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Cognitive processes associated with prefrontal cortex and hippocampus decline with
age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load
hypotheses of brain aging posit that brain aging, at least in part, is the manifestation
of life-long stress exposure. In addition, as humans age, there is a profound increase
in the incidence of new onset stressors, many of which are psychosocial (e.g., loss
of job, death of spouse, social isolation), and aged humans are well-understood to be
more vulnerable to the negative consequences of such new-onset chronic psychosocial
stress events. However, the mechanistic underpinnings of this age-related shift in chronic
psychosocial stress response, or the initial acute phase of that chronic response, have
been less well-studied. Here, we separated young (3 month) and aged (21 month)
male F344 rats into control and acute restraint (an animal model of psychosocial
stress) groups (n = 9-12/group). We then assessed hippocampus-associated behavioral,
electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and
sleep architecture changes. Aged rats showed characteristic water maze, deep sleep,
transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats
showed similar levels of distress during the 3h restraint, as well as highly significant
increases in blood glucocorticoid levels 21h after restraint. However, young, but not
aged, animals responded to stress exposure with water maze deficits, loss of deep sleep
and hyperthermia. These results demonstrate that aged subjects are hypo-responsive
to new-onset acute psychosocial stress, which may have negative consequences for
long-term stress adaptation and suggest that age itself may act as a stressor occluding

the influence of new onset stressors.
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INTRODUCTION

Normal aging is a complex process resulting in functional decline
and increased susceptibility to a variety of insults across mul-
tiple organ systems. The US Census Bureau predicts that the
aging population will triple by 2050, dramatically increasing
aging and age-related disease burden on health care infrastruc-
ture in the United States (Hebert et al., 2013). Brain tissue
represents a critical point of failure, with reduced quality-of-life
and autonomy, and increased susceptibility to neurodegenera-
tive disease (Tornatore et al., 2003). Intense research over the
past 40 years has forwarded several putative mechanisms of
aging-related neurologic dysfunction including free radical dam-
age (Finkel and Holbrook, 2000; Cutler et al., 2004; Poon et al.,
2004), protein misfolding (Wickner et al., 1999; Soto, 2003), cal-
cium ion dyshomeostasis (Landfield, 1987; Khachaturian, 1989;
Landfield et al., 1992; Foster et al., 2001; Toescu and Verkhratsky,
2004; Thibault et al., 2007; Toescu and Vreugdenhil, 2010), and
stress/stress hormone exposure (allostatic load/glucocorticoid
cascade) (Landfield, 1978; Landfield et al., 1978b, 2007; Sapolsky
et al., 1986b; Kerr et al., 1989; Lupien et al., 1998; Porter and
Landfield, 1998; McEwen, 1999; Barrientos et al., 2012).

The hippocampus plays a critical role in cognitive function
(Lupien et al., 1998; Yankner et al., 2008) and provides impor-
tant feedback regulation over the hypothalamic-pituitary-adrenal
(HPA) axis (McEwen et al., 1992; Rostene et al., 1995; Ziegler and
Herman, 2002; Joels et al., 2013). HPA axis activity is associated
not only with stress, but with sleep and circadian rhythm (Plihal
and Born, 1999; Garcia-Borreguero et al., 2000; Van Cauter et al.,
2000). Synergistic actions of stress and aging are thought to
be especially disruptive in the hippocampus, leading to mem-
ory impairments and weakened control over stress hormones
(Sapolsky et al., 1984; Meaney et al., 1992; Stranahan et al., 2008).
The convergence of age and stress at the hippocampus is high-
lighted by evidence of increased cognitive dysfunction in aged
humans after exposure to new-onset stress, including jet lag,
physical wounding, anesthesia, infection or psychosocial stressors
(PS- stressors that do not involve nociceptive input) (Wofford
et al., 1996; Bekker and Weeks, 2003; Lupien et al., 2005; Vondras
et al., 2005; Barrientos et al., 2012).

Extensive work with animal models clearly shows that early life
(neonatal, prenatal) stress exposure has life-long deleterious con-
sequences (Meaney et al., 1988; McEwen et al., 1999; Weaver et al.,
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2006; Loria et al., 2010; Harris and Seckl, 2011), and that gluco-
corticoids, stress exposure, or manipulations that promote stress
signaling in young subjects recapitulates aspects of the aging phe-
notype (Wei et al., 2007), including impairment on spatial and
working memory tasks (Wright et al., 2006; Ferrari and Magri,
2008; Barsegyan et al., 2010; Marin et al., 2011), enhancement or
preservation of emotional memory (McGaugh and Roozendaal,
2002), neuronal functional deficit (Kerr et al., 1989, 1991, 1992;
Krugers et al., 2012), transcriptional change (Porter et al., 2012;
Chen et al., 2013), and disrupted sleep architecture (Pawlyk et al.,
2008). Interestingly, prior stress exposure blunts response to a
subsequent stressor (adaptation) in young animals (Paskitti et al.,
2000; McEwen, 2001), but not in aged animals (Spencer and
McEwen, 1997), suggesting aging alters the brain response to PS.

New onset PS is highly prevalent in aged humans and has
negative consequences for sleep and cognition (House et al.,
1990, 1994). However, basic research on these aging responses
has lagged behind (Maines et al., 1998; Lupien et al., 2009;
Porter et al., 2012). Here, we designed experiments to establish
whether aged subjects responded differently than young to acute
PS. Restraint, an animal model of PS (reviewed in Buynitsky
and Mostofsky, 2009) was applied to young (3 month) and
aged (21 month) male F344 rats. Sleep architecture, water maze
performance, blood glucocorticoid level, circadian temperature
oscillations, hippocampal electrophysiology and gene expression
(NanoString evaluation of a panel of 200 previously defined aging
sensitive hippocampal genes) were measured. Aged animals com-
pared to young, as well as young animals responding to stress
exposure, showed responses typical to those seen in prior work.
However, aged animals showed either a weaker response, or a
lack of response compared to their younger counter parts on
sleep, maze, body temperature, and blood glucocorticoid mea-
sures. This reduced response suggests, among other possibilities,
that aging itself may act as a stressor, occluding the acute PS
response. Our results raise the intriguing possibility that failure to
respond to an acute stress may have long-term negative adaptive
consequences for aged subjects.

MATERIALS AND METHODS

SUBJECTS

Young adult (3 month), n =21 and aged (21 month) n =19
males Fischer 344 rats obtained from the NIA aging colony were
individually housed with enviro-dry paper bedding, a rat tun-
nel and a Nyla bone. Animals were maintained on a reverse
12:12 light/dark (4:30 AM lights off, 4:30 PM lights on) and were
given access to food and water ad-libitum. Additional subjects
not included in the analysis were excluded based on pathology
(1 young, 4 aged), surgical complications (2 young, 5 aged),
or failure to reach behavioral criteria (0 young, 2 aged). All
experiments were performed in accordance with institutional and
national guidelines and regulations, and conform to our approved
protocol (University of Kentucky IACUC #2008-0347).

SURGERY

All subjects were implanted according to standard procedures
with wireless EEG/EMG emitters (Data Sciences International-
TL11M2-F40-EET) as in prior work (Buechel et al., 2011). Prior

to surgery, EEG wires were cut to length and a sterile 1/8” stainless
steel screw was soldered to the end of each lead. To begin surgery,
animals were anesthetized with isoflurane and placed in a stereo-
taxic frame. A two inch incision was made to expose the skull
and spinotrapezius muscles. The emitter was placed under the
skin between the left scapulae and the left ileum along the flank.
The exposed dorsal region of skull was cleaned with 3% perox-
ide and the skull surface dried with sterile cotton swabs soaked
in 70% ethanol. For EEG electrodes, a 0.7 mm hole was drilled
1 mm from either side of the sagittal suture line and 1-2 mm ante-
rior to the lambda suture line. Screws were inserted into the holes
and positioned so that the flat screw tip rested on the dura. Screw
heads were covered with dental cement and left to dry. EMG elec-
trodes were inserted through the trapezius muscle with a 21guage
needle, perpendicular to the muscle fibers. The free wire end was
capped with insulation and both sides of the incision were tied off
with surgical thread to prevent fluid infiltration. The incision was
then closed with 6-8 mattress stitches.

SLEEP DATA ACQUISITION AND ANALYSIS

Animals were housed individually and cages were positioned at
least 18” apart to avoid interference during radiotelemetry data
acquisition. EEG, EMG, temperature and locomotor activity data
were recorded continuously with DSI’s Data Art acquisition soft-
ware and binned in 10s epochs. For these nocturnal rodents, the
first 4h of their active period (dark) and the first 4h of their
resting period (light) were evaluated for sleep architecture on the
day prior to the start of water maze training (baseline), and fol-
lowing the stress/probe trial paradigm. Architecture was scored
using Neuroscore’s analysis console in 30 s increments while being
viewed in 2-5 min windows. EEG waves were stratified into “low
amplitude” (<50% of maximum) and “high amplitude” (>50%
of maximum) tiers, and underwent fast Fourier transforms for
each of 5 frequency ranges: A(0.5-4Hz), ® (4-8Hz), A (8-12
hz), ¥ (12-16 Hz), and B (1624 Hz). EMG waves were stratified
into 3 tiers: “basal” <33% (seen during REM), “intermediate”
(between 33 and 66%), and “high” (>66%). Stages based on
EEG/EMG signaling were established as follows: Wake- interme-
diate or high EMG =+ locomotor activity, EEG variable; Light
Sleep- low amplitude EEG, intermediate EMG, and no loco-
motion; REM (paradoxical) Sleep- high frequency EEG, “basal”
EMG and no locomotor activity; Deep Sleep- high amplitude
EEG activity enriched in delta band frequency, basal to light
EMG activity, no locomotor activity. Prior assigned sleep stages
informed subsequent assignments. Ambiguous epochs, as well
as those containing artifacts, were not scored and accounted for
<5% of scored time.

WATER MAZE TESTING

The water maze task was performed as in previous studies
(Buechel et al., 2011). A 190 cm diameter circular, black painted
pool was centered (250 cm/side) in a cubicle of floor to ceil-
ing black curtains, making the environment relatively neutral.
High contrast black and white cues (90 x 90 cm- circle, trian-
gle and vertical lines), were placed, one to each of three curtains
facing the maze, 60 cm above the maze rim. Maze tempera-
ture was maintained at 26 + 2°C. One quadrant contained a
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15 cm diameter escape platform covered with black neoprene for
improved traction. Illumination in the room was set at 3.6 to 3.8
lux and a Videomex-V water maze monitoring system (Columbus
Instrument, Columbus, OH) was used for analyses. All training
and probe sessions took place between 12PM and 4PM (during
the rats’ active period).

Locally cued training (pre-surgery)

The locally cued platform location task included an additional
visual cue: a white Styrofoam cup suspended from the ceiling by
black thread approximately 12 inches above the submerged plat-
form. In the locally cued task, over 3 days, each animal was given
three 60s trials per day, with 60s on the platform and a 2 min
inter-trial interval. Criterion for performance was established as
an ability to swim to the platform in under 30s for 2/3 trials on
the 3rd day. The spatial cues destined to be used in the spatial
training task were already mounted during locally cued training.

Spatially cued training and probe (post-surgery)

Two weeks after implantation surgery (to allow for recovery), the
spatial water maze task was performed as in prior work (Buechel
et al., 2011). Spatial cues outside the pool were provided. A 4
day protocol was used (days 1-3: 3 trials per day, submerged
platform (~2 cm below water surface); day 4-following restraint-
probe trial with platform removed). On training days, each ani-
mal began in a different quadrant on each of three trials. They
were given 1 min to find the platform, 1 min on the platform and
a 2 min inter-trial interval. On the probe day, the platform was
removed and each rat was given one 60 s trial. Platform position
was constant throughout local, spatial and probe trials, but start-
ing quadrant was changed for each trial. For probe trial, animals
always started in quadrant opposite to goal quadrant.

RESTRAINT (PSYCHOSOCIAL) STRESS

For 3 h immediately prior to the water maze probe trial, half of the
subjects were restrained with nylon coated canvas rat Snuggles®
(Harvard apparatus). Animals were monitored continuously for
vocalization and struggling throughout the 3h restraint, and
tested on the probe trial immediately following restraint. Control
animals stayed in their home cages in the housing facility until
the probe trial began. After completing the task, animals were
returned to their home cages in the housing facility and sleep
architecture data was collected.

TISSUE COLLECTION AND ANALYSIS

On the following morning, animals were killed by CO, anes-
thesia and decapitation. Trunk blood was collected in lithium
heparin vacutainers (BD biosciences), and centrifuged at 1200 g
for 10 min. Serum was removed for corticosterone measurement
using a radio-immuno assay with a lower quantification limit
of 20 ng/ml (Antech GLP, Siemens Diagnostic, Los Angeles) and
additional blood components measured (Abaxis Comprehensive
Diagnostic Panel, VetScan2,University of Kentucky College of
Medicine core facility). The hippocampus was dissected out of
one hemisphere and prepared for electrophysiological testing.
The anterior and posterior tips of those hippocampi were placed
in dry ice and transferred to a —80°C freezer for NanoString anal-
ysis at the end of the study. The second hemisphere was post-fixed

in 4% formalin (24 h), cryoprotected in 15% sucrose solution and
stored at —80°C for future use.

ELECTROPHYSIOLOGY

Hippocampi were prepared according to standard protocols
(Searcy et al., 2012; Pancani et al., 2013). Briefly, hippocampi
were removed and cut into transverse 400 wm thick slices on
a MclIlwain chopper. They were placed in low calcium artifi-
cial cerebrospinal fluid (ACSF) chilled to 0°C, recipe as follows
(in mM): 128 NaCl, 1.25 KH;,POy, 10 glucose, 26 NaHCOs3, 3
KCl, 0.1 CaCl,, 8 MgCl,. Slices were transferred to an interface
recording chamber kept at 32°C with 95% O;, 5% CO; and
normal-calcium ACSF (as above) with CaCl, increased to 2 mM
and MgCl, reduced to 2 mM. Slices were allowed to incubate in
the recording chamber for at least 1 h before recording.

To begin testing, a 0.0055 inch, twisted bipolar Teflon coated
stainless steel (A&M Systems) stimulating electrode, was placed
in the perforant pathway. Glass recoding electrodes, pulled on a
Sutter-Brown P-80 puller with tips broken back (2—4 M2 resis-
tance), were filled with ACSF and placed in the stratum radiatum
of CAL to record excitatory postsynaptic field potentials (EPSPs).
We performed 2 experiments on each slice. First, input/output
curves were constructed by varying input stimulator voltage and
measuring change in output EPSP. Then input voltage was set to
generate 1/3 of maximum EPSP and paired pulse (PP) facilitation
experiments were performed in triplicate with 50, 100, 150, and
200 ms delays and a 30 s inter-trial interval.

GENE EXPRESSION ANALYSIS

Microarray data from three published studies of hippocampal
aging in the F344 rat (Blalock et al., 2003; Rowe et al., 2007;
Kadish et al., 2009) (data available through the Gene Expression
Omnibus GSE854, GSE5666, GSE9990) was compiled to establish
lists of genes significantly upregulated (101 total) or downreg-
ulated (70 total) in at least 2/3 of these studies. This panel
of “male F344 rat hippocampal aging genes” was submitted to
NanoString Technologies (Seattle, WA) who then constructed
a custom nCounter multiplex code set (Geiss et al., 2008) for
the detection of these mRNA species (and specifically, for the
gene structures as assayed by the original Affymetrix microar-
ray probe set designs). Hippocampal mRNA was extracted from
fresh frozen hippocampal tissue as in as in prior work (Buechel
et al.,, 2011; Porter et al., 2012). Briefly, the dorsal and ventral
tips of hippocampi were placed in Eppendorf tubes, frozen on
dry ice, and stored at —80°C. After all tissue was collected, RNA
was extracted using the Trizol protocol and RNA quality was
checked on Agilent Bioanalyzer (RNA Integrity Number-RIN:
7.27 £0.15). 171 pre-selected mRNA species were quantified
with nCounter (12 animals- 3 per treatment group- were run on
each nCounter plate, except the last, which measured 6 subjects-
4 young controls, 1 aged stress, and 1 young stress). Five sub-
jects’ nCounter data was excluded due to poor quality). Data
from the remaining 37 subjects (n = 10 young control, 8 young
stress, 10 aged control, 9 aged stress) were transferred to flat
files for further analysis. Data were normalized according to stan-
dard nCounter procedures using NanoString provided spike-in
controls. Quality control measures were consistent across groups
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and within normal range (binding density: 0.6 &= 0.04; Fields of
View Read: 599.7 £ 0.1; n.s. between treatment groups, two way
ANOVA). None of the probes selected failed to detect a signal.
Complete list of results is provided (Supplemental Table 1).

STATISTICAL ANALYSIS

Data were analyzed by conventional statistical procedures as
noted in Results with a = 0.05. P-values are reported in fig-
ure captions if they are significant and listed as “n.s.” if non-
significant. Asterisks and arrows/lines are used to highlight sig-
nificant post hoc pairwise results. Multiple testing error was
estimated where appropriate using the False Discovery Rate
procedure (Hochberg and Benjamini, 1990). Software used for
statistical analysis included Excel (Microsoft, 2010), SigmaStat
(v 3.5, Systat), and The Institute for Genomic Research’s Multi-
Experiment Viewer (Saeed et al., 2006).

RESULTS

WATER MAZE

Animals were initially trained to swim to a platform centered
immediately under a visual cue (“locally” cued). The purpose of
this task was to identify and remove subjects that could not see

or were too distressed to perform the task. Over three successive
days, latency to the platform was measured on three trials per day.
Results are averaged and plotted (Figure 1A). Both young and
aged animals showed shorter latencies over time, but aged animals
were significantly slower than young on all training days. Next,
subjects were surgically implanted with sleep-monitoring equip-
ment and given 2 weeks for recovery (Methods) and baseline sleep
measurement.

After recovery, the local cue was removed from the water
maze and animals were trained, 3 trials per day for 3 days,
on the spatial Morris water maze. Here, distal cues are used
to triangulate on the hidden platform’s location. Young animals
appeared to be performing at peak levels, measured as either
latency (Figure 1B1) or path length (Figure 1B2), on all train-
ing days, while aged subjects continued to improve. Because the
spatial cues were present during the locally cued task and plat-
form location was constant, an intriguing possibility is that the
young animals acquired spatial cues during the locally cued task,
but aged animals did not, or at least not to the same degree as
the young. Aged animals did, however, show significantly shorter
latencies over training days (i.e., continued improvement on the
task). Aged subjects were significantly slower on training days 1
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FIGURE 1 | Water maze. (A) Locally cued training. Latency to platform
is plotted as a function of training day (p < 0.001 for main effects of
training and age, interaction n.s., two way repeated measures ANOVA;
*p < 0.05 for age at each training day post hoc pairwise Fisher's LSD).
(B1) Spatially cued training latency plotted as in (A). Main effects of
age (p < 0.001) and training (p < 0.01), as well as interaction (p < 0.01)
are significant by two way repeated measures ANOVA (* as in A).
(B2). Spatially cued training path lengths are plotted (age p < 0.01,
training p < 0.05, interaction p < 0.01, * as in A). (C1). Probe trial
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platform crossings. The number of times the original platform location
was crossed (# platform crossings) is plotted for young and aged
animals that were control (Cntrl) or 3h restraint treated (Stress). Main
effects of age and stress were not significant, but interaction was
significant (p < 0.05) by two way ANOVA. (*p < 0.05, Fisher's LSD
young control vs. young stress). (C2) Probe trial path length (in cm)
within the goal quadrant. Main effects of age and stress were not
significant, but interaction was significant (p < 0.05) by two way
ANOVA. (*p < 0.05, Fisher’s LSD young control vs. young stress).
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FIGURE 2 | Sleep architecture pre and post water maze. (A) Young period immediately following stress and (Bottom) during subsequent
vs. aged sleep stage duration before stress or water maze exposure. active period (12h later). Each sleep stage in each period was tested
Total minutes in each sleep stage during the first 4h of the active as separately by two way ANOVA. No main effects for any stage were
well as rest periods are plotted (p < 0.001 for stress, aging n.s., and significant. However, the Interaction term was significant for resting
p < 0.05 for interaction between stress and aging in both Active and period: wake (p < 0.05), REM (p < 0.05) and Deep (p < 0.01); as well
Resting periods; two way repeated measures ANOVA). (B) Influence of as Active: Deep (p < 0.01). (For all panels *p < 0.05, post hoc pairwise
stress exposure on young and aged sleep architecture: (Top) Resting Fisher’s LSD).

and 2, but statistically indistinguishable from young by training
day 3 (Figure 1B1). Path length (Figure 1B2) revealed a similar
pattern albeit young vs. aged significance was only present on
the first training day. This allowed us to evaluate the effect of
3 h restraint from a similar performance baseline in young and
aged subjects. It should be noted that aged animals swam more
slowly than young (young 33.7 & 1.1 cm/s; aged 28.5 & 0.9 cm/s;
p < 0.01), and this reduced speed could in part explain longer
latencies in aged subjects. However, with an average distance from
all drop points to platform of 91.44 cm, young and aged subjects’
minimum “straight line” latency to platform, given their aver-
age swim speeds, would be 2.7 s and 3.2 s respectively. Therefore,
swim speed alone accounts for about 0.5 s difference in latencies,
a performance gap much smaller than observed on locally cued,
and days 1 and 2 of spatially cued, training.

On the following day, half of the animals were restrained for
3h, and the hidden platform was removed from the maze for

probe trial. During a 60 s swim period, we counted the number of
times each animal crossed the area originally containing the plat-
form (Figure 1C1), as well as the animals’ path length within the
goal quadrant (Figure 1C2). As in prior work, aged animals ded-
icated less effort to investigating the original platform location.
However, while 3 h of restraint significantly reduced young ani-
mal’s platform crossings and goal quadrant path lengths, an effect
seen in multiple other restraint studies, aged subjects appeared
insensitive to restraint. Similar, albeit borderline significant, pat-
terns (p = 0.06-0.1) were seen with swim latency and path length
to platform location (data not shown).

RESTRAINT STRESS

For the 3h immediately preceding the spatial water maze
probe trial on the 4th day, half of the young and aged ani-
mals were restrained. Animals were monitored throughout the
restraint period for vocalizations and struggles. Qualitatively,
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both young and aged animals appeared distressed by the pro-
cedure. Quantitatively, we were unable to detect any age-related
difference in perceived stress as measured by the number of
struggles and vocalizations over 3h (Young 29.6 7.9, Aged
29.6 + 7.1; n.s., Student’s t-test).

SLEEP ARCHITECTURE

EEG and EMG data were scored for duration of Wake, REM sleep,
light sleep, and deep sleep. The first 4h of Resting and Active
periods were evaluated before spatial water maze training, and
again after restraint stress. As in prior work, control aged sub-
jects showed less active period wake and less resting period deep
sleep than young (Figure 2A). Restrained young animals showed
significantly more wakefulness, and less REM and deep sleep
during the inactive period, while aged animals showed only ele-
vated REM sleep (Figure 2B upper). During the post-stress active
period, young rats only showed a significant elevation in deep
sleep (Figure 2B lower). Note that previous work has shown, in
both humans and rodents, that increased active period deep sleep
is related to poor cognition (Reid et al., 2006; Buechel et al., 2011)

BODY TEMPERATURE

Body temperature is well understood to be diurnally regulated
(Adan et al., 2012; Menaker et al., 2013) as well as responsive
to stress (stress-induced hyperthermia- SIH) (for review see
Adriaan Bouwknecht et al., 2007). Although not well-defined,
prostaglandin signaling, the same system responsible for the fever
response in illness, may participate in SIH (Oka et al., 2001). In
the present work, body temperature data were acquired through
the surgically implanted telemetry devices and used to evaluate

potential age-related differences in diurnal regulation and SIH.
Aged and young subjects are clearly in sync with light cues prior to
spatial water maze training (Figure 3A- the average of three 24 h
periods of days of baseline recording), suggesting similar diurnal
regulation in young and aged subjects.

To investigate SIH, we measured body temperature in response
to both spatial water maze training and restraint (Figures 3B-D).
Clearly, young animals show elevated resting period body tem-
peratures in response to spatial water maze training (Figure 3C-
average of 3 days training), although lights on/lights off responses
remain synced. Aged animals’ body temperatures during water
maze training are similar to their control levels. Finally, young
animals show an exacerbated temperature elevation (Figure 3C)
following restraint, while aged animals’ body temperature
appears relatively unresponsive to restraint (Figure 3D).

HIPPOCAMPAL ELECTROPHYSIOLOGY

Animals were killed the day following restraint and hippocampal
slices were prepared for extracellular synaptic recordings.
Input/output (I/O) experiments assessed the relationship
between synaptic response (output) and stimulus (input)
(Figure 4A). Aged control animals showed a significantly weak-
ened input/output relationship, as has been seen in prior studies
(Barnes and McNaughton, 1980; Landfield et al., 1986). This
weakening appeared, at least in part, recovered in stressed aged
subjects. We also tested for presynaptic calcium perturbations
using the PP facilitation (Figure4B) protocol. As in previous
studies (Landfield et al., 1978a; Wu and Saggau, 1994), no
age-related changes were detected. Further, no change was seen
in either of these measures with stress exposure.
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baseline temperature measures show no difference between young and
aged subjects. (time p < 0.001, age n.s., interaction n.s.; two way repeated
measures ANOVA). (B) During water maze training, young subjects show
extended hyperthermia in the resting period after water maze exposure.
(time p < 0.001, age p < 0.005, interaction p < 0.001; two way repeated
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measures ANOVA; *p < 0.05 for young vs. aged at time x). (C) Young
subjects post-stress show elevated temperature. (time p < 0.001, stress

p = 0.01, interaction n.s.; two way repeated measures ANOVA; *p < 0.05 for
control vs. stressed at time x). (D) Aged subjects show no statistically
significant post-stress hyperthermia. (time p < 0.001, stress n.s., interaction
n.s.; two way repeated measures ANOVA).
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FIGURE 4 | Electrophysiology. (A) EPSP slope plotted as a function of
stimulus voltage for each age and restraint condition. For statistical testing,
stimulus voltage was categorized (i.e., voltage steps 1-10). By two way
repeated measures ANOVA, stimulus significantly influenced slope

(p < 0.001), while there was no significant group effect. However,
interaction was significant (p < 0.05). Post hoc pairwise results (Fisher's
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LSD; *p < 0.05, *p < 0.01, ***p < 0.001) contrast young control and aged
control and reveal significant deflection of aged control EPSP slope
especially at steps 7-10. (B) Paired pulse facilitation plotted as a function
of delay for each age and restraint condition. There was a significant effect
of delay (p < 0.001) but not group or interaction (two way repeated
measures ANOVA).

BLOOD CORTICOSTERONE (CORT)

Corticosterone radio-immunoassays were performed on trunk
blood that was collected at decapitation (during active period,
21h following restraint). However, all animals were transported
on the procedure day, and were killed by CO2 anesthesia, and
both procedures are known to elevate CORT (Vahl et al., 2005).
Despite this, young animals that had been restrained showed
much higher blood CORT (Figure 5), while aged subjects showed
a blunted response. Future studies monitoring CORT levels
throughout the stress exposure paradigm may help to discern
whether this phenomenon might represent “adrenal exhaustion”
in the aged subjects.

HIPPOCAMPAL GENE EXPRESSION
Hippocampal mRNA was tested for aging and stress changes
against an “aging” panel of 171 genes found to change signifi-
cantly with age in at least two of three published hippocampal
aging microarray studies in male F344 rats (see Methods). As
predicted, far more genes are significant than could be rea-
sonably explained by multiple testing error (115 found vs. 9
expected with 171 tests at & = 0.05) and are primarily centered
on aging (Figure 6A). Additionally, nearly all significant genes
in the present study also agreed in direction of change with
prior work on aging (Figure 6B). Even non-significant genes
showed >80% agreement in direction of change with prior aging
studies (p < 0.001, binomial test). Genes altered with age were
largely associated with results as reported in prior work, including
down-regulated neuronal and synaptic markers, and up-regulated
immune and inflammatory signaling. All 171 genes in the aging
panel are shown in Figure 6C (for genes previously defined as up-
regulated with age) and 6D (for genes previously defined as down-
regulated), and color-coded with their results in the present study
(complete descriptions are available in Supplemental Table 1).

To better depict stress’ influence on the aging tran-
scriptional profile, we performed pairwise contrast analyses
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FIGURE 5 | Corticosterone levels. CORT measures for young and aged
rats are plotted for control and stress exposure. Both stressed groups show
an increase in CORT. Two way ANOVA reveals a significant main effect of
Age (p = 0.01) and Stress (p < 0.001), and no significant interaction. Post
hoc Fisher’s LSD pairwise comparisons (*p < 0.05) show a significant
contrast between control and stress CORT levels in young but not aged
animals, as well as significantly elevated CORT levels in young stressed vs.
aged stressed animals.

(Figure 7A- Inset Venn). A large cohort of genes (43) signifi-
cantly changed with age regardless of stress status, but relatively
few genes (8) changed with age in the stress-only condition. In
contrast, a large group of genes (42) changed with age in con-
trol, but not stressed, subjects (listed in 7A). Taken together, these
data suggest that young and aged subjects’ transcriptional profiles
become more similar to one another under stress conditions.
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FIGURE 6 | Panel of aging genes. (A) Venn diagram. Of 171 established direction of change for aging-sensitive genes. (C) Genes down-regulated in
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significant main effects of aging or stress, or interaction p < 0.05). (B) down; Red, Up, Shading; Dark, age significant; light, age non-significant;
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We plotted the “young control to young stress” effect size on
the x axis against the “aged control to aged stress” effect size on
the y axis for these 42 “stress-blunted” aging genes (Figure 7B).
The majority (33/42 = 79%) showed oppositional regulation
in young vs. aged subjects. Exclusively up-regulated genes (red
symbols in lower right quadrant of Figure 7B) show increased
expression in young that have been exposed to stress (stress shift-
ing gene expression in an aging-like direction) and decreased
expression in aged that have been exposed to stress (stress shifting
gene expression in a young-like direction), effectively constrict-
ing the magnitude of aging’s influence on the expression of these
genes. A similar, albeit less pronounced, phenomenon is seen for
down-regulated genes. Because the magnitude of these effects are

not significant for individual genes and seem more meaningful
as an aggregate, we reserve speculation on these changes for the
Discussion.

DISCUSSION

Despite clinical data showing both an increased incidence of, and
more deleterious response to, chronic psychosocial stress with
age in humans, surprisingly little basic research has investigated
psychosocial stress’ potential negative influences on sleep and
cognition in aged subjects. Here, we determined whether age
was a factor in acute psychosocial stress response across multiple
measures. In our hands, aged and young animals showed equiva-
lent discomfort during restraint (vocalizations and struggles- see
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FIGURE 7 | Stress influence on control-only aging-significant genes. (A)
Table of control-only significant genes separated by directional influence of
stress within young and within aged subjects. (A-inset): Venn diagram of
pairwise contrast results- a majority of aging-significant genes were
significant in both control and stressed groups. However relatively few genes
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Results, restraint stress). However, post-stress decline in water
maze performance (Figure 1C), deep sleep loss/increased wake
(Figure 2B), elevated CORT (Figure5), and increased resting
period body temperature (Figure 3C) all point to young subjects
being more responsive than aged to that acute stress event. Young
subjects also showed a hyperthermic response to water maze (also
considered a stressor, Figure 3B) prior to restraint, while aged
animals did not. Thus, our results point to decreased cognitive,
sleep, thermal, and blood glucocorticoid secretion responses to
acute restraint or water maze exposure in aged subjects. Molecular
analysis revealed strong agreement with prior studies of age-
related changes in the hippocampus, and a more complex inter-
play of this age-sensitive subset of genes with stress (please see
Discussion below). These data may serve as a baseline for the con-
struction of an understanding of the potentially more devastating
influence of chronic psychosocial stress with age.

RESTRAINT MODEL OF PSYCHOSOCIAL STRESS

Psychosocial stressors have been implicated in a variety of dis-
orders in humans, from diabetes to depression (for review see
Kajantie and Phillips, 2006). With age, the likelihood of expe-
riencing a psychosocial stressor increases, and some common
causes include the death of a loved one, loss of job through
retirement, and social isolation due to care facility relocation.
Psychosocial stress is operationally defined as stress induced by
non-nociceptive stimuli. In rats, one accepted model is restraint,
but others include abrupt and unpredictable light/sound/cage
mate changes. We chose restraint as our stressor based on exten-
sive prior literature (reviewed in Pawlyk et al., 2008) showing
its effectiveness at activating the HPA axis in this animal model.
Young and aged subjects showed similar struggle/vocalization
responses to restraint although further studies of blood CORT
levels during the restraint period may help to reveal whether

restraint elicited a similar hormonal profiles in young and aged
subjects during the stressor.

WATER MAZE
We trained animals on the visual cue task, and then surgically
implanted them. After 2 weeks recovery and baseline EEG/EMG
recording, animals were trained on the spatial water maze task.
Aging deficits in water maze performance, as seen in multiple
studies (Gallagher et al., 1993; Tombaugh et al., 2002; Blalock
etal., 2003; Rowe et al., 2007; Bizon et al., 2009; Mawhinney et al.,
2011; Vanguilder et al., 2012; Speisman et al., 2013) were clearly
present here, particularly during early training sessions. Despite
the 2-week intervening period between visual and spatial ver-
sions of the water maze, both young and aged animals appeared
to remember platform location during the spatial task based on
prior visual cue experience (Figure 1A- 3rd day vs. Figure 1B- 1st
day). During the visual cue task, the spatial cues later destined
to be used in the spatial task were already mounted around the
water maze test area. Therefore, animals could have acquired spa-
tial mapping data during the visual cue task. If so, then this may
explain why young animals were performing at a high level even at
the beginning of spatially cued training (Figure 1B). Future stud-
ies in which the spatial cues are removed during visual testing may
help to evaluate the influence of cue pre-exposure to spatial task
performance. If this interpretation is correct, then it would also
follow that the young appear to be encoding spatial cues more
effectively than aged. That said, despite the apparently stronger
performance of young animals, it was the young spatial perfor-
mance, and not aged, that appeared most disrupted by restraint
(Figure 1C).

Aged and young training values were statistically indistin-
guishable by the third day of spatial training (Figures 1B1,B2),
giving us a similar baseline for comparison of stress effects on
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the subsequent probe trial task. As a consequence, young ani-
mals, who reached that performance criterion more rapidly than
aged, likely were “over trained” (i.e., they were at a performance
plateau longer than the aged subjects). Thus, the negative influ-
ence of stress on water maze performance in young animals may
be underestimated. In support of our working hypothesis that
age acts as a stressor occluding the influence of subsequent stres-
sors, young, but not aged animals, suffered a deficit in water maze
performance post stress (Figure 1C). While this negative effect in
young seems to point to an advantage of aging, we must consider
that responding negatively to a stressor may be appropriate, and
may be functionally necessary for longer-term hormesis and/or
adaptive benefits that are potentially lost in non-responding older
animals.

SLEEP ARCHITECTURE

Consistent with prior studies, aged animals showed less resting
period deep sleep with age (Figure2A). Further, young ani-
mals showed an aging-like shift in sleep architecture with stress
exposure, increasing resting period wake, and losing REM and
deep sleep. In human studies, increased wake/decreased sleep
in response to stress are associated with poor coping strategies
(Cespuglio et al., 1995; Morin et al., 2003). Further, both rest-
ing period REM and deep sleep are associated with improved
memory and hippocampal function (Siegel, 2001; Kim et al.,
2005; Ellenbogen et al., 2006; Vyazovskiy et al., 2008; Genzel et al.,
2009; Born, 2010; Aleisa et al., 2011; Pace-Schott and Spencer,
2011; Zagaar et al., 2012). The loss of both REM and deep sleep
with stress in young may be particularly disruptive to mem-
ory formation, while the increase in aged subjects’ REM sleep
(REM rebound) has been associated with a healthy stress response
(Cespuglio et al., 1995; Gonzalez et al., 1995).

TEMPERATURE AND ELECTROPHYSIOLOGICAL RESPONSES TO STRESS
Body temperature measurements were taken to evaluate
both diurnal zeitgeiber response, as well as to assess stress-
induced hyperthermic response (Oka et al., 2001). Aged and
young animals both show appropriate responses to light cues
(Figure 3A), but the young, rather than the aged, showed a sig-
nificant stress-hyperthermia after restraint (Figures 3C,D) that
may be associated with their increased time awake. Surprisingly,
a hyperthermic response was also present in young but not
aged animals during water maze training prior to restraint
stress (Figure 3B), highlighting aged subjects’ blunted response
to stressful events. The young animal hyperthermic response
to water maze could be in response to temperature difference
(water temperature = 26°C vs. rat body temperature = 36.8°C),
suggesting that age-related acute stress blunting spans more stress
modalities than just psychosocial.

Chronic stress’ and stress hormones’ influence on hippocam-
pal structure and electrophysiology have been characterized (Joels
et al., 1997; Conrad, 2010) although acute psychosocial stress’
influence in aging hippocampus has been less well-studied. Here
(Figure 4), aged animals are no different from their control coun-
terparts in PP measures (Figures 4B,C), in agreement with prior
work on stress hormone effects (Landfield et al., 1978a; Wu and
Saggau, 1994). However, restraint significantly enhanced aged

but not young input sensitivity (Figure 4A). Like increased REM
sleep, it is intriguing to speculate that this may represent a bene-
ficial response (Barnes et al., 1997; Thibault et al., 2001) that may
provide compensation to aged subjects.

CORTICOSTERONE MEASURES
Aged subjects show a significantly smaller CORT response to
stress than young (Figure 5). This seems to contradict the pre-
vailing theory that CORT increases with age in both humans
and rodents (Landfield et al., 1978a, 1986; Van Cauter et al.,
1996; Porter and Landfield, 1998). However, these results are not
unprecedented (for review see, Segar et al., 2009). Measures of
the Fischer 344 rat diurnal rhythm report blood CORT high-
est early in the active period (200-300 ng/ml) and lowest early
in the resting period (<100 ng/ml) (Dhabhar et al., 1993; Stohr
etal., 2000). Our samples were taken approximately 4 h after peak
CORT, putting our control results within acceptable ranges.
While the aging HPA axis is considered hyper-active (Meaney
et al., 1992; Bizon et al., 2001; Herman et al., 2001; McEwen,
2008; Lupien et al., 2009), central components like excitatory
amino acid level, corticotropin-releasing hormone, glucocorti-
coid receptor level, and CNS localized amplification of glucocorti-
coid action likely play a role (Lowy et al., 1995; Mabry et al., 1995;
Herman et al., 2001; McEwen, 2001; Meyza et al., 2007; Yau and
Seckl, 2012). As opposed to exaggerated glucocorticoid responses
to non-psychosocial stressors (Sapolsky et al., 1986a) aged ani-
mals appear to have either the same or a blunted corticosterone
or nerve growth factor response to psychosocial stressors like
restraint (Stewart et al., 1988; Scaccianoce et al., 2000; Herman
et al., 2001; Shoji and Mizoguchi, 2010; Garrido et al., 2012).
Regarding diurnal variation in corticosterone, an elevated diurnal
trough and either no change or a blunted diurnal peak in gluco-
corticoid secretion is also seen with aging (Sonntag et al., 1987;
Goya et al., 1989; Carnes et al., 1994; Rowe et al., 1997; Gartside
etal., 2003), suggesting a flattened diurnal rhythm.

GENE EXPRESSION

To get a closer look at molecular changes that might be at play,
we investigated gene expression for 171 “aging panel” genes
(Figure 6) with established age-related changes based on prior
work (Blalock et al., 2003; Rowe et al., 2007; Kadish et al., 2009).
The 101 up-regulated genes are associated with immune and
inflammatory signaling while the 70 down-regulated genes have
established roles in neuronal function. Here we discuss conse-
quences of shifts in the expression of groups of genes rather than
providing conjecture on the potential functional implication of
individual gene expression changes. Thus, the molecular panel
was used to determine (A) if the molecular profile of aging is iden-
tified (positive control), (B) whether this aging panel is sensitive
to stress, and (C) if so, did stress modify young, aged, or both
transcriptional profiles?

Clearly, we reliably detected the aging profile, with 93% of the
genes showing directional agreement with prior studies. Many of
those genes were significant with age regardless of stress status
(Figure 7A inset). However stress itself appeared to have almost
no influence on the transcriptional profile when evaluated from
a conventional statistical perspective. That said, it is intriguing to
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note that a large cohort of genes were significant with age in the
control, but not stress condition (42 genes).

This suggests that stress’s effect on aging-sensitive genes is to
constrict the influence of aging on these transcripts. If so, this
could happen in several ways. For example, first, stress exposure
could increase variability in gene expression, effectively reduc-
ing statistical discovery power among stressed subjects. Second,
the transcriptional response could be CORT-driven (or driven by
some CORT-associated change). Here a weaker CORT secretory
response in aged (Figure 5), would lead to weaker CORT-driven
gene expression in aged. Third, stress could selectively move the
gene expression of young subjects toward aged values, or vice
versa. And fourth, stress could regulate aging and young gene
expression in an oppositional manner- driving young and aged
gene expression values toward one another. The latter should be
the least likely and would imply that stress/stress hormones have
different effects in young and aged.

Because the following text focuses on direction of change and
gene expression magnitudes that are, on an individual gene by
gene basis, statistically non-significant, we feel it prudent to label
this section as conjecture and restrict it to the Discussion. With
that caveat, we found it surprising that the following appears to
be the case. Among the 42 “control-only” genes, expression coef-
ficients of variation were highly similar across groups (control
11.7% =% 1.1%; stressed 12.0% = 0.9%). Further, the major-
ity of these “control-only” aging genes (Figure 7B) do not show
weaker responses in aged subjects. Instead, 79% show opposi-
tional stress regulation with age. That is, if up-regulated by age,
then stress both reduced expression in aged subjects and increased
expression in young subjects (Figure 7B). Further, 91% of these
“oppositional” genes were also identified as “oppositional” in
a prior study identifying the age and glucocorticoid-sensitive
transcriptional profile (Chen et al., 2013). Based on these obser-
vations, of the four possibilities laid out in the prior paragraph,
our results support the fourth option, an apparent inversion of
HPA-axis activity’s action on a subset of aging-sensitive genes.
This may parallel age-related shifts in the action of other steroid
hormones such as estrogen (Sohrabji and Bake, 2006; Selvamani
and Sohrabji, 2010; Rettberg et al., 2013; Singh et al., 2013).

SUMMARY AND CONCLUSIONS

In this study, rats showed characteristic aging changes seen across
multiple mammalian aging systems, including worsened cogni-
tion (Gallagher et al., 1993; Salthouse, 1996; Joseph et al., 1999;
Bickford et al., 2000; Erickson and Barnes, 2003; Tombaugh
et al.,, 2005; Foster and Kumar, 2007; Gunn-Moore et al., 2007;
Cotman and Head, 2008), disrupted deep sleep (Stone, 1989; Van
Cauter et al., 2000; Cajochen et al., 2006; Mackiewicz et al., 2006;
Espiritu, 2008; Tasali et al., 2008; Ancoli-Israel, 2009; Monjan,
2010), blunted synaptic sensitivity (Barnes et al., 2000; Thibault
et al., 2001), and shifted hippocampal gene expression (Cotman
and Berchtold, 2002; Blalock et al., 2003; Toescu et al., 2004;
Galvin and Ginsberg, 2005; Rowe et al., 2007; Kadish et al.,
2009; Burger, 2010). Similarly, young animals exhibited typical
psychosocial stress responses, including disrupted sleep architec-
ture (Marinesco et al., 1999; Van Reeth et al., 2000), worsened
cognition (Stillman et al., 1998; Sandi et al., 2005; Nicholas et al.,

2006; Kim et al., 2007; Park et al., 2008), stress-induced hyper-
thermia (Oka et al., 2001), and increased blood glucocorticoid
levels (Sapolsky et al., 2000; McEwen, 2007). Further, Morris
water maze and sleep architecture changes in young stressed ani-
mals recapitulate, at least in part, changes seen in normal aging.
In conjunction with extensive prior work (Kerr et al., 1989, 1992;
Bhatnagar et al., 1997; Oitzl et al., 2010) on exogenous gluco-
corticoid exposure in young animals, or long-term age-related
consequences of pre- or perinatal stress exposure (Meaney et al.,
1991; McEwen, 2002; Lupien et al., 2009; Eiland and McEwen,
2012), this work is consistent with one limb of the stress/allostatic
load/glucocorticoid hypotheses of brain aging, that young sub-
jects exposed to stress exhibit aspects of an aging-like phenotype.

However, if stress/glucocorticoid exposure leads to aging-like
changes in young subjects’ cognition and sleep, what happens
to aged subjects exposed to the same acute stress? On the one
hand, an acutely hyperreactive HPA axis might result in an exag-
gerated stress response (Kudielka et al., 2004). On the other, a
chronically hyper-secreting HPA axis in aged, particularly ele-
vated at the diurnal trough, may result in a blunted acute stress
response. In fact, there is data to support this latter interpre-
tation. Studies in humans and animal models have shown that
chronic stressors such as asthma, depression and overcrowding all
blunt HPA axis responses to acute psychosocial stressors (Buske-
Kirschbaum et al., 2003; Gadek-Michalska and Bugajski, 2003;
Tomiyama et al., 2011; Booij et al., 2013). Thus, aging/aging-
related changes could be considered chronic stressors that blunt
acute stress responses.

In this interpretation, age-related changes in central compo-
nents like corticotropin releasing hormone (Segar et al., 2009) and
localized glucocorticoid signaling (Chapman and Seckl, 2008),
along with a flattened diurnal blood glucocorticoid oscillation
(Sonntag et al., 1987; Goya et al., 1989; Carnes et al., 1994;
Rowe et al., 1997; Gartside et al., 2003) may help to explain the
reduced response of aged subjects to acute psychosocial stress.
Alternatively, the blunted response could be due to adrenal fatigue
(Van Den Eede et al., 2007; Nater et al., 2008; Kumari et al., 2009).
In humans, adrenal fatigue is associated with chronic high stress
environments like war (post-traumatic stress disorder) or con-
stant pain (fibromyalgia, cancer), (Fries et al., 2005; Mease, 2005;
Wu et al., 2012). However, here young subjects showed a hyper-
thermic stress response prior to restraint while aged animals did
not, CORT levels in controls were normal or even high, while low
levels of cortisol are found in PTSD (Heim et al., 2000). Thus,
hypo-responsiveness seems a more parsimonious explanation of
the data.

Downstream consequences of this blunted acute response
might include failed adaptation to repeated stress as seen in aged
animals (Spencer and McEwen, 1997; McEwen, 1998). Further,
reduced efficacy of hormesis-driven anti-aging manipulations
(Masoro, 2000; Mattson, 2008) in late life, such as environmental
enrichment, exercise and caloric restriction (Masoro, 2005; Pang
and Hannan, 2013; Voss et al., 2013) and possibly dietary manip-
ulation (Gemma et al., 2010), all may at least in part be explained
by age-related stress hypo-responsiveness. Thus, aged animals
may resist the cognition-worsening effects of acute psychosocial
stress at the expense of their physiological capacity to adapt
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(McEwen, 2001, 2008). Despite over-activity of the HPA-axis hav-
ing a bad reputation, and clear evidence of negative consequences,
its hypo-response to acute psychosocial stress with age may also
have long-term deleterious consequences.

CONCLUSION

For the present work, then, aged control animals show charac-
teristic changes in sleep architecture and cognition. Compared to
aged, young animals show larger stress responses in water maze,
sleep architecture, hyperthermia, and glucocorticoid secretion.
Further, our assessment of REM sleep, transcriptional response
and hippocampal input/output suggests that more than just being
hypo-responsive to stress, on some measures aged subjects may
show an opposite response, manifesting a more youthful pro-
file with stress exposure. The most parsimonious conclusion is
that aged animals are at least hypo-responsive to acute psychoso-
cial stress. Because prior work demonstrates elevated HPA axis
activity with age, we favor the interpretation that aging acts as
a stressor whose presence occludes the influence of subsequent
acute stressors. While this may be acutely beneficial for aged
subjects, it may be deleterious in the long run, occluding stress
adaptation and reducing the efficacy of “beneficial” stressors
(eustress) such as caloric restriction, exercise, and environmental
enrichment.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
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