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Spatial memory deficits have been well-documented in older adults and may serve
as an early indicator of mild cognitive impairment (MCI) or Alzheimer’s disease (AD)
in some individuals. Pattern separation is a critical mechanism for reducing potential
interference among similar memory representations to enhance memory accuracy. A
small but growing literature indicates that spatial pattern separation may become less
efficient as a result of normal aging, possibly due to age-related changes in subregions
of the hippocampus. This decreased efficiency in spatial pattern separation may be a
critical processing deficit that could be a contributing factor to spatial memory deficits
and episodic memory impairment associated with aging. The present paper will review
recently published studies in humans, non-human primates, and rodents that have
examined age-related changes in spatial pattern separation. The potential basic science,
translational, and clinical implications from these studies are discussed to illustrate the
need for future research to further examine the relationship between spatial pattern
separation and brain changes associated with aging and neurodegenerative disease.
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SPATIAL MEMORY DECLINE IN AGING
In the United States, Alzheimer’s disease (AD) is the most com-
mon cause of dementia in older adults and accounts for 60–80%
of dementia cases (Alzheimer’s Association, 2012). In the year
2012, an estimated 5.4 million Americans will be diagnosed with
AD, however, this number is projected to increase to 11–16 mil-
lion by 2050 (Alzheimer’s Association, 2012). As a result of the
aging “baby boom” generation and increasing longevity in the US
population, the disease is a growing public health concern with
costs estimated to reach $200 billion in 2012. Although a number
of risk factors for AD have been discussed (e.g., diagnosis of mild
cognitive impairment (MCI), family history of AD, apolipopro-
tein epsilon E4 allele), one of the most well-documented risk fac-
tors for the disease is increasing age (Kamboh, 2004). Therefore,
a major aim of recent research has focused on identifying early
indicators of cognitive dysfunction in older adults.

A variety of cognitive functions may be affected in older adults,
however, one of the most commonly reported deficits associated
with aging is memory loss. Although not all memory domains
are equally affected by aging (e.g., source vs. item memory), some
domains such as spatial memory appear to be particularly sen-
sitive to age-related change. Age-related spatial memory decline
has been well-documented in both humans (reviewed by Iachini
et al., 2009) and animal models (reviewed by Sharma et al., 2010).
Spatial memory deficits also have been well-documented in older
adults diagnosed with AD (Sahakian et al., 1988; Kessels et al.,
2005) or mild cognitive impairment (MCI: Alescio-Lautier et al.,
2007; deIpolyi et al., 2007; Hort et al., 2007). Some evidence
suggests that spatial memory deficits even may serve as an early

indicator of AD (Buccione et al., 2007; deIpolyi et al., 2007; Hort
et al., 2007). Age-related spatial memory deficits may result from
changes in a variety of brain regions including the hippocampus,
temporal lobes, and the frontal-parietal network (Iachini et al.,
2009). In particular, spatial memory decline associated with aging
has been suggested to result from age-related changes in the hip-
pocampus across species (reviewed by Barnes, 1988). However,
it is only recently that studies have begun to examine how age-
related changes in particular subregions of the hippocampus may
affect specific mnemonic processes. One such process is spatial
pattern separation, a mechanism that may be essential for the
accurate formation and retrieval of spatial memories. Less effi-
cient spatial pattern separation in older humans and animals
may contribute to impairments in spatial memory, particularly
in situations when spatial interference is high.

PATTERN SEPARATION
Pattern separation is a mechanism for separating partially over-
lapping patterns of activation so that one pattern may be retrieved
as separate from other similar patterns. A pattern separation
mechanism may be critical for reducing potential interference
among similar memory representations to enhance memory
accuracy (Gilbert and Brushfield, 2009). A number of models
have suggested that the hippocampus supports pattern separa-
tion (Marr, 1971; McNaughton and Nadel, 1990; O’Reilly and
McClelland, 1994; Shapiro and Olton, 1994; Rolls and Kesner,
2006; Kesner, 2007; Myers and Scharfman, 2009; Rolls, 2010).
In particular, the dentate gyrus (DG) and CA3 subregions of
the hippocampus have been shown to play a critical role in
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pattern separation in animal models using electrophysiological
methods (McNaughton et al., 1989; Tanila, 1999; Leutgeb et al.,
2007), neurotoxin-induced lesions (Gilbert et al., 2001; Lee et al.,
2005; Gilbert and Kesner, 2006; Goodrich-Hunsaker et al., 2008;
McTighe et al., 2009; Morris et al., 2012), and genetic manipula-
tions (Kubik et al., 2007; McHugh et al., 2007). In addition, stud-
ies using high-resolution functional magnetic resonance imaging
(fMRI) have shown that the human hippocampus (Kirwan and
Stark, 2007), and specifically the DG/CA3 subregions (Bakker
et al., 2008; Lacy et al., 2011), are active during pattern separa-
tion tasks (also see reviews by Carr et al., 2010; Yassa and Stark,
2011b).

AGE-RELATED CHANGES IN THE BRAIN
Aging has been shown to result in gray matter and white mat-
ter changes in a variety of brain regions (Allen et al., 2005;
Ziegler et al., 2008; Driscoll et al., 2009; Kennedy and Raz, 2009),
including the hippocampus (Good et al., 2001; Allen et al., 2005;
Driscoll and Sutherland, 2005; Raz et al., 2005; Walhovd et al.,
2010). Longitudinal studies have reported that non-demented
older adults show decreased volume in the hippocampus and
parahippocampal cortices (Driscoll et al., 2009). However, hip-
pocampal volume has been reported to decrease at a faster rate
than other medial temporal lobe structures (Raz et al., 2004).
Longitudinal changes in hippocampal volume have been shown
to be the primary determinant of memory decline (Mungas et al.,
2005; Kramer et al., 2007). fMRI signal intensity has been shown
to decline in all hippocampal subregions in older adults (Small
et al., 2002). However, the DG subregion may be particularly sus-
ceptible to age-related changes in both humans (Small et al., 2002)
and animal models (Small et al., 2004; Patrylo and Williamson,
2007). In addition, significant age-related changes have been doc-
umented in the perforant pathway in both humans (Yassa et al.,
2011a) and animal models (Geinisman et al., 1992). This dimin-
ished input from the entorhinal cortex to the DG also may impact
connections to the CA3 subregion and this reduction in connec-
tivity was shown to reliably predict spatial learning deficits in old
rats (Smith et al., 2000).

PATTERN SEPARATION AND AGING
There is a small but growing literature suggesting that pattern sep-
aration may be adversely affected by aging. Wilson et al. (2006)
proposed a model to account for age-related susceptibility to
interference. This model suggests that age-related changes in the
DG subregion of the hippocampus may result in less efficient pat-
tern separation due to an impaired ability to reduce similarity
among new input patterns. Furthermore, age-related changes in
the hippocampus strengthen the autoassociative network of the
CA3 subregion that supports pattern completion, a mechanism
that allows a complete representation of stored information to be
retrieved using partial cues. These age-related changes may cause
the CA3 subregion of the hippocampus to become entrenched in
pattern completion at the expense of processing new information
and pattern separation. As further evidence for this hypothesis,
a recent study by Yassa et al. (2011a) reported that reduced pat-
tern separation activity in the DG/CA3 regions of aged humans
was linked to structural changes in the perforant pathway. The

changes were suggested to weaken the processing of novel infor-
mation while strengthening the processing of stored information.
Shing et al. (2011) report that increased false alarm rates in
older adults when performing an episodic memory task may be
linked to CA3–4/DG volume, which may reflect individual age-
related differences in maintaining a pattern separation-pattern
completion equilibrium.

Given the well-documented role of the DG in supporting pat-
tern separation and the potential susceptibility of this region
to age-related change, recent behavioral studies have begun to
examine pattern separation in older humans. Using a continu-
ous recognition paradigm developed by Kirwan and Stark (2007),
Toner et al. (2009) reported that non-demented older adults are
impaired on a pattern separation task for visual object infor-
mation. A subsequent fMRI study supported these findings and
additionally demonstrated increased age-related activity in the
DG and CA3 subregions when pattern separation demands were
high on a visual object task (Yassa et al., 2010a).

SPATIAL PATTERN SEPARATION IN OLDER HUMANS
Recent studies also have begun to examine spatial pattern sep-
aration deficits in older adults. A study by Stark et al. (2010)
reported that spatial pattern separation is impaired in a subset
of older adults. Participants studied unique pairs of pictures and
later were asked to identify whether the pictures were both in the
same location as before or whether one of the pictures was in a dif-
ferent location. In the same condition, neither of the pictures in a
pair was moved. In the three different conditions (close, medium,
far) the location of one of the pictures in a pair was moved by
varying both the distance and the angle from the original loca-
tion. Older adults were separated into an aged impaired group
and aged unimpaired group, based on standardized word learn-
ing task performance. Analyses revealed performance deficits on
the close, medium, and far trials for the aged impaired group rela-
tive to both the aged unimpaired and young groups. Therefore, the
findings suggest that spatial pattern separation may be impaired
in a subset of older adults.

A subsequent study by Holden et al. (2012) examined the abil-
ity of cognitively normal young and older adults to perform a
spatial memory task involving varying degrees of spatial interfer-
ence to assess spatial pattern separation. During the sample phase
of each trial, a circle appeared briefly on a computer screen. The
participant was instructed to remember the location of the circle.
During the choice phase, two circles were displayed simultane-
ously and the participant was asked to indicate which circle was
in the same location as the sample phase circle. The two choice
phase circles were separated by one of four possible spatial separa-
tions across trials: 0, 0.5, 1.0, and 1.5 cm. Smaller separations are
likely to create increased overlap among memory representations,
which may result in heightened interference and a greater need
for pattern separation. Consistent with this hypothesis, the per-
formance of both young and older adults increased as a function
of increased spatial separation. However, young adults outper-
formed older adults, suggesting that spatial pattern separation
may be less efficient in older adults. In an attempt to replicate
the findings of Stark et al. (2010), the older adult group was sep-
arated into older impaired and older unimpaired groups based
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on performance on a standardized delayed word recall measure.
Consistent with Stark et al. (2010), the older impaired group was
significantly impaired relative to both the older unimpaired and
young groups.

SPATIAL PATTERN SEPARATION IN OLDER ANIMALS
Kubo-Kawai and Kawai (2007) conducted a study in aged mon-
keys that is similar in nature to the two aforementioned stud-
ies conducted in older humans. This study tested young and
older monkeys on a delay non-match-to-position task involv-
ing manipulations of the spatial distance between two locations.
During the sample phase, a plate was positioned to cover a baited
food well along a single row of four food wells. The animal dis-
placed the plate to receive a reward. During the choice phase, an
identical plate was positioned to cover the unbaited sample phase
well (incorrect choice) and a second identical plate was positioned
to cover a different baited food well in one of the three remaining
locations (correct choice). The distance between the two choice
phase plates was manipulated across trials and included sepa-
rations of 12, 24, and 36 cm. The data showed that the ability
of both young and older monkeys to choose the correct plate
improved as a function of increased spatial separation between
the two plates during the choice phase. However, no age-related
differences in performance were detected across separations. In
a second experiment, the sample phase followed the same pro-
cedure described for the previous experiment. However, on the
choice phase, two rows of food wells were used. The plate cover-
ing the unbaited sample phase food well (incorrect choice) was
located on one row, whereas the plate covering the new location
was positioned to cover a baited food well (correct choice) on a
different row of wells. Spatial separations of 15, 25.6, and 37.1 cm
were used to separate the plates across choice phase trials. The
data revealed that older monkeys were impaired relative to young
monkeys across all three separations, with the largest group dif-
ferences found on trials involving the closest 15 cm separation.
One could speculate that smaller separations were likely to cre-
ate increased overlap among memory representations, which may
result in heightened interference and a greater need for pattern
separation. Although this study was not designed or interpreted
by the authors to assess pattern separation, these findings in aged
monkeys are in accordance with the findings from the studies
involving older humans.

A recent study from our lab (Gracian et al., unpublished obser-
vations) provides further behavioral evidence that spatial pattern
separation may be impaired in aged animals. Young and old
rats were trained on a radial eight-arm maze to discriminate
between a rewarded arm and a non-rewarded arm that were either
adjacent to one another (high spatial interference) or separated
by a distance of two arm positions (low spatial interference).
Performance on this task recently was shown to be dependent
on the DG hippocampal subregion (Morris et al., 2012). Gracian
et al. showed that young and old rats committed similar num-
bers of errors in the separated condition. However, in the adjacent
condition, old rats committed significantly more errors compared
to young rats. The results suggest that decreased spatial pattern
separation in aged rats may impair performance on the adja-
cent condition, which involved greater spatial interference among

distal cues. However, performance increased in the separated con-
dition when there was less overlap among distal cues and less need
for pattern separation.

A recently published study by Marrone et al. (2011) provides
further neurobiological insight into how age-related changes in
the DG may affect pattern separation and spatial memory. In this
study, young and aged rats were allowed to explore either: (1) the
same environment on two occasions or (2) one environment fol-
lowed by a different environment. A marker of cellular activity
(zif268/egr1) was used to examine granule cell activity during
exploration of the environments. Older animals were found to
recruit distinct populations of granule cells during exploration
of the same environment on two different occasions, which the
authors interpret to be an indication of greater pattern separation.
However, when the aged animals visited different environments,
the reliability of repeated zif268 expression in young and aged
animals was comparable, thus the age-related increase in pattern
separation was no longer apparent. The study also found that
increased pattern separation in the similar contexts was correlated
with a reduced ability of older animals to disambiguate similar
contexts during a sequential spatial recognition task. The authors
conclude that spatial memory performance in aged animals is
most impaired in situations where interference is increased, pre-
sumably due to decreased pattern separation. Collectively, the
aforementioned studies offer evidence that spatial pattern sepa-
ration may become less efficient as a result of aging.

IMPLICATIONS
Age-related memory decline has been suggested to stem from
subregion-specific epigenetic and transcriptional changes in the
hippocampus (Penner et al., 2010). For example, neurogenesis
is reduced in aged animals (Kuhn et al., 1996) and is related
to decreased hippocampal volume and impaired performance
on hippocampal-dependent tasks (Driscoll et al., 2006). These
newborn neurons may be involved in mnemonic processes partic-
ularly dependent on the DG subregion, such as pattern separation
(Clelland et al., 2009; Aimone et al., 2010, 2011; Creer et al., 2010;
Deng et al., 2010; Sahay et al., 2011), whereas older DG cells may
contribute to pattern completion (Nakashiba et al., 2012). Sahay
et al. (2011) suggest that interventions that increase neurogene-
sis during adulthood may have clinical implications for reversing
age-related impairments in pattern separation and associated DG
dysfunction. Therefore, the development of behavioral tasks sen-
sitive to age-related changes in spatial pattern separation may
have implications for future studies of neurogenesis.

Age-related changes in spatial pattern separation also may
contribute to episodic memory deficits, which have been well-
documented in older adults (Rand-Giovannetti et al., 2006) and
are a prominent feature of AD that may be detectable several
years before disease onset (Bondi et al., 1999). Episodic mem-
ory also is impaired in non-demented older adults who are at
risk for AD based on genetics (Saunders et al., 1993) or a diag-
nosis of MCI (Hodges et al., 2006). One key feature of episodic
memory that differentiates it from other types of memory is that
the elements of an episodic memory must be associated into a
context to demarcate the episode in space and time. In addition,
a pattern separation mechanism may be necessary to separate
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the elements of different episodic memories to avoid interfer-
ence (Gilbert et al., 2001). It is possible that less efficient spatial
pattern separation in older adults may result in poorer mem-
ory due to increased interference among the spatial components
of episodic memories. The identification of a key mnemonic
processing deficit in pattern separation may result in behavioral
interventions that structure daily living tasks to mitigate interfer-
ence in the spatial domain and potentially improve spatial and
episodic memory in older adults.

Normal and pathological aging may have differential effects on
hippocampal subregions. The DG subregion may be particularly
susceptible to age-related changes in humans, however, there may
be less impact on pyramidal cells in the CA subregions (Small
et al., 2002). In contrast, the CA subregions may be more vul-
nerable to pathological changes associated with AD (Braak and
Braak, 1996; West et al., 2000; Price et al., 2001; Apostolova et al.,
2010). As mentioned previously, a primary goal in AD research
is to identify risk factors and preclinical markers of the disease in
older adults. Given the differential effects of normal aging and AD
on the various subregions of the hippocampus, tasks that are sen-
sitive to dysfunction in particular subregions, such as measures
of pattern separation, may help to differentiate between cogni-
tive impairment associated with normal aging and pathological
changes associated with AD. In support of this idea, a recent study
by Yassa et al. (2010b) reported that individuals with amnestic
MCI show impairments compared to healthy older adults on an

object recognition memory task that taxes pattern separation. In
addition, structural and functional changes were observed in the
DG/CA3 hippocampal subregions of these individuals.

CONCLUSIONS
In conclusion, spatial memory deficits have been well-
documented in older adults and may serve as an early indicator
of MCI or AD in some individuals. The operation of a pattern
separation mechanism may be critical for reducing interfer-
ence among similar memory representations to enhance memory
accuracy. Evidence suggests that brain regions critical to pattern
separation, including the DG and CA3 hippocampal subregions,
may be particularly susceptible to adverse age-related changes. A
small but growing literature indicates that spatial pattern separa-
tion may become less efficient as a result of normal aging. This
decreased efficiency in pattern separation may contribute to spa-
tial memory deficits and episodic memory impairment associated
with aging. Based on the aforementioned studies, it is clear that
additional research is needed to examine the relationship between
spatial pattern separation and brain changes associated with aging
and neurodegenerative disease.
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