
Zhao et al., 1999), and thyroid deficiency (Dong et al., 2005; Sui 
et al., 2005). A review of the literature clearly demonstrates that 
neurodegenerative diseases, along with other pathological condi-
tions, negatively impact induction, expression, and maintenance 
of LTP. However, in order to develop a therapeutic intervention 
to ameliorate impaired LTP, future studies should be designed to 
delineate the neural circuits, cellular mechanisms, and signaling 
pathways altered by diseases.

conclusIon
Copious amounts of data generated over the past 38 years have 
provided insight regarding the complexities of the neural basis of 
learning and memory. Currently, LTP in the hippocampus is the 
vanguard and the best documented neuronal substrate for memory 
formation. A wealth of information relating the molecular and cel-
lular signaling mechanisms underlying LTP induction, expression, 
and maintenance, has provided a ray of hope in delineating the ways 

critical roles in determining the degree and direction of stress-
induced alteration in the LTP. Future studies will resolve the role 
of specific receptor types and signaling mechanisms contributing 
to stress-induced alterations in synaptic potentiation.

In general, aging and stress both negatively influence induc-
tion of LTP; there are several commonalities between advanced age 
and stress, including enhanced neuroinflammation and oxidative 
stress, which could contribute to impaired LTP in both circum-
stances (Lynch, 1998a; Murray and Lynch, 1998a,b; Foy et al., 2008b; 
Sterlemann et al., 2010). Results are emerging, which suggest that 
proteins, such as kinases, which are activated by stress, are also 
involved in LTP impairment associated with aging; O’Donnell et al. 
(2000) eloquently demonstrated that the activity of two stress-
induced mitogen-activated protein kinases, c-Jun NH

2
-terminal 

kinase (JNK) and p38 are increased with advanced age which could 
contribute to impairment in LTP induction during senescence. 
Future studies are required to determine the impact of stress and 
aging interaction on LTP and underlying signaling cascades.

ltP durIng PathologIcal condItIons
Like aging, various neurodegenerative diseases and pathological 
conditions influence induction of LTP and determine the degree 
and duration of synaptic strength. Alzheimer’s disease (AD) is the 
most common neurodegenerative disease in the elderly popula-
tion; the hippocampus is especially susceptible in AD and early 
degenerative symptoms include substantial deficits in the perfor-
mance of hippocampal-dependent cognitive abilities such as spa-
tial learning and memory. The cognitive impairments observed 
in AD patients are widely believed to be due to the progressive 
disruption of synaptic function and neurodegeneration triggered 
by aggregated amyloid-β, which is implicated in the pathogenesis 
of AD and contributes to the impairment of LTP (Cullen et al., 
1997; Freir and Herron, 2003; Costello and Herron, 2004; Klyubin 
et al., 2004; Wang et al., 2004a,b; Costello et al., 2005; Welsby et al., 
2007; Schmid et al., 2008, 2009; Shankar et al., 2008; Shipton et al., 
2011). Results demonstrate that amyloid-β specifically interacts 
with several major intracellular signaling pathways including the 
Ca2+-dependent protein phosphatase calcineurin, CaMKII, cAMP/
PKA, protein phosphatase 1, and CREB, all of which are down-
stream of NMDA receptor signaling and alter hippocampal LTP 
(Zhao et al., 2004; Knobloch et al., 2007; Wang et al., 2009; Yamin, 
2009; Zeng et al., 2010). One study recently demonstrated that 
amyloid-β-induced impairment in LTP results from perturbed 
CaMKII signaling pathways but could be rescued by pretreatment 
with brain-derived neurotrophic factors (Zeng et al., 2010). Other 
results suggest that amyloid-β closely interacts with and attenu-
ates synaptic AMPA receptors contributing to impairments in LTP 
(Parameshwaran et al., 2007). Changes in LTP have been observed 
in several animal models of AD (Chapman et al., 1999; Jacobsen 
et al., 2006; Abbas et al., 2009; Auffret et al., 2009, 2010; Gengler 
et al., 2010; Middei et al., 2010; Ondrejcak et al., 2010; Tran et al., 
2010). Review of literature suggests that a deficit in LTP induction is 
associated with AD and there is increasing evidence which suggests 
that impaired LTP is an event occurring early in AD pathology.
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by which learning occurs and memories are formed. However, a full 
understanding of how memories are constructed and which neural 
circuits are responsible for acquisition, consolidation, and recall 
of created memories has not been accomplished. Aging, diseases, 
stress, and other pathological conditions adversely influence learn-
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