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Zinc is an essential component of physiological brain function. Vesicular zinc is released
from glutamatergic (zincergic) neuron terminals and serves as a signal factor (Zn2+ signal)
in both the intracellular (cytosol) compartment and the extracellular compartment. Synaptic
Zn2+ signaling is dynamically linked to neurotransmission and is involved in processes of
synaptic plasticity such as long-term potentiation and cognitive activity. On the other hand,
the activity of the hypothalamic–pituitary–adrenal (HPA) axis, i.e., glucocorticoid secretion,
which can potentiate glutamatergic neuron activity, is linked to cognitive function. HPA
axis activity modifies synaptic Zn2+ dynamics at zincergic synapses. An increase in
HPA axis activity, which occurs after exposure to stress, may induce excess intracellular
Zn2+ signaling in the hippocampus, followed by hippocampus-dependent memory deficit.
Excessive excitation of zincergic neurons in the hippocampus can contribute to cognitive
decline under stressful and/or pathological conditions. This paper provides an overview of
the “Hypothesis and Theory” of Zn2+-mediated modification of cognitive activity.
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INTRODUCTION
Over 300 proteins require zinc to carry out their functions in
microorganisms, plants, and animals. Zinc powerfully influences
cell division and differentiation (Vallee and Falchuk, 1993; Maret
and Sandstead, 2008; Prasad, 2008). Zinc is also essential for the
growth and functioning of the brain. Zinc transport from the
plasma to the brain’s extracellular fluid and cerebrospinal fluid is
strictly regulated by the brain-barrier system, i.e., the blood–brain
and blood-CSF barrier. The brain barrier system maintains zinc
homeostasis in the brain (Takeda, 2000, 2001). Zinc homeostasis is
critical for brain function (Capasso et al., 2005; Mocchegiani et al.,
2005) and is spatiotemporally altered in the process of neurological
diseases (Barnham and Bush, 2008).

Zinc is relatively concentrated in the hippocampus and amyg-
dala (Takeda et al., 1995). Both regions are enriched with his-
tochemically reactive zinc, as revealed by Timm’s sulfide-silver
staining method (Frederickson, 1989; Frederickson and Dan-
scher, 1990). Histochemically reactive zinc is found predominantly
in the presynaptic vesicles and serves as a signal factor (Zn2+
signal) in both the cytosolic and extracellular compartments.
Zn2+ is released with glutamate in a calcium-dependent and
impulse-dependent manner from glutamatergic (zincergic) neu-
ron terminals (Figure 1). Zn2+ released from these terminals
modulates the activity of several important receptors, includ-
ing the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)/kainate receptor, N-methyl-D-aspartate (NMDA) recep-
tors, and γ -amino butyric acid (GABA) receptors in the extracellu-
lar compartment (Smart et al., 1994; Nakashima and Dyck, 2009),
and is taken up into post-synaptic neurons to serve as an intra-
cellular signal factor. Glutamatergic (zincergic) circuits play a key
role in cognitive map building structures such as the hippocampus
(Martinez-Guijarro et al., 1991; Nacher et al., 2000). It has been

estimated that approximately 20% of total brain zinc is histo-
chemically reactive, based on the finding that the removal of zinc
transporter-3 (ZnT3) protein, which is responsible for the move-
ment of zinc from the cytoplasm into synaptic vesicles (Palmiter
et al., 1996), results in a 20% reduction of the total amount of zinc
in the brain (Cole et al., 1999).

It is well known that the hippocampus and amygdala are
involved in cognitive and emotional behavior. Synaptic plasticity
such as long-term potentiation (LTP) is believed to be a key cellular
mechanism involved in learning and memory and has been widely
studied in relation to glutamatergic synapses in the brain, espe-
cially in the hippocampus (Bliss and Collingridge, 2013). When
information is processed in memory, glutamatergic neurons form
a neural circuit in the hippocampus and the amygdala. Further-
more, it has been reported that plastic changes in hippocampal
synapses occur activity-dependently during the performance of
associative learning tasks (Gruart et al., 2006; Clarke et al., 2010).

On the other hand, the activity of the hypothalamic–pituitary–
adrenal (HPA) axis, i.e., glucocorticoid secretion, is linked to
cognitive and emotional functions and can potentiate glutamater-
gic neuron activity (Sandi, 2011). There is some evidence that
the modification of synaptic Zn2+ signaling by HPA axis activ-
ity, which is enhanced by stress and aging, is linked to cognitive
and emotional behavior, and that abnormal modification may
induce cognitive decline (Takeda and Tamano, 2009, 2010, 2012).
It is well known that abnormal Zn2+ influx into post-synaptic
neurons, which is induced by abnormal glutamatergic (zincer-
gic) neuron activity, induces neuronal death and is involved in
neurological disorders such as stroke/ischemia and temporal lobe
epilepsy (Frederickson et al., 2005; Sensi et al., 2011; Takeda, 2011a;
Weiss, 2011). Therefore, the homeostasis of synaptic Zn2+ signal-
ing is critical in both functional and pathological aspects (Takeda,
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FIGURE 1 | Involvement of synaptic Zn2+ dynamics in cognitive

activity. An increase in intracellular Zn2+ concentration, [Zn2+]i, which is
induced by an influx of extracellular Zn2+ at zincergic synapses in the
hippocampus, is involved in cognitive activity. Presynaptic glucocorticoid
signaling, a non-genomic action, and post-synaptic glucocorticoid signaling,
a genomic action, modify the degree of increase in intracellular Zn2+. It is

also possible that catecholamines modify the degree through the activity of
the β-adrenergic system. The degree of increase in intracellular Zn2+ is
linked to cognitive activity and excess intracellular Zn2+ signaling, which
can be induced by stress, is involved in cognitive decline. The excess might
affect intracellular Ca2+ signaling, which plays a key role for synaptic
plasticity.

2011b; Takeda et al., 2013). On the basis of recent evidence that
excessive excitation of zincergic neurons in the hippocampus can
contribute to cognitive decline under stressful and/or pathological
conditions (Takeda et al., 2009, 2011, 2012), this paper provides
an overview of the “Hypothesis and Theory” of Zn2+-mediated
modification of cognitive activity.

SYNAPTIC Zn2+ HOMEOSTASIS
Total zinc concentration in the adult brain reaches around 200 μM
(Markesbery et al., 1984). Extracellular zinc concentration in the
adult brain is estimated to be less than 1 μM (Weiss et al., 2000). If
zinc concentration in the brain’s extracellular fluid is equal to that
in cerebrospinal fluid (Hershey et al., 1983), it is around 150 nM –
approximately one thousandth of total brain zinc concentration.
In zincergic synapses, Zn2+ concentration in the synaptic cleft
is estimated to be higher than that in the brain’s (extrasynaptic)
extracellular fluid, because under hippocampal-slice-experiment
conditions the regions where zincergic synapses are found are
intensely stained by ZnAF-2, a membrane-impermeable zinc

indicator (Minami et al., 2006). The synaptic cleft is surrounded
with the processes of astrocytes, which contribute to maintaining
a steady concentration of zinc and neurotransmitters in the cleft.
Interestingly, Zn2+ level in the brain’s extracellular fluid, which is
estimated to be approximately 20 nM (Frederickson et al., 2006),
is higher than that in the plasma (<1 nM; Magneson et al., 1987).
In the brain’s extracellular fluid, the high ratio of Zn2+ concen-
tration to total zinc concentration appears to be associated with
the synaptic Zn2+ dynamics of the brain. There is some evidence
that extracellular Zn2+ serves as a pool for the zinc in the synap-
tic vesicle and is involved in synaptic Zn2+ homeostasis (Takeda
et al., 2006), although the chemical form of this vesicular zinc is
unknown.

Basal Zn2+ concentration is extremely low in the intracel-
lular (cytosol) compartment (<1 nM; Sensi et al., 1997; Colvin
et al., 2008). ZnT proteins such as ZnT1, ZnT3, and ZnT10, and
Zrt-Irt-like proteins (ZIP) such as ZIP4 and ZIP6 are involved
in the control of Zn2+ levels in the cytosolic compartment,
especially under static (basal) conditions (Emmetsberger et al.,
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2010). Some of these transporters transport cytosolic Zn2+ into
a variety of subcellular organelles, including mitochondria, lyso-
somes, endosomes, and the Golgi apparatus, probably to maintain
static Zn2+ levels in the cytosolic compartment (Sensi et al.,
2003; Danscher and Stoltenberg, 2005; Colvin et al., 2006). On
the other hand, it is possible that Zn2+ release from subcellu-
lar organelles, which might be induced by synaptic glutamate
signaling, is involved in Zn2+ signaling (Stork and Li, 2010).
Zn2+ levels other than vesicular zinc serving as Zn2+ are esti-
mated to be less than 5% of the total amount of Zn2+ in the
hippocampus and cerebral cortex (Lee et al., 2011). ZnT1 is a
major Zn2+ transporter in the plasma membrane and may be
involved in cytosolic Zn2+ homeostasis in neurons by transport-
ing Zn2+ from the somata to the extracellular space (Sekler et al.,
2002). It has been reported that ZnT1 prevents excessive accu-
mulation of Zn2+ in the cytosolic compartment (Nolte et al.,
2004), resulting in the protection of neurons from Zn2+ toxic-
ity in neurological diseases such as transient forebrain ischemia
(Aguilar-Alonso et al., 2008). Tissue plasminogen activator, a
secreted serine protease, is excitotoxic and increases lysosomal
sequestration of increased Zn2+ in the cytosolic compartment
through interaction with ZIP4, which may also contribute to
the protection of neurons from Zn2+ toxicity (Emmetsberger
et al., 2010). The spatiotemporal control of Zn2+ signaling via
ZIP and ZnT maintains a steady-state environment in both the
extracellular and cytosolic compartments (Fukada and Kambe,
2011).

FUNCTIONAL AND NEUROTOXIC Zn2+ SIGNALING
Zn2+ concentration is increased in the synaptic cleft during the
excitation of zincergic synapses, followed by an increase in the
cytosol (intracellular compartment; Figure 1). Released Zn2+
is quickly taken up into presynaptic and post-synaptic neurons
and astrocytes. Calcium channels such as calcium-permeable
AMPA/kainate receptors are involved in Zn2+ influx during neu-
ronal excitation (Weiss et al., 2000; Jia et al., 2002; Takeda et al.,
2007a). The increase in the extracellular concentration of Zn2+
is dependent on the frequency of depolarizing stimulation (Ueno
et al., 2002). Therefore, the increase in intracellular concentration
of Zn2+ serving as a signal factor is closely correlated to zincergic
neuron excitation (Takeda et al., 2013).

Glutamate accumulates in the extracellular compartment due
to excessive excitation of glutamatergic (zincergic) neurons. Exces-
sive activation of glutamate receptors caused by excess extracel-
lular glutamate leads to a number of deleterious consequences,
including impairment of calcium buffering, generation of free
radicals, activation of mitochondrial permeability transition, and
secondary excitotoxicity (Danbolt, 2001; Dong et al., 2009). Glu-
tamate excitotoxicity, a final common pathway for neuronal
death, is observed in numerous pathological processes such as
stroke/ischemia, temporal lobe epilepsy, Alzheimer’s disease, and
amyotrophic lateral sclerosis. An excess of extracellular Zn2+,
which is induced under glutamate excototoxicity, is harmful;
excessive Zn2+ influx into post-synaptic neurons is involved
in neurodegeneration under pathological conditions. Calcium-
permeable AMPA receptors may play a key role in this Zn2+ influx
(Liu et al., 2004; Noh et al., 2005; Weiss, 2011).

Zn2+ also plays a neuroprotective role in glutamate-induced
excitotoxicity by activating pre-synaptic ATP-sensitive potassium
channels and by inhibiting GABA transporter 4 (Bancila et al.,
2004; Cohen-Kfir et al., 2005). It is estimated that the neuropro-
tective action of Zn2+ occurs under conditions in which zincergic
neurons are not excessively excited. Zn2+ released from zin-
cergic neuron terminals may also serve as a negative feedback
factor against glutamate release (Minami et al., 2006; Takeda et al.,
2007b). Therefore, the degree of increase in extracellular Zn2+ is
critical in both functional and neurotoxic aspects.

Zn2+ SIGNALING AND COGNITION
Synaptic Zn2+ signaling is involved in processes of synaptic plas-
ticity such as LTP in the hippocampus and amygdala. Enhanced
plasticity in zincergic synapses is associated with cortical modi-
fication after exposure to an enriched environment (Nakashima
and Dyck, 2008). The enhanced plasticity of zincergic synapses in
the hippocampus underlies the acquisition of new motor and cog-
nitive abilities (Delgado-García and Gruart, 2006; Jurado-Parras
et al., 2013). These findings suggest that synaptic Zn2+ signal-
ing is involved in cognitive and emotional behavior through the
modulation of synaptic plasticity such as LTP (Figure 1).

Targeted deletion of the ZnT3 prevents vesicular Zn2+ uptake
(Cole et al., 1999) and ablates Zn2+ release into the extracellular
space by action potentials. There is a correlation between vesic-
ular Zn2+ levels and ZnT3 protein expression (Palmiter et al.,
1996). Zn2+ transport into the synaptic vesicle is ZnT3-dependent
and is important for amassing the large pool of Zn2+ used in
signaling (Lee et al., 2011). It has been reported that Zn2+ sig-
naling is involved in cognitive and emotional behavior even in
ZnT3KO (Adlard et al., 2010; Martel et al., 2010, 2011; Sindreu
et al., 2011). The pool of Zn2+ may be located in other subcel-
lular organelles (Figure 1) and/or zinc-binding proteins such as
metallothionein in ZnT3KO mice. On the other hand, memory
deficit and the changes in emotional (freezing) behavior have
been observed in wild-type animals when acute loss or chela-
tion of synaptic Zn2+ is induced by treatment with zinc chelators
(Takeda et al., 2010a,b). The amount of Zn2+ functioning as a sig-
nal factor seems to be lower in ZnT3KO mice than in wild-type
mice.

Saito et al. (2000) report that age-dependent reduction of Zn2+
levels in the synaptic vesicles of the mossy fibers induced by
low ZnT3 expression causes both glutamatergic excitotoxicity in
hippocampal neurons and the deterioration of learning and mem-
ory in senescence-accelerated mouse prone 10 (SAMP10). There
are also reports of age-dependent reductions in ZnT3 expres-
sion and synaptic Zn2+ levels in the hippocampal mossy fibers
of human amyloid precursor protein-transgenic (Tg2576) mice,
suggesting that extensive modifications of the brain’s Zn2+ pool,
particularly synaptic (vesicular) Zn2+, underlie the neuronal dys-
function characteristic of Alzheimer’s disease (Lee et al., 2012).
Furthermore, there is a significant age-related decline in cor-
tical ZnT3 levels from age 48 to 91 in healthy people (Adlard
et al., 2010) and ZnT3 levels are more markedly decreased in
the cortex in Alzheimer’s disease. It is likely that the increase
in extracellular Zn2+ induced by the physiological excitation of
zincergic neurons requires cognitive activity (Figure 1) and that
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an insufficient increase is involved in the pathophysiology of
Alzheimer’s disease.

On the other hand, Zn2+ released from zincergic neurons is
known to mediate parenchymal and cerebrovascular amyloid for-
mation in Tg2576 mice (Lee et al., 2002; Friedlich et al., 2004;
Stoltenberg et al., 2007). The transsynaptic movement of Zn2+
may be severely compromised in Alzheimer’s disease, both by lack
of ZnT3 expression and by sequestration in amyloid. Adlard et al.
(2010) report that the genetic ablation of ZnT3 may represent
a phenocopy for memory deficits in Alzheimer’s disease. Desh-
pande et al. (2009) postulate that the sequestration of Zn2+ in
oligomeric amyloid-β (Aβ)–Zn complexes may lead to a reduc-
tion in Zn2+ availability at the synapses, resulting in a loss of
the modulatory activity of Zn2+, and leading to the cognitive
decline of Alzheimer’s disease. Such changes in synaptic Zn2+
availability may participate in modifying cognitive activity and
also in cognitive decline (Figure 1; Linkous et al., 2009; Bush,
2013; Bosomworth et al., 2013).

GLUCOCORTICOID SIGNALING, Zn2+ SIGNALING, AND
COGNITION
The hippocampus is enriched with corticosteroid receptors and is
the major target region of corticosteroids (Joëls, 2008). Mineralo-
corticoid receptors and glucocorticoid receptors are colocalized
in CA1 and CA2 pyramidal cells and in dentate gyrus granule
cells. In CA3 pyramidal cells, on the other hand, mineralocor-
ticoid receptors are abundantly expressed, while glucocorticoid
receptors are expressed at much lower levels (Ozawa, 2005).
Mineralocorticoid receptors are extensively occupied with low
levels of corticosterone, and glucocorticoid receptors are partic-
ularly activated after exposure to stress (Joëls et al., 2008; Sandi,
2011).

An increase in serum corticosterone level induces a rapid
increase in hippocampal corticosterone level, in parallel with an
increase in extracellular glutamate level (Venero and Borrell, 1999).
Corticosterone-induced increase in extracellular glutamate levels
in the hippocampus appears to be exerted through the action of
membrane-associated mineralocorticoid receptors and/or gluco-
corticoid receptors, which increase the probability of glutamate
release in synaptic activation (Karst et al., 2005; Musazzi et al.,
2010). The rapid effects of corticosterone on glutamatergic trans-
mission appear to be linked to diverse effects on synaptic plasticity
and memory processes in the hippocampus (Figure 1). An increase
in the probability of glutamate release through the action of cor-
ticosterone leads to increases both in the amount of glutamate
released during learning and in the degree of activation of post-
synaptic glutamate receptors. Corticosterone can contribute to an
increase in the efficacy of glutamatergic transmission by AMPA
receptor insertion at synaptic sites, through both the rapid and
the delayed (genomic) effects. These effects are of advantage to
processes of synaptic plasticity such as LTP and memory acquisi-
tion (Sandi, 2011). Therefore, it is estimated that corticosterone
increases the probability of Zn2+ release from zincergic neuron
terminals through the rapid non-genomic effect in the hippocam-
pus (Figure 1; Takeda et al., 2012). Futhermore, corticosterone
requires intracellular Zn2+ signaling for the genomic effect, pos-
sibly followed by the delayed influx of extracellular Zn2+ through

zinc transport systems such as ZIP (Figure 1). Although the evi-
dence is limited, it is likely that synaptic Zn2+ signaling cooperates
with corticosteroid signaling in learning and memory.

In contrast, glutamate accumulates in the extracellular com-
partment at high levels through a corticosterone-mediated block-
ade of glutamate transporter activity when corticosterone is
abnormally secreted under conditions of severe stress. Abnormal
corticosterone secretion also contributes to abnormal glutamate
release from neuron terminals (Wong et al., 2007; Howland and
Wang, 2008). The extracellular spillover of glutamate impairs
spatial memory retrieval. Furthermore, Wong et al. (2007) demon-
strate that hippocampal long-term depression (LTD) is both
necessary and sufficient to cause acute stress-induced impairment
of spatial memory retrieval. Excess intracellular Zn2+ signaling
induced by corticosterone and/or stress is also involved in the
impairment of hippocampal LTP (Takeda et al., 2009, 2012), pos-
sibly followed by the impairment of learning and memory (Takeda
et al., 2011; Figure 1). In hippocampal CA3, on the other hand,
an increase in intracellular Zn2+ via a zinc ionophore not only
decreases basal Ca2+ level but also suppresses increases in Ca2+
level via metabotropic glutamate receptors (Takeda et al., 2007a).
Such excess intracellular Zn2+ signaling may lead to negative
crosstalk in intracellular Ca2+ signaling, which plays a key role
in LTP and LTD (Figure 1).

A selective increase in the nocturnal levels of corticol has been
observed in aged humans (Landfield and Eldridge, 1994). Fur-
thermore, high levels of cortisol are found in Alzheimer’s disease
as well as in depression. In Alzheimer’s disease patients, cognitive
deficits (such as in memory) and psychological symptoms (such as
anxiety) are associated with an early deregulation of the HPA axis
(Swanwick et al., 1998; Brureau et al., 2013). Therefore, it is pos-
sible that excess intracellular Zn2+ signaling through abnormal
cortisol secretion is involved in cognitive deficits in both normal
aging and neurological diseases such as dementia.

On the other hand, corticotrophin releasing hormone (CRH)
drives the HPA axis and is considered to be the central coordinator
of behavioral, autonomic, and neuroendocrine stress responses.
The stress mediators activated by CRH are organized in the sym-
pathetic nervous system, as well as in the HPA axis (de Kloet, 2008).
Adrenaline, along with norepinephrine, is largely responsible for
the immediate reactions that are felt under conditions of stress.
Responses of adrenaline and norepinephrine, such as an increase
in heart rate, occur more quickly than those of glucocorticoids.
Catecholamines are released from the sympathetic nerve system
and the adrenal glad. It has been reported that the enhanced mem-
ory associated with emotional experiences involves activation of
the β-adrenergic system (Cahill et al., 1994; McEwen and Sapolsky,
1995). β-Adrenergic receptor activation facilitates the induction
of a protein synthesis-dependent late phase in LTP in the hip-
pocampus (Gelinas and Nguyen, 2005). Learning-facilitated LTD
and LTP at mossy fiber-CA3 synapses requires activation of β-
adrenergic receptors (Hagena and Manahan-Vaughan, 2012). The
above evidence suggests that synaptic Zn2+ signaling is modified
by the β-adrenergic system and is involved in cognitive activity
associated with emotional experiences. The relationship between
synaptic Zn2+ signaling and the β-adrenergic system is an issue
which requires further clarification. Stress is a known precipitant
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for metabolic and neurological diseases (Koenig et al., 2011) and
synaptic Zn2+ signaling is likely to be involved in the diverse effects
of stress through the stress mediators activated by CRH.

PERSPECTIVE
Synaptic Zn2+ homeostasis is critical for synaptic function, and
seems to be controlled by two Zn2+ pools, one in the synaptic vesi-
cle and the other in the extracellular compartment. Synaptic Zn2+
signaling is involved in cognitive activity, and both its lack and
its excess are involved in cognitive decline (Figure 1). HPA axis
activity increases with aging, and this increase is superimposed
on neurological diseases such as depression and Alzheimer’s dis-
ease. It is likely that synaptic Zn2+ signaling through the HPA axis
activity is involved in cognitive decline in both normal aging and
dementia, and it is possible that sympathetic nervous system activ-
ity is also involved. However, evidence related to synaptic Zn2+
dynamics is very limited, not only under physiological conditions,
but also under stressful and pathological conditions. The molec-
ular mechanisms of abnormal Zn2+ signaling in cognitive decline
also remain to be clarified.
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