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For more than two decades, there have been extensive studies of experience-based
neural plasticity exploring effective applications of brain plasticity for cognitive and motor
development. Research suggests that human brains continuously undergo structural
reorganization and functional changes in response to stimulations or training. From
a developmental point of view, the assumption of lifespan brain plasticity has been
extended to older adults in terms of the benefits of cognitive training and physical therapy.
To summarize recent developments, first, we introduce the concept of neural plasticity
from a developmental perspective. Secondly, we note that motor learning often refers
to deliberate practice and the resulting performance enhancement and adaptability. We
discuss the close interplay between neural plasticity, motor learning and cognitive aging.
Thirdly, we review research on motor skill acquisition in older adults with, and without,
impairments relative to aging-related cognitive decline. Finally, to enhance future research
and application, we highlight the implications of neural plasticity in skills learning and
cognitive rehabilitation for the aging population.
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INTRODUCTION
Functional decline is evident in cognitive, motor, social,
psychological, physical domains. Older adults often experience
greater anxiety, poorer memory and attention, slower process-
ing speeds; motor control and learning capabilities decreased;
greater behavioral variability is usually observed. These areas of
decline collectively cause neurodegenerative disorders like mild
cognitive impairment (MCI), Alzheimer’s disease (AD), or AD-
related dementia. The compromised functionality reduces the
quality of life and causes great concerns in the geriatric and
gerontological communities. However, functional deterioration is
not inevitable. Behavioral improvements are likely to occur while
having an active lifestyle that is a key to reduce the negative impact
of cognitive-motor aging on daily functions and to enhance the
quality of life. The development of effective diagnostic tools,
better intervention strategies and technologies is of the utmost
importance for geriatric researchers and practitioners (Yan and
Zhou, 2009; Ren et al., 2013).

The gradual age-related decline in neural-behavioral function-
ality considerably impacts adults aged 65 or older (Yan et al., 1998,
2000). It is encouraging, however, that motor, physical and mental
activities often promote brain fitness or health (e.g., the capacity to
learn, improve and meet various cognitive demands) and motor
abilities for coping with daily challenges. Actively engaging in
physical, motor or intellectual exercises, or deliberately receiving
multisensory stimulations, can prevent functional decline and
preserve cognitive functions. In general, cognitive and motor
performance deteriorates considerably as a result of an inactive

lifestyle, biological aging and cognitive impairments (Yan, 1999;
Teri et al., 2003; Yan and Dick, 2006; Liu et al., 2013).

Although the exact role of regular physical and men-
tal exercise for brain fitness is unclear, there is a consensus
that cognitive-motor activities or stimulations facilitate neuro-
protection (Hillman et al., 2008; Taubert et al., 2010). One of
the processes is to strengthen experience-based neural plasticity
through deliberate practice (Rakic, 2002; Trachtenberg et al.,
2002; Colcombe et al., 2004; DeFelipe, 2006). Structural and func-
tional changes (neural reorganizations) of the brain include the
development of new neurons (neurogenesis), the generation of
new glial cells (gliogenesis), strengthening of existing connections
or growth of new synapses (synaptogenesis), and the creation of
new blood vessels in the brain (Buonomano and Merzenich, 1998;
Cotman and Berchtold, 2002; Dong and Greenough, 2004; Ming
and Song, 2005; Voelcker-Rehage and Willimczik, 2006; Ponti
et al., 2008). Brain plasticity is a lifetime developmental process
and continues to play a significant role in older adulthood. Cog-
nitive and motor activities have to be intellectually stimulating
and physically appropriate to bring about maximal benefits to the
aging brain (Colcombe et al., 2003, 2006).

The increasing number of older adults and those who develop
MCI or AD pose great challenges to our society (Brookmeyer
et al., 2007). Effective interventions must be taken to reduce the
impact of functional decline. We summarize recent knowledge of
brain plasticity and highlight the applications of developmental
studies on cognitive training and movement therapy. We discuss
the close relationship between neural plasticity, motor learning
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and cognitive aging. The goal is to integrate empirical results
focusing on motor skills acquisition and the benefits of motor
practice or exercise in older adults.

NEURAL PLASTICITY
Cognitive and motor development plays an essential role in
human brain maturity and a wide variety of daily functions
(Elbert et al., 1995; Barnett et al., 2009). To make better sense of
the close interactions between cognitive and motor skills across
the lifespan, identifying the biological and environmental factors
of human development is of particular interest (Quartz and
Sejnowski, 1997; Diamond, 2000; Johnson, 2003; Ronnlund et al.,
2005). Over the past few decades, researchers have made substan-
tial efforts and progress in understanding the brain mechanisms
of functional changes and structural reorganizations in people
at varying developmental stages. Lifetime cognitive and motor
development is closely related to each other (Samuelson and
Smith, 2000; Yan et al., 2000; Johnston et al., 2001; Salthouse and
Davis, 2006). Essentially, brain plasticity, neural maturation and
cognitive development play an important role in cognitive and
motor learning (Ungerleider et al., 2002; Lacourse et al., 2004;
Wright and Harding, 2004).

Neural plasticity (also known as neuroplasticity, brain plastic-
ity, cortical plasticity, cortical re-mapping) is an inherent char-
acteristic or ability for lifelong skills learning and relearning.
Specifically, neural plasticity refers to the capacity of the central
nervous system (CNS) to alter its existing cortical structures
(anatomy, organization) and functions (physiological mecha-
nisms or processes) in response to experience, learning, training,
or injury (Hubel and Wiesel, 1970; Kolb and Whishaw, 1998;
Wall et al., 2002; Kolb et al., 2003; Ballantyne et al., 2008). When
describing neural structures and functions, the cortical sensory
organizations are usually portrayed as mappings where specific
sensory inputs project to given cortical locations to form sensory-
based neural representations (Buonomano and Merzenich, 1998).
When an individual acquires novel skills or information, the
newly obtained experience will alter the neural maps, networks,
pathways or circuits made up of countless neurons and synapses
(Wall et al., 2002). Neural plasticity is, therefore, a biological
foundation of the learning brain (Taubert et al., 2010).

Experience-dependent changes in the lower neocortical
regions can reshape the activation patterns and the anatomy of
the cerebral cortex (Wall et al., 2002). Sensory input, knowledge
and motor learning activities stimulate cortical changes (Rakic,
2002; Taubert et al., 2010). In skill learning or repeated exposure
to stimulations and experiences, relevant neurons often “fire
together [and] wire together”. The associated neurons of a given
response will be activated simultaneously in response to similar
stimuli in the future. Learning endeavors or experiences modify
the existing cortical structures or mechanisms via neurogene-
sis, gliogenesis, or by changing the strength of inter-neuronal
connections (synaptogenesis) (Buonomano and Merzenich, 1998;
Cotman and Berchtold, 2002; Dong and Greenough, 2004;
Voelcker-Rehage and Willimczik, 2006; Ponti et al., 2008).

Learning-dependent neural plasticity is a lifetime developmen-
tal process in which age-related critical periods or time windows
seem to exist for significant cortical reorganization (Buonomano

and Merzenich, 1998; Cotman and Berchtold, 2002; Rakic, 2002;
Dong and Greenough, 2004; Voelcker-Rehage and Willimczik,
2006; Ponti et al., 2008). During the critical periods in early life,
among competing sensory inputs of a given experience, neural
representation of the most critical aspect is formed and consol-
idated (e.g., the hippocampus helps the formation of long-term
memories) (Hensch, 2005). In contrast, experiences may induce
fewer changes during non-critical periods of brain development.
Young children may gain more from skill learning during the
age-sensitive periods than their older peers (Ito, 2004). Devel-
oping brains may have a greater potential to be trained or are
more flexible in skills learning than developed brains (Kolb,
2000; Bunge and Wright, 2007). Training or treating children
with certain developmental disorders during sensitive periods can
maximize the benefits of neural plasticity and skill learning, which
is important for their rehabilitation (Yan et al., 2002; Ito, 2004).

Sensory networks may be immutable beyond the critical peri-
ods of cortical plasticity (Ponti et al., 2008). However, experiences
still enhance cognitive and motor functions via synaptogenesis
and neurogenesis in certain brain areas, such as the hippocam-
pus and cerebellum. Brain plasticity may be an age-related,
age-dependent, or age-independent developmental process (Kolb
et al., 1998). Instead of being a unitary process, experience-based
neural plasticity is dynamic: varying as a function of cortical
regions, time, and types of sensory or motor learning (Quartz
and Sejnowski, 1997; Johnson, 2003). Understanding experience-
related neural plasticity within a developmental framework along
with the optimal timing of skills training or rehabilitation for
individuals at different ages certainly has clinical and educa-
tional relevance. With the understanding of brain plasticity, for
instance, clinicians can effectively assess and treat developmental
disorders (e.g., developmental coordination disorders (DCD), and
developmental dyspraxia, a kind of motor learning difficulty
in children) and aging-related dysfunctions (e.g., MCI, AD, or
dementia). Instructors can teach developmentally appropriate
skills to children (Yan et al., 2002; Ito, 2004). Without doubt, there
are pressing and increasing demands for the development of more
effective approaches for older adults who suffer from cognitive or
motor deficiencies (Yan and Zhou, 2009; Belleville et al., 2011; Hill
et al., 2011; Ren et al., 2013).

The next question concerns the length of learning that can
induce activity-dependent neural plasticity in macro- or micro-
structures. Developed brains may restructure themselves due to
extensive or rigorous skill learning lasting months or following
a short period of practice (Taubert et al., 2010). A remarkable
increase of gray matter volume was observed in the prefrontal,
frontal and parietal regions while the learners were acquiring
a balance-control skill. Changes in fractional anisotropy of the
related white matter were observed following skill learning. Even
minor adjustments in the training experience result in structural
modifications and the rebuilding of functional capacities. Fur-
thermore, a few weeks of training in mice led to the formation and
removal of synapses, and a heightened level of synapse turnover.
These changes may collectively cause an adaptive remapping of
neural pathways (Trachtenberg et al., 2002). When a given stim-
ulus is repeatedly and intentionally coupled with the consistent
activation patterns of a set of neurons during the critical period,
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the neural representation of that stimulus is reinforced (Zhou and
Merzenich, 2007).

Therefore, activity-dependent neural plasticity can be induced
by both lengthy-extensive and brief-intensive practice (Ziemann
et al., 2004). In learning a complex visuomotor task, older
and younger learners showed similar increases in corticomotor
excitability after several minutes of training, reflecting similar
cognitive-motor plasticity of the two age groups (Cirillo et al.,
2011). When younger adults actively engaged in a learning and
memory task for months, the size of gray matter expanded
remarkably in the posterior and lateral parietal sites (Draganski
et al., 2006). Task-specific memory capacity, developed via a
dynamic process of information encoding and retrieval, results in
greater functional plasticity in the multi-level memory networks.
For elite athletes, superior sport expertise and performance are
the outcomes of long-term training and cortical-spinal plasticity
(the “Olympic brains”) (Nielsen and Cohen, 2008). Sport-specific
experiences and the resultant neural enhancements contribute to
an effective use of sensory information in judgments or decision-
making and better motor memory consolidation in expert players.

Mental exercise is also reported to have a positive impact
on long-term neural activities (Lutz et al., 2004). For example,
adaptive working memory training increased neural efficiency in
working memory tasks in older adults (Brehmer et al., 2011).
Working memory training induced white matter increases that
were correlated with performance improvements in older adults
(Engvig et al., 2012). In addition, multitasking was enhanced in
older adults after video game training. The benefits can be trans-
ferred to non-trained sustained attention and working memory
tasks (Anguera et al., 2013). It is thought that complex training
environments (e.g., video games) are a key for successful cognitive
training and interventions (Bavelier et al., 2012).

Evidence shows that experience-dependent neural plasticity
can be stimulated both by physical and mental practice to differ-
ent extents, depending on the training contents and the abilities
to test. Compared to physical training, greater improvements
in executive functions were observed after cognitive training
(Gajewski and Falkenstein, 2012). Cardiovascular and coordi-
nation training led to differential changes in sensorimotor and
visual-spatial networks (Voelcker-Rehage et al., 2011). These
observations are important for both cognitive improvements and
motor learning.

MOTOR LEARNING
Motor learning is conceptualized as the process of deliberate or
goal-directed practice that results in long-lasting performance
stabilization and adaptation (Schmidt and Lee, 2005). Motor
learning and relearning are lifelong activities directly associated
with experience-related brain plasticity (Ungerleider et al., 2002;
Voelcker-Rehage and Willimczik, 2006; Taubert et al., 2010).
Recent studies reported that motor skills can be learned both in
on- and off-line modes. On-line learning (also known as within-
session practice-dependent acquisition) occurs when a learner
practices a given skill or a set of skills. Upon completion of the
task-specific practice, a learner continues to acquire or stabilize a
given skill or a set of skills. In particular, motor learning would
be more pronounced after an optimal post-practice interval

during which a learner is sleeping or napping. This mode of
motor learning refers to off-line learning (also known as between-
session practice-independent performance enhancement). Night-
time sleeping or daytime napping is required for such a learning
mode. In motor behavior literature, motor skill acquisition is said
to be composed of these two closely related learning mechanisms
(Newell, 1991; Sanes, 2000, 2003; Thomas et al., 2000; Cohen
et al., 2005; Yan et al., 2009; Debarnot et al., 2011; Wilhelm et al.,
2012). Both practice and sleeping facilitate motor skills learning.

Motor learning takes place when a learner repeatedly and
actively engages in physical or mental practice of a given skill or
a set of skills (Schmidt and Bjork, 1992). Researchers of on-line
learning primarily examine how learners of different ages or skill
levels, in different learning conditions, acquire a variety of motor
or cognitive skills during practice. If on-line learning occurs, skill
improvements can be observed during the practice phase and can
be captured in immediate or delayed retention or transfer tests.
Over the last few decades, substantial evidence has shown that on-
line learning benefits children and younger adults (Thomas et al.,
1979; Newell, 1991; Deutsch and Newell, 2001, 2005; Schmidt
and Lee, 2005; Magill, 2011). Despite having cognitive-motor
deficits (Yan, 2000; Schaie, 2004; Dennis and Cabeza, 2008), older
learners are able to use skill feedback (e.g., knowledge of results
(KR), feedback about the outcome of a motor skill) for motor
learning to an extent similar to that of younger adults (Swanson
and Lee, 1992; Carnahan et al., 1993, 1996; Wishart and Lee, 1997;
Schiffman et al., 2002). However, Liu et al. (2013) recently showed
that older learners with cognitive-motor deficiency demonstrated
limited on-line learning as reflected in small improvements of
movement time (MT, time difference between onset and offset
of an action) and small reductions in timing error (TE, time gap
between the target time and MT). In retention tests, older adults
with intact cognitive and motor functions outperformed those
who had relatively poorer scores in an eye-hand-coordination test
(finger tapping), the Mini Mental State Exam (MMSE), and the
Trail Making Test (TMT-A and B). Cognitive, neural and motor
deficiencies in older adults might explain their compromised on-
line motor learning (Albert, 1997; Seidler, 2006; Yan et al., 2008;
Yan and Zhou, 2009; Ren et al., 2013).

One important finding of Liu et al. (2013) was that the interval
between each learning trial and the delivery of KR, and the
interval between the delivery of KR and the next learning trial,
were critical for successful on-line motor timing. For cognitively
unhealthy older learners, longer intervals (6, 12 s) reduced the
beneficial effect of KR on on-line learning to a greater degree
than on the learning of their healthy counterparts and younger
adults. Poorer attention, concentration and working memory, and
decreased information processing speeds in older adults may be
the reasons. For instance, cognitive aging is typically associated
with reductions of attention and memory capacities (Salthouse,
1996; Chao and Knight, 1997; Maylor, 1998; Maylor and Lavie,
1998; Johnson et al., 2002; Hedden and Gabrieli, 2004; Anguera
et al., 2011). Older learners might fail to register the given KR
or keep the action-related information active for a long period
of time. This working memory problem is the “binding deficit”
of older learners in using KR for on-line learning (Johnson
et al., 2002). Furthermore, Anguera et al. (2011) attributed the
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reduced learning efficiency in older adults to their inability to
couple KR for a given trial with the neural representation of the
skill. Interactions of cognitive and motor aging, environment and
neural processes collectively contribute to the observed differ-
ences in motor learning between older and younger adults. In
the case of cognitively healthy older adults, without additional
practice, their newly acquired motor experiences or memories
could be retrievable for a minimum of 2 years after learning
(Smith et al., 2005). Thus, aging is not necessarily associated
with memory deterioration, but aging-related cognitive-motor
dysfunction plays a central role in the decline of on-line motor
learning.

Based on the results, a subsequent question to consider is how
motor training (on- or off-line) strengthens memory and exec-
utive functions that are crucial for older learners suffering from
functional decline (Baddeley, 1996, 2002; Anderson et al., 1998;
Seidler, 2007). The second question is whether sleep-based off-
line motor learning enhances brain functionality of older adults.
The third question is how physical exercise, motor practice and
skill learning improve motor performance and brain fitness based
on the neural plasticity mechanisms aforementioned. Perhaps off-
line learning is more profitable than on-line learning in motor
learning in older learners. There is less interference with learning
during sleep; the off-line learning mode may allow sufficient time
or cognitive resources to process and consolidate skill-related
information into long-term memories (Yan et al., 2009).

While motor skills become better during practice sessions,
skills continue improving between practice sessions, particularly
during post-practice sleeping (Walker et al., 2003; Walker and
Stickgold, 2004; Walker, 2005, 2009). Different neural mecha-
nisms for over-day and over-night off-line learning modes may
exist (Robertson et al., 2004, 2005). Contrary to our expectation
that sleep-based learning would be more advantageous than on-
line learning, older learners showed small gains in skill retrieval
after sleep (Yan et al., 2009). Brown et al. (2009) suggested
that over-night sleeping had little benefit for motor learning
in older adults with intact motor or cognitive functions. The
findings of Yan et al. (2009) were inconsistent with the learning
effects observed in children or young adults and might suggest
a reduction of neural plasticity in older adults (Thomas et al.,
2000; Wilhelm et al., 2008, 2012; Yan et al., 2009). Discrepancies
of results are possibly due to quality, timing, or duration of
sleep, experimental design or interference from other experiences
(Rickard et al., 2008; Cai and Rickard, 2009). For example, during
the 24 h post-practice interval, there was no control over the
activities or schedules of the learners, which might have affected
the learning of older adults more than that of their younger peers
(Brown et al., 2009). Greater individual differences in the cogni-
tive and motor capacities of older adults may also hinder their on-
and off-line motor learning (Yan et al., 2009). Subsequent research
is warranted to clarify these issues.

Finally, we discuss how and why physical practice and mental
training improve motor skills and brain fitness based on the
concept of brain plasticity. Two essential questions need to be
answered: what are the neural changes associated with motor
learning? How does neural plasticity contribute to motor learn-
ing? From a biological viewpoint, skills learning or relearning is

associated with neural plasticity for the survival and development
of a species. Structural and functional alternations take place in
the neural system throughout the lifetime (Ungerleider et al.,
2002; Voelcker-Rehage and Willimczik, 2006; Taubert et al., 2010).
Motor learning results in neurobehavioral changes, making the
neural system shift from a conscious control (central, command-
driven, top-down) to an unconscious (peripheral, feedback-
based, button-up) control mode; the neural representations of
the skill are formed during this process (Willingham, 1998). The
flexible or changeable nature of cortical reorganization is the basis
of skill learning.

Physical exercise brings about changes to brain structures and
functions. An animal study suggested that physical exercise or
motor learning can increase the thickness of the motor cortex
(Anderson et al., 2002). An increased density of blood vessels
and the development of synapses in the cerebellum were observed
following physical exercise (Black et al., 1990). Physical exercise
contributes to memory formation and increases the number of
neurons and synapses (dentate gyrus) in both young and old mice
(van Praag et al., 1999a,b, 2005). Deliberate training, or changing
the surrounding environment, enhances cortical reorganization
and functions that facilitate memory formation in rats through
altering gene expression and the concentration of the brain-
derived neurotrophic factor, BDNF (Briones et al., 2004; Farmer
et al., 2004; Berchtold et al., 2005). The benefits of physical and
mental training are largely mediated by enhanced BDNF signaling
(Korol et al., 2013); whereas increased temporal lobe connectivity
after aerobic training is associated with BDNF, insulin-like growth
factor type 1 (IGF-1), and vascular endothelial growth factor
(VEGF; Voss et al., 2013).

Environmental factors such as exercise, training, injuries and
rehabilitation change neural plasticity by varying degrees in
different cortical regions. As a result of long-term professional
training, the cerebral structures and functions of expert musicians
show significant changes. The cortical alterations may start in
the early stages of training, or life, and develop continuously
in higher regions later, reflecting rapid and remarkable changes
in the critical period of neural plasticity (Schlaug, 2001). In
humans, intentional exercise and cortical plasticity are closely
related; exercise contributes to better memory by elevating BDNF
(Vaynman et al., 2004, 2006). At the behavioral level, older adults
demonstrated “motor plasticity” or the ability to acquire new
motor skills to an extent similar to that of younger peers (Roller
et al., 2002; Voelcker-Rehage and Willimczik, 2006). Skill differ-
ences between younger and older adults in motor learning should
reflect the ability of CNS to reduce neural noise and coordinate
agonist-antagonist muscle activities, but not older adults’ inferior
potential to learn or relearn (Christou et al., 2007).

Furthermore, computer-based practice significantly enhances
cognitive rehabilitation in healthy older adults; the beneficial
effects of training can be sustained for 3 months. The results
bear important implications about the “reversibility” of older
brains (Mahncke et al., 2006). Injury studies support the notion
of structural and functional reversibility of the higher regions of
CNS. For instance, certain therapeutic treatments or training can
repair or recover the vanished, or reduced, brain functions caused
by injury (Stein and Hoffman, 2003; Wieloch and Nikolich, 2006).
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Given the potential value of plasticity-based skill learning and the
contribution of motor practice to functional neural regeneration,
these studies have important implications for older adults. Specif-
ically, older adults normally suffer from functional deficiencies.
The plasticity-based motor learning or training should integrate
multiple tasks or activities to be implemented at multiple skill lev-
els (fundamental, daily, motor, and special skills) and with mul-
tisensory inputs (Nojima et al., 2012). Training regimens should
be specific, function-oriented, precise, simple, and combined with
daily tasks (e.g., locomotion, balance control or fall prevention).
Individual differences in cognitive and motor functions in older
adults should be considered when designing and implementing
training programs. Future research to identify major barriers and
facilitators to brain fitness and motor functionality in older adults
is integral to cognitive-motor skill learning and rehabilitation.
An apparent challenge now lies in the search for an optimal
therapeutic approach to enhance skills learning in older adults.

COGNITIVE AGING
While discussing brain fitness or motor ability of older adults, we
describe the developmental pattern and define “normal aging”,
and “cognitive aging”. We will also answer the questions, “what
is successful aging?” and, “how do older adults achieve successful
aging through exercise or practice?” Importantly, we address
the features of learning and relearning in older adults who are
cognitively and motorically intact or impaired. Finally, the links
between physical exercise and brain function in older adults will
be highlighted.

Figure 1 shows an inverted U-shaped pattern of motor and
cognitive ability and three possible descending paths in older
adulthood: normal aging; cognitive aging; and successful aging
(Yan et al., 1998, 2000; Yan and Zhou, 2009). Functional capacity
increases during childhood and young adulthood and decreases in
older adulthood. The slope of functional changes largely depends
on individual differences in genetics, personality, motivation,
lifestyle, socio-cultural background, exercise opportunities and
learning experiences. Variations in the curves are collective or
interactive outcomes of these biological and environmental fac-
tors.

From a lifespan developmental viewpoint, normal aging or
aging literally means that an individual may experience multiple
aspects of expected change (e.g., neural, biological, physiolog-
ical, psychological or social) during the passage of time, from
conception to death. A functional increment or progression can
be seen in early life (childhood, youth, and young adulthood),
and even in older stages; regression takes place at later stages
(Bowen and Atwood, 2004). Cognitive aging is a set of gradual and
functional regressions of cognitive abilities (e.g., attention, mem-
ory, reasoning, decision-making and processing speed; Salthouse,
2004). Steady decline of cognitive ability can be observed across
the lifespan, and it accelerates after young or middle adulthood
(Salthouse, 2009). Older adults also experience a major decline in
movement functionality, such as reduced walking speed, poorer
eye-hand coordination, and compromised learning abilities (Yan,
1999, 2000; Yan et al., 2009; Studenski et al., 2011).

Functional deteriorations in cognitive and motor domains are
of the greatest concern to many older adults and the people

FIGURE 1 | The likely developmental trends across the human lifespan
(an inverted U-shape). The down-turning paths are for normal aging,
cognitive aging, and successful aging in motor and cognitive functions.
Overall, the functional curves are moving downwards during older
adulthood. The slope of functional change is subject to a number of
biological and environmental factors.

around them. However, Figure 1 also shows the third and optimal
path of development in the “getting older” process. This ideal
course of development is successful aging, owing to the contribu-
tions of neural or cognitive reserves of older adults with an active
lifestyle (Arbuckle et al., 1998; Stern et al., 2003; Daffner, 2010).
Contrary to the greater functional decline in older adults in the
categories of “cognitive aging” or “normal aging”, those in the
category of “successful aging” suffer less from declining abilities
and enjoy a relatively higher level of cognitive wellness through the
reorganization of brain networks (Sala-Llonch et al., 2012). The
main characteristics of successful aging are “low probability of
disease or disability, high cognitive and physical function capacity,
and active engagement with life” (p. 433), along with others
such as having greater life or emotional satisfaction, enjoying
more learning opportunities, and participating in active social
and intellectual activities (Rowe and Kahn, 1997; Chou and Chi,
2002; Strawbridge et al., 2002; Menec, 2003; Duay and Bryan,
2006).

Motor and cognitive functions seem to be fairly homoge-
neous in early life and gradually become more heterogeneous as
humans approach the hypothetical “critical point”, and thereafter
(Figure 1). Variations of cognitive and motor capacity lead to
three possible trends in older adults (Rowe and Kahn, 1987; Yan
et al., 2000). Attaining the state of successful aging is the goal to
maximize the quality of life and reduce the negative impact of
cognitive aging in older adults (Rowe and Kahn, 1987). Here we
focus on the benefits of potential applications of training-induced
neural plasticity in successful aging.

Figure 2 shows the dynamics of neural plasticity (the bio-
logical foundation for learning), motor learning or relearning
(the process of acquiring or consolidating new or learned skills),
and cognitive aging (the deteriorating capacities). Interactions
of cognitive aging, experiences, environments and brain devel-
opment collectively contribute to the observed discrepancies in
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FIGURE 2 | The dynamic relationship between brain plasticity, motor
learning, and cognitive aging. To maximize human brain fitness and
motor functions signaled by the quality of life and independence in daily
activity, habitual cognitive and motor learning or practice is required across
the lifespan, particularly for older adults.

motor and cognitive functions between younger and older learn-
ers. To achieve successful aging, regular cognitive and motor
training is essential throughout the lifespan and especially for
older adults who are at high risk of functional deterioration
(Kramer et al., 2000, 2006).

Over the past three decades, there has been a large volume
of research to delineate how exercise or motor practice improves
neurocognitive function or wellness in older adults (Colcombe
and Kramer, 2003). Of particular interest are the studies concern-
ing how the brain responds to physical exercise or skill learning to
improve neurocognitive functions in older adults. Kramer et al.
(2006) reviewed cross-sectional, longitudinal and interventional
research into the relationship between physical fitness and brain
function in older adults (Kramer et al., 2006). The beneficial
effects of aerobic fitness on executive functions and working
memory in older adults were supported by several subsequent
studies (Carlson et al., 1999; Yaffe et al., 2001; Barnes et al., 2003,
2007; Studenski et al., 2006). The benefits of vigorous exercise
and motor learning for improving neurocognitive functions in
older adults can be explained by one or all of the three theo-
retical accounts: information processing, executive functioning,
and memory development (Clarkson-Smith and Hartley, 1989;
Tomporowski and Hatfield, 2005). The robust relation between
exercise and cognition apparently requires additional clarifica-
tion: (1) exercise participation may contribute more to executive
processes than to the other two domains (information processing
and memory development); (2) genetic factors may play a critical
role in identifying the target population at risk of cognitive
impairment; and (3) the measurement of differences between
subjects is critical. Brain processes are not often observable or
detectible at behavioral level. However, neuroimaging techniques
can show small changes in neural metabolism or activation to

indicate major differences as the result of exercise or skills learning
for neurocognitive functions.

Although studies have suggested the positive effects of exercise
on cognitive functions in older adults, one of the prevailing
problems was that many studies were cross-sectional ignoring
time to time performance changes. A need for longitudinal-
interventional studies became apparent. For instance, Yaffe et al.
(2001) reported that when community-dwelling older women
took cognitive tests 6 years after baseline tests, those who
had higher physical activity levels showed less cognitive decline
(2001). A decade-long study also showed that poorer fluid intel-
ligence was associated with lower levels of physical activity; those
who reported the lowest levels of activity in middle age were at the
highest risk of cognitive decline later in life (Singh-Manoux et al.,
2005). In a study over the course of 12 weeks, older adults in the
walking group outperformed, in inhibitory control and selective
attention, those who were not physically active. Therefore, a
sustained exercise program can protect against cognitive decline
in older adults (Kamijo et al., 2007).

Another question to ask is, “how can the required training
or exercise (exercise modality, intensity, duration and frequency)
be implemented in a meaningful and effective way to help older
adults?” Some researchers classified research on exercise and brain
health into four categories: (1) to determine frequency, intensity,
type and level of physical activity for diverse aging populations;
(2) to identify the major or realistic cognitive benefits by partic-
ipating in physical activity; (3) to understand the psychological
and physiological factors that influence physical activity partic-
ipation both in healthy and unhealthy older adults; and (4) to
promote appropriate interventions, establish practical evaluation
criteria and develop policies to increase physical activity among
those at risk of cognitive impairment (Prohaska and Peters, 2007).
With the outcome of these studies, researchers can bridge the gap
between research and the implementation of physical activity for
brain health. Of course, the difficult question of how to implement
exercise still remains to be answered; however, these studies offer
some of the most important guidelines for physical exercise and
behavioral enhancement in older adults.

Brain functionality has long been attributed to the mainte-
nance of independence and a high quality of life in older adults
(Kramer et al., 2000). The preservation of neurocognitive func-
tion during aging is crucial for maintaining the required capacities
of neural pathways and cortical networks that control cognition
and motor behaviors (Yan and Dick, 2006; Yan et al., 2008).
Brain health or fitness is crucial for cognitive and motor func-
tioning in older adults, and for protection against pathogenesis of
neurodegenerative diseases such as AD (Cotman and Berchtold,
2002). For example, short-term intensive exercise or long-term
regular training improves learning while preventing the progres-
sion of AD in mice by increasing BDNF protein and decreas-
ing extracellular amyloid-β plaques (Adlard et al., 2004, 2005).
In large-sample longitudinal investigations, Laurin et al. (2001)
and Barnes et al. (2003) suggested that physical exercise could
protect older adults from cognitive deterioration and, possibly,
from dementia. Exercise improves vascular function, decreases
obesity and reduces inflammatory markers to enhance brain
health and functioning (Laurin et al., 2001; Barnes et al., 2007).
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Equally important, exercise prevents loss of neurons or neural
dysfunction that ultimately leads to the development of dementia
(Verghese et al., 2003, 2006; Barnes et al., 2007). Physical activity
also helps reduce cognitive decline associated with long-term
hormone replacement therapy in menopausal women (Erickson
et al., 2007). Both exercise and environmental enrichment can
ameliorate hippocampal aging by restoring neurogenesis and neu-
roimmune cytokine signaling in aged mice (Kumar et al., 2012;
Speisman et al., 2013a,b).

Regarding the effects of exercise on brain plasticity, Colcombe
et al. (2004) tested older adults ranging from 58 to 77 years in a
cross-sectional study with VO2 (oxygen consumption), reaction
time, cognitive tests, functional MRI (f MRI) measures. Very
fit older adults outperformed those less fit in behavioral and
neuroimaging parameters. Better cardiovascular fitness resulted
in superior test performances on executive functions, suggest-
ing exercise-dependent neural plasticity of the aging brain. By
improving physical fitness, neural structure, synaptic plasticity
and transmission can be strengthened.

Finally, we discuss our two experiments exploring motor
control and learning in MCI and AD patients. MCI usually
refers to the transitional or intermediate phase between cognitive
aging and AD. Older adults with MCI are increasingly at risk
of developing dementia (Petersen et al., 1999, 2000; Petersen,
2000). In the first study, we examined whether deliberate train-
ing can improve functional control and motor performance in
healthy older adults and their AD and MCI peers (Yan and Dick,
2006). A ballistic aiming arm movement was the task to learn
and test. Differences in MT, jerk (movement smoothness), and
the percentage of primary sub-movement (a reflection of top-
down or motor planning control) between subject groups across
six blocks of tests provided critical evidence concerning motor
control mechanisms. Surprisingly, as a result of motor learning,
AD and MCI subjects demonstrated an increased programming
control and more extended improvements in MT and movement
smoothness than their healthy counterparts. In the subsequent
study, a handwriting task was used to explore whether AD or
MCI had impaired fine motor actions primarily controlled by
small muscles or muscle groups (Yan et al., 2008). Results showed
that cognitive disorders reduced the control efficiency of fine
motor tasks in complex settings (combining wrist and finger
movements), but not in simple settings (only requiring wrist
or finger movements). The findings of both studies may not be
directly associated with the effects of motor learning on brain
health or neural plasticity. However, we certainly know more
about how cognitive disorders impair motor control, its possible
underlying mechanisms, and potential therapeutic interventions
for affected older adults.

FUTURE RESEARCH
The human lifespan continues to increase and the general pop-
ulation is aging quickly. We highlight key theories and related
research into neural plasticity and the application to cognitive
training and movement therapy in older adults. We discuss the
close relations between the neurodevelopmental characteristics
of brain plasticity, motor learning and the functional changes
associated with the aging processes (cognitive and successful

aging). We emphasize the benefits of motor practice or physical
exercise for both cognitively normal and impaired older adults.
We propose ideas to enhance future geriatric research or practice
for older adults. We suggest using off-line sleep-based motor
learning and mindfulness training for older adults who may suffer
from cognitive or motor disorders.

More attention should be paid to the contribution of sleep-
based skills learning to cognitive and motor skills, and possibly
to the physical and neural rehabilitation of older adults (Walker
et al., 2003; Robertson et al., 2004, 2005; Walker and Stickgold,
2004; Walker, 2005, 2009; Yan et al., 2009). Although research
in this area seems inconclusive, in that reduced capacity of off-
line learning is sometimes observed in older learners, we believe
that older adults should take advantage of their sleep (or nap)
as a supplemental means to develop greater brain fitness. In
fact, a number of factors may have confounded the reported
insignificance of sleep benefits in older adults (Brown et al.,
2009; Siengsukon and Boyd, 2009; Yan et al., 2009). Time-of-
day of sleep (the circadian effect) or homeostasis (time since last
sleep) may reduce memory consolidation and play an unknown
part in off-line motor learning in older adults (Rickard et al.,
2008; Cai and Rickard, 2009). Individual differences in cognitive
and motor functionality in older adults may decrease the gain
from sleep-based learning (Yan et al., 2009). Variation of sleep
habits in older adults is an important factor requiring control in
future research. Off-line learning or memory consolidation may
contribute to older adults’ cognitive and motor functionality. For
instance, cuing or re-arousing existing experiences during sleep
may be used to facilitate memory consolidation (Rasch et al.,
2007; Rudoy et al., 2009). These approaches may be worth trying
in older adults.

Furthermore, mindfulness training or awareness meditation
may also benefit cognitive and motor rehabilitation in older
adults. Mindfulness training refers to the mind and body exercises
that facilitate attention focus on the experience of current time.
It helps participants reach internal peacefulness, mind-body inte-
gration or coupling, via meditation (Siegel, 2009). Importantly,
the inner experience of mindfulness improves brain function,
reminiscence and social connections, thereby contributing to
better mental and physical wellness (Hölzel et al., 2008, 2011). In
this regard, mindfulness training has clinical implications for cog-
nitive or motor therapy in older adults. However, the mechanisms
underlying the benefits of mindfulness training are still open to
discussion. Mindfulness exercise may be useful to increase neuro-
protection that older adults need.

Finally, we have three important points. The first is that
participation in exercise is critical for preventing cognitive decline
in older adults. Persistence maximizes the gains from physical
activity (Neely and Bäckman, 1993; Dik et al., 2003). Secondly,
physical activity should be realistic and easy to accomplish for
older adults (e.g., deliberate walking, mind games, or leisure activ-
ities; Willis and Nesselroade, 1990; Hultsch et al., 1999; Scarmeas
et al., 2001; Schooler and Mulatu, 2001; Ball et al., 2002; Wang
et al., 2002; Wilson et al., 2002; Weuve et al., 2004). Last but not
the least, as the use of technology becomes increasingly prevalent,
more computer-driven technologies will be utilized in training or
rehabilitating older adults. In recent years, computerized training
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has demonstrated promising benefits for improving memory,
which can be maintained beyond the training period (Zelinski
et al., 2011). The development of such training programs would
definitely contribute to better cognitive and motor skills for
older adults in future. All activities for older adults may enhance
their cognitive-motor functionality due to brain plasticity and,
eventually, increase their quality of life over a long period of time.
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