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Numerous studies have documented the normal age-related decline of neural structure,
function, and cognitive performance. Preliminary evidence suggests that meditation may
reduce decline in specific cognitive domains and in brain structure. Here we extended
this research by investigating the relation between age and fluid intelligence and resting
state brain functional network architecture using graph theory, in middle-aged yoga and
meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga
practitioners and meditators combined than in controls. Resting state functional networks
of yoga practitioners and meditators combined were more integrated and more resilient
to damage than those of controls. Furthermore, mindfulness was positively correlated
with fluid intelligence, resilience, and global network efficiency. These findings reveal
the possibility to increase resilience and to slow the decline of fluid intelligence and
brain functional architecture and suggest that mindfulness plays a mechanistic role in this
preservation.
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INTRODUCTION
Neural structure, function, and cognitive performance nat-
urally decline as individuals age (Morrison and Hof, 1997;
Salat et al., 2004; Persson et al., 2006; De Chastelaine et al.,
2011). However, research suggests that a variety of cognitive
training programs (Nyberg et al., 2003; Willis et al., 2006;
Belleville et al., 2011; Anguera et al., 2013) and aerobic exer-
cise (Colcombe et al., 2004; Holzschneider et al., 2012) can
improve cognitive performance and associated brain function in
older adults. This suggests that older adults can still undergo
beneficial neuroplastic changes through changes in behavior.
Besides specific cognitive abilities, even the higher level con-
struct of fluid intelligence, i.e., the set of abilities involved
in coping with novel environments and abstract reasoning
(Sternberg, 2008), has recently been shown to be trainable
through working memory training (Jaeggi et al., 2008), and
related to changes in brain function (Jausovec and Jausovec,
2012). However, generalizability of working memory training
is not unequivocal (Melby-Lervag and Hulme, 2013) and so
far training-induced improvements in fluid intelligence and
associated brain function have been demonstrated only in
young people. Their effects on older individuals remain to be
investigated.

There is growing evidence that meditation could potentially
reduce age-related decline in cognition and brain function (for
a review see Gard et al., 2014). For example, older meditators
have been shown to outperform age-matched participants on an
attentional blink task (Van Leeuwen et al., 2009) and on tasks
assessing attention, short-term memory, perceptual speed, and
executive functioning (Prakash et al., 2012). Pagnoni and Cekic
(2007) reported that the typical negative correlation between age
and sustained attention was not present in Zen meditators. At
the neural level, two studies found negative correlations between
age and gray matter volume in controls, but not in age-matched
meditation practitioners (Lazar et al., 2005; Pagnoni and Cekic,
2007). Another study found a less prominent age-related decline
in fractional anisotropy in multiple white matter tracts in medi-
tators compared to controls (Luders et al., 2011). These findings
suggest that meditation practice may be able to reduce normal
age-related cognitive decline and neuro-degeneration. However, a
limitation of these studies is that, although groups were matched
for sex, age, and education, other important factors including
exercise and cognitive engagement (Kramer and Erickson, 2007;
Plassman et al., 2010; Fotuhi et al., 2012; Wilson et al., 2012) were
not controlled for. Furthermore, these studies focused on specific
cognitive functions, mostly attention, as opposed to higher level
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constructs such as fluid intelligence, which could have broader
implications due to its high predictive value of real life behavior
(Gray and Thompson, 2004; Deary, 2012).

There is growing evidence that yoga can also enhance cogni-
tion (Chattha et al., 2008; Subramanya and Telles, 2009; Kyizom
et al., 2010; Rocha et al., 2012) and brain function (Streeter et al.,
2010) in younger adults. With only one publication, the litera-
ture regarding the effects of yoga on cognition in older people
is sparse and equivocal (Oken et al., 2006). The various yoga
and meditation traditions share some similarities, but differ in
practices as well as theoretical orientation (Goleman, 1996). Few
scientific studies have directly compared practitioners of different
traditions to determine similarities and differences in either the
benefits or mechanisms underlying improved cognition or health.

To investigate the impact of yoga and meditation practices on
brain function, we have employed graph theoretical methods to
assess group differences in resting state brain connectivity. These
graph methods have been successfully used to reveal a negative
relation between age and network integration (Achard and
Bullmore, 2007), and a positive one between fluid intelligence
and both network integration and segregation (Van Den Heuvel
et al., 2009; Langer et al., 2012). However, the effects of training
on functional brain network architecture have not yet been
studied in the context of aging.

Graph-based analysis also provides novel ways to simulate the
effect of aging-related brain damage, and the brain’s resilience
to this damage (Achard et al., 2006). Resilience analysis has been
used to simulate neuronal death (Rubinov et al., 2009), and it
has been speculated that the dynamic impact of brain lesions is
related to cognition and behavior (Alstott et al., 2009). While
structural brain networks of Alzheimer’s patients have been
shown to be less resilient against targeted attacks than networks
of healthy controls (He et al., 2008), network resilience has
not yet been assessed in populations that display above average
cognitive function at older age.

Here we used graph theoretical methods to investigate the
effect of age on resting state functional brain connectivity and
fluid intelligence in yoga and meditation practitioners, and in
controls. The three groups were demographically well matched
and we controlled for variables that might influence age-related
decline. We hypothesized that yoga and meditation practitioners
would be less subject to age-related declines in fluid intelligence
and the resting state network properties of small-worldness and
integration. No age-related decline in network segregation was
expected in any of the groups (Meunier et al., 2009). Furthermore,
we investigated differences in the resilience of brain functional
networks between the three groups. Finally, we assessed the rela-
tionship between mindfulness, fluid intelligence and resting state
network resilience and integration.

METHODS
PARTICIPANTS
Forty-seven participants, 16 yoga practitioners, 16 meditation
practitioners, and 15 controls were recruited. Groups were
matched for age, gender, education, race, and handedness.
All participants self-reported being physically and mentally
healthy. Individuals with current or past neurological conditions

and individuals taking any medication for psychiatric or neuro-
logical conditions were excluded. Participants were also free of
dementia as assessed with the Mini-Mental State Examination
(Folstein et al., 1975). Yoga practitioners were trained in the
Kripalu Yoga tradition (Faulds, 2005) and had an average of
13,534 (SD = 9, 950) hours of yoga experience. Meditators were
trained in insight meditation (Goldstein and Kornfield, 2001)
and had an average of 7, 458 (SD = 5, 734) hours of meditation
experience. Controls had no experience with yoga or meditation.
Participants were compensated with $100 and provided writ-
ten informed consent. The study was approved by the Partners
Human Research Committee, Massachusetts General Hospital
(protocol 2005P001392).

BEHAVIORAL MEASURES
Fluid intelligence, comprising a variety of cognitive skills, was
measured with the odd items of the Raven’s Advanced Progressive
Matrices (APM) (Raven et al., 1998; Raven, 2000). Verbal intel-
ligence, which is a form of crystallized intelligence (Deary et al.,
2010), was assessed with the American version of the National
Adult Reading Test (AMNART; Grober and Sliwinski, 1991),
cognitive functioning was assessed with the Mini-Mental State
Examination (Folstein et al., 1975), and mindfulness with the
Five Facet Mindfulness Questionnaire (FFMQ; Baer et al., 2006).
To simplify analyses the sum score of the 5 subscales has been
used, following the example of Carmody and Baer (2008).
Furthermore, it was recorded for how many hours per week
participants engaged in physical exercise, and cognitive activities
including reading, writing, solving puzzles, and playing board and
card games.

IMAGE ACQUISITION
Imaging data was collected on a Siemens 1.5 Tesla Avanto
MRI scanner (Erlagen, Germany) at the Martinos Center for
Biomedical Imaging. Structural images were acquired using a
T1-weighted magnetization prepared rapid acquisition gradient
echo (MPRAGE) sequence (128 sagittal slices, slice thickness =
1.33 mm, TR = 2.73 s, TE = 3.39 ms, flip angle = 7◦, field of view
= 256 × 256 mm2, matrix = 192 × 192 mm2). A 5 min func-
tional resting state scan was acquired using a gradient echo T2∗-
weighted sequence (TR = 2.5 s, TE = 40 ms, flip angle = 90◦, field
of view = 320 mm, matrix = 64 × 64 mm2). Twenty two horizon-
tal slices with 1 mm gap, parallel to the inter-commissural plane
(voxel size: 3.13 × 3.13 × 5 mm) were acquired inter-leaved.

PROCEDURE AND ANALYSIS
Though it is expected that fluid intelligence declines with age, the
model of this decline is not known a priori. A simple linear regres-
sion model would predict that fluid intelligence reaches negative
values after a certain age, which is not consistent with the posi-
tive Raven’s score. We therefore investigated different regression
models which can be summarized by the general relation

f(F)=A×g(age)+B (1)

in which F is fluid intelligence measured by the Raven’s score
and f and g are two functions. We limited the analysis to f and
g being either the identity, the logarithm or the inverse. These

Frontiers in Aging Neuroscience www.frontiersin.org April 2014 | Volume 6 | Article 76 | 2

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Gard et al. Aging, mindfulness, and brain networks

functions bring flexibility in the scale and proportionality of the
relation between age and intelligence. Furthermore, they are all
strictly increasing or decreasing functions, which is necessary
to interpret A and B in terms of a decline. To select which of
these models best represent the data, a model selection based on
the Akaike information criterion (AIC) was carried out in the
control group, the same way Dosenbach et al. (2010) selected
their model of brain maturity. The parameter A of the regres-
sion indicates the rate at which intelligence declines with age.
The parameter B, the generalized intercept, provides insight into
the absolute value of the fluid intelligence. Group differences
in parameters A and B were tested with permutation tests with
10,000 permutations. Permutation tests were one-sided except
for the comparisons between yoga practitioners and meditators.
Curve fitting and parameter comparisons were conducted with
Matlab R2009a (The MathWorks Inc. Natick, MA, USA). This
method was also used to investigate the relationship between age
and the graph measures.

Relationships between mindfulness and other variables were
tested with Pearson product-moment correlations. ANOVAs were
conducted to compare the three groups in different variables.
Significant ANOVAs were followed up by independent sam-
ples t-tests (two-tailed) to compare groups pair-wise. Whenever
the assumption of homogeneity of variances was not met for
ANOVAs, Welch’s test of equality of means (Welch, 1951) was
used. These analyses were done with SPSS 17 (SPSS Inc., Chicago,
IL, USA).

Imaging
Data preprocessing. Resting state data was slice time corrected,
realigned, coregistered to individual T1-weighted images, nor-
malized, and spatially smoothed with a 5 mm kernel using SPM8
(Wellcome Department of Cognitive Neurology, London, UK;
www.fil.ion.ucl.ac.uk/spm/). Next, the first 8 image acquisitions
of the resting functional time series were discarded to allow
for stabilization of the MR signal. The remaining 112 volumes
were further preprocessed using the Connectivity toolbox (http://
www.nitrc.org/projects/conn; Whitfield-Gabrieli et al., 2011).
Mean white matter signal, mean CSF signal, 6 motion parame-
ters, and the first order motion derivative were regressed out of
the data. Finally, the residual time series were band-pass filtered
with a window of 0.008–0.09 Hz.

Anatomical parcellation and timeseries extraction. Resting state
scans were parcellated into 116 regions of interest (ROIs; 90 cor-
tical and subcortical, and 26 cerebellar) using the Automated
Anatomical Labeling (AAL; Tzourio-Mazoyer et al., 2002) tem-
plate in the Wake Forest University (WFU) Pickatlas version 2.5
(Maldjian et al., 2003).

For each ROI, the preprocessed time-series was extracted,
resulting in a 116 (ROIs) × 112 (volumes) time-series matrix for
each subject. These matrices were used to generate bivariate corre-
lation matrices for each subject. Time-series extraction was done
with the Connectivity toolbox.

Network analysis. Graph theory has recently been introduced in
neuroscience to characterize the brain network (Bullmore and

Sporns, 2009). In graph theory, networks are represented as a
set of nodes connected by edges. Edges can be either weighted
(to encode the strength of the connection) or unweighted. The
weights can then be used to define a network distance that
increases when the connection strength decreases. A path in a
graph is a set of edges through which two distant nodes are con-
nected. When different paths connect two nodes, the shortest path
is the one with the smallest network distance. In this study, graphs
were built with the 116 ROIs as nodes and the correlation between
their mean BOLD time series as edge weights. To capture more
of the richness of the available data, we used weighted graphs
(Newman, 2004; Saramäki et al., 2007). Negative correlations
were thresholded out. The functional distance was computed as
the inverse of the correlation (Rubinov and Sporns, 2010).

To analyze the functional networks in terms of their inte-
gration and segregation, four graph measures were computed:
characteristic path length, global efficiency, clustering coefficient
and small-worldness. The mathematical definition of these mea-
sures can be found in Rubinov and Sporns (2010). Here, we
summarize their use and interpretation. The characteristic path
length is the average of the shortest path length between all pairs
of nodes. This measure is primarily driven by longer paths. In
particular, if two nodes are disconnected, their shortest path will
be infinite, and so will be the characteristic path length. The
latter is therefore a measure of integration of functionally dis-
tant brain regions. The global efficiency is the average of the
inverse of the path length between all pairs of nodes. This mea-
sure is mostly driven by shorter paths. It is therefore a measure of
integration between functionally close brain regions. The cluster-
ing coefficient measures how likely two nodes that are strongly
connected to a third one are also strongly connected to each
other, forming a strongly connected triangle in the network. As
such, it is a measure of segregation, which is the ability to per-
form specialized tasks in a densely connected network. These
three measures were normalized by their mean over 500 sur-
rogate networks created by randomly shuffling the edges. This
normalization eliminates the potential effect of a global difference
between connection strengths in the different groups. A fourth
measure, small-worldness, can be computed as the ratio between
the normalized clustering coefficient and the characteristic path
length. Small-world property of a network defines how well the
network finds a trade-off between a highly integrated network (as
seen in random graphs) and a highly segregated network (as seen
in a regular lattice).

Resilience. Functional networks can also be characterized by
their resilience to attacks (Achard et al., 2006). Whether attacks
represent actual lesions in the cortex or simulate the normal
degenerescence of aging neural units, a resilient brain network
will be less affected by them. In practice, attacks to the functional
networks are simulated by removing nodes and computing some
network property of the resulting damaged network. Two types of
attacks are considered: random failures where nodes are removed
randomly and targeted attacks where the removed node is cho-
sen based on its degree centrality. Degree centrality refers to how
important the node is in facilitating functional integration and
is defined as the sum of the weights of all edges that connect to
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the node (Rubinov and Sporns, 2010). Physiologically, targeted
attacks may better simulate neurodegenerescence, as highly con-
nected nodes tend to be more metabolically active, making them
more vulnerable (Alstott et al., 2009). The property computed
after each attack can be the characteristic path length or the global
efficiency (Albert et al., 2000; Achard et al., 2006). However,
global efficiency is usually preferred since it can be computed even
if the network is disconnected, while the characteristic path length
goes to infinity in that case (Rubinov and Sporns, 2010). Here we
reported statistical group comparisons of resilience to targeted
network damage of 15 nodes (i.e., the 15 nodes with the great-
est degree centrality were removed) in terms of global efficiency.
However, results were similar for the other sizes of attacks (3–30
nodes in steps of 3). All network measures were computed using
NetworkX, a set of open-source tools written in Python (Hagberg
et al., 2008).

RESULTS
SUBJECT CHARACTERISTICS
Importantly for this study, yoga practitioners, meditators, and
controls were matched for age, gender, education, race, and
handedness (Table 1). Groups also did not significantly differ in
the potentially confounding variables verbal intelligence, current
number of hours spent exercising, and current number of hours
spent engaged in cognitive activities such as reading, writing, and
board and card game playing (Table 1).

AGE RELATED DECLINE IN FLUID INTELLIGENCE
The best fitting model for the relation between age and the APM
score was a log-linear model including the inverse age (Equation
2; Figure 1).

log(F)=A/age+log(Ff). (2)

Where A corresponds to the rate at which fluid intelligence
declines, and Ff expresses the plateau that fluid intelligence
reaches at advanced ages.

Coefficient A was significantly lower for yoga practitioners
and meditators considered as a single group than for con-
trols (permutation test; p = 0.040). The difference was mostly
driven by the difference between yoga practitioners and controls

(permutation test; p = 0.057) and only slightly by the differ-
ence between meditators and controls (permutation test; p =
0.092). There was no significant difference in decline rate between
yoga practitioners and meditators (p = 0.190). In this model,
the intercept B = log(Ff) indicates the final plateau value that
is reached at advanced ages. It is another characteristic of the
decline profile and we can therefore expect it to be larger for
yoga practitioners and meditators. Post-hoc permutation tests
revealed that this parameter was significantly higher in yoga
practitioners and meditators considered as a single group as
compared to controls (p = 0.019). This difference was mainly
driven by the difference between yoga practitioners and con-
trols (p = 0.032) and only in part by the difference between
meditators and controls (p = 0.070). There was no signifi-
cant difference between yoga practitioners and meditators (p =
0.140).

Possibly as a result of the slower decline of fluid intelligence
in yoga practitioners and meditators as compared to controls,
we found a significant main effect for group [F(2, 44) = 4.827,
p = 0.013, η2

p = 0.180] in a one-way ANOVA with group (con-
trols, meditators, yoga practitioners) as factor, and Raven’s APM
score as dependent variable. Post-hoc t-tests revealed that yoga
practitioners (M = 23.500, SD = 4.761) had significantly higher
Raven’s APM scores than controls [M = 17.333, SD = 6873;
t(29) = 2.920, p = 0.007], while their scores did not significantly
differ from those of meditators [M = 20.750, SD = 4.782; t(30) =
1.630, p = 0.114]. Meditators and controls did not significantly
differ in Raven’s APM scores [t(29) = 1.615, p = 0.117]. When
considered as a single group, yoga practitioners and meditators
had significantly higher Raven’s APM scores than controls [t(45) =
2.741, p = 0.009].

Together, these findings are consistent with the hypothesis that
yoga practitioners and meditators combined had a lower rate
of decline of fluid intelligence than controls, which was mostly
driven by a reduced decline in yoga practitioners. This apparent
reduced decline might be the cause for the greater fluid intel-
ligence that we observed in our combined group of older yoga
practitioners and meditators. Furthermore, our model predicts
that fluid intelligence will not decline beyond a certain level and
that this is higher for yoga practitioners and meditators than for
controls.

Table 1 | Group comparisons of matching variables and other potential confounders.

Controls Yoga practitioners Meditators ANOVA/χ2-test

M/% SD M/% SD M/% SD F/χ2 df p

Age (years) 52.93 9.84 49.38 7.79 54.06 8.15 1.29 2, 44 0.286

Education (years) 17.27 1.98 17.31 2.41 18.44 2.58 1.26 2, 44 0.293

AMNART VIQ 120.73 7.65 123.27 4.67 125.60 4.70 2.34a 2, 27 0.115

Exercise (h/week) 4.79 4.53 6.98 5.57 6.48 4.16 0.72 2, 36 0.496

Read/Write/Play (h/week) 23.75 8.89 21.07 15.76 13.27 11.41 2.13 2, 34 0.134

Gender (% female) 60% 69% 63% 0.28 2 0.871

Handedness (% right) 87% 88% 88% 0.01 2 0.997

Race (% white) 100% 100% 100%

aWelch test. AMNART, American National Reading Test.
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FIGURE 1 | Relation between age, measured in years and fluid intelligence measured with the Raven’s Advanced Progressive Matrices for controls,

yoga practitioners, and meditators. Lines represent log-linear regression lines for the three groups following the function log(F)=A/age+log(Ff) .

INTEGRATION AND SEGREGATION OF RESTING STATE NETWORKS
To compare the brain functional network architecture of yoga
practitioners, meditators and controls (for a visualization of
the network creation see Figure 2) in terms of small-worldness,
characteristic path length, global efficiency and clustering coef-
ficient, ANOVAs were conducted. Significant group differences
were found in normalized characteristic path length [F(2, 44) =
4.482, p = 0.017, η2

p = 0.169; Figure 3B] and normalized small-

worldness [F(2, 44) = 3.487, p = 0.039, η2
p = 0.137; Figure 3C],

and a trend toward significance in normalized global effi-
ciency [F(2, 44) = 3.148, p = 0.053, η2

p = 0.125]. However, there
were no significant group differences in the normalized clus-
tering coefficient [F(2, 44) = 1.956, p = 0.153, n.s.; Figure 3A].
Post-hoc independent samples t-tests revealed that yoga prac-
titioners and meditators each had significantly shorter char-
acteristic path length than controls [t(29) = −2.652, p = 0.014
and t(23.34) = −2.100, p = 0.047, respectively]. This was also
true when considered as a single group [t(20.33) = −2.562,
p = 0.018]. There was no difference between yoga practi-
tioners and meditators [t(30) = −0.782, p = 0.440; Figure 3B].
Yoga practitioners also had significantly greater global effi-
ciency than controls [t(29) = 2.249, p = 0.032], while the differ-
ence between meditators and controls showed a trend toward
significance [t(29) = 1.893, p = 0.068]. Combined, yoga prac-
titioners and meditators had significantly greater global effi-
ciency than controls [t(45) = 2.428, p = 0.019], while there
was no significant difference between yoga practitioners and
meditators [t(30) = −0.701, p = 0.489]. Furthermore, post-hoc
independent samples t-tests revealed that yoga practition-
ers had significantly greater small-worldness than controls
[t(29) = 2.297, p = 0.029]. Meditators had borderline signif-
icant greater small-worldness than controls [t(23.60) = 1.899,
p = 0.070]. Yoga practitioners and meditators together had
significantly greater small-worldness than controls [t(19.84) =
2.261, p = 0.035], while there was no difference between
yoga practitioners and meditators [t(30) = 0.535, p = 0.596;
Figure 3C].

Attempts to find the best fitting function for the relation-
ship between age and each of the graph measures revealed that
although all models had poor fit, the linear regression model was
the best fitting model (all p > 0.050). None of the slopes or inter-
cepts differed significantly between any of the groups for any
of the graph measures (all p > 0.050). These findings indicate
that although no group differences in age-related decline were
found in network integration or segregation, yoga practitioners
and meditators combined had greater network integration but
not segregation than controls. Again, this difference was mostly
driven by the yoga practitioners.

RESILIENCE OF RESTING STATE NETWORKS
We assessed the resilience of the functional networks to tar-
geted damage (Achard et al., 2006), by removing nodes from
the networks in the order of their degree centrality. An ANOVA
with group as factor and change in normalized global efficiency
after removal of 15 nodes as dependent variable, revealed a sig-
nificant group effect [F(2, 44) = 6.979, p = 0.002, η2

p = 0.241;
Figure 4]. Post-hoc independent samples t-tests revealed that this
group difference was driven by a smaller decrease in yoga prac-
titioners than in controls [t(29) = 3.749, p = 0.001] and med-
itators [t(30) = 2.161, p = 0.039], and no significant difference
was found between meditators and controls [t(29) = 1.594, p =
0.122]. When yoga practitioners and meditators were consid-
ered as a single group, attacks resulted in a significantly smaller
decrease in global efficiency than in controls [t(45) = 2.964, p =
0.005]. These findings indicate that considered as one group, yoga
practitioners and meditators have more resilient networks than
controls, but when considered separately, yoga practitioners have
more resilient networks than controls and meditators.

MINDFULNESS, INTELLIGENCE, AND NETWORK INTEGRATION
The three groups differed in sum score of the FFMQ [F(2, 44) =
5.544, p = 0.007, η2

p = 0.201]. This group difference was driven
by significantly greater scores in yoga practitioners [M =
19.780, SD = 2.576; t(29) = 3.006, p = 0.005] and meditators
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FIGURE 2 | Visualization of network creation. Parcellation of brain into 116
regions (A), and structure of weighted resting state functional networks of a
representative control (B), yoga practitioner (C), and meditator (D). Networks

depicted were thresholded (r = 0.5) for illustrative purposes only. Opacity of
the lines represents strength of the correlation (more saturated is stronger),
relative to the strength of the strongest correlation.
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FIGURE 3 | Mean of normalized clustering coefficient (A), normalized

characteristic path length (B), and small-worldness (C) for controls,

yoga practitioners, and meditators, based on weighted resting state

brain functional networks. Error bars represent the standard error of the
mean. P-values are based on two-tailed independent samples t-tests.

[M = 19.053, SD = 2.190; t(29) = 2.426, p = 0.022] than in con-
trols (M = 16.826, SD = 2.894). There was no significant differ-
ence between yoga practitioners and meditators [t(30) = 0.860,
p = 0.396]. To investigate the relationship between mindfulness
and fluid intelligence, the correlation between the sum score of
the FFMQ and the age corrected sum score of the Raven’s APM
was calculated. This correlation was significant [r(45) = 0.292,
p = 0.046] and still approached significance after removing an
outlier on mindfulness [r(44) = 0.287, p = 0.053; Figure 5A].
Mindfulness was also significantly correlated with network
resilience as defined in the previous section [r(45) = 0.329, p =

FIGURE 4 | Mean of functional network resilience, measured as the

change in global efficiency after removal of the 15 nodes with the

highest degree centrality. Less decrease means higher resilience. Error
bars represent the standard error of the mean. P-values are based on
two-tailed independent samples t-tests.

0.024], and still approached significance after removing an
outlier on mindfulness [r(44) = 0.270, p = 0.070; Figure 5B].
Furthermore, mindfulness was positively related to network inte-
gration as reflected in a positive correlation of mindfulness with
normalized global efficiency [r(45) = 0.367, p = 0.011] and a
negative correlation with normalized characteristic path length
[r(45) = −0.356, p = 0.014]. Both correlations remained signif-
icant after removing an outlier on mindfulness [r(44) = 0.325,
p = 0.028; Figure 5C, and r(44) = −0.309, p = 0.037; Figure 5D,
respectively]. Together these findings indicate that individuals
who are more mindful have higher fluid intelligence and more
integrated and resilient resting state brain networks.

DISCUSSION
In this study we investigated age-related decline in fluid intelli-
gence and resting state functional brain network properties in
older yoga practitioners, meditators, and controls. Importantly,
the groups were well-matched demographically and did not sig-
nificantly differ in several factors that impact brain function,
including age, gender, education, crystallized intelligence, and
average hours of physical exercise and cognitive engagement in
daily life. Aligned with our hypothesis, the apparent rate of
age-related decline in fluid intelligence was lower in yoga prac-
titioners and meditators combined as compared to controls.
Congruent with this finding, resting state functional brain net-
works of yoga practitioners and meditators combined were more
resilient to damage than those of controls and had a stronger
small-world architecture. This difference in small-worldness was
driven by greater network integration rather than segregation.
Interestingly, mindfulness was positively related to fluid intel-
ligence as well as network resilience and integration. These
findings link behavioral training to reduced decline in fluid intel-
ligence and greater functional brain network integration and
robustness in older adults. In addition, the correlation between
mindfulness and network integration, resilience, and fluid intelli-
gence suggests that mindfulness plays a mechanistic role in this
preservation and advances our understanding of the involved
constructs.
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FIGURE 5 | Correlations between mindfulness and (A) fluid intelligence as measured with the Raven’s Advanced Progressive Matrices and corrected

for age, (B) brain functional network resilience for targeted damage of 15 nodes, (C) global efficiency, and (D) characteristic path length.

SLOWER DECLINE OF FLUID INTELLIGENCE
Consistent with our hypothesis of off-set age-related decline in
yoga and meditation practitioners, decline parameters of the
function describing the relationship between age and fluid intel-
ligence were smaller in yoga practitioners and meditators com-
bined than in controls. Presumably because of this apparent
slower decline, the group averages of fluid intelligence were higher
in the combined group of yoga practitioners and meditators than
in the age-matched controls. These findings are consistent with
previous studies which indicated that older meditators have bet-
ter attentional performance than non-meditators (Van Leeuwen
et al., 2009; Prakash et al., 2012), and that meditators don’t
show the normal negative correlation between sustained atten-
tion and age (Pagnoni and Cekic, 2007). Our results extend these
earlier findings by revealing a reduced cognitive aging effect in
yoga practitioners and meditators on the higher level construct
fluid intelligence. This extension is important as fluid intelligence
is a broader construct than attention and predicts meaningful
behavior in the real world (Sternberg, 2008; Deary et al., 2010).

The question that these findings raise is what variables mediate
the effect of meditation and yoga on fluid intelligence? The pos-
itive correlation between mindfulness and fluid intelligence we
reported here suggests that mindfulness is one of these variables.
Our finding is congruent with previous studies that have shown
that both mindfulness (Moore and Malinowski, 2009; Anicha
et al., 2012) and fluid intelligence (Colzato et al., 2006) are related
to cognitive flexibility, thereby linking the two constructs.

RESILIENT BRAIN FUNCTIONAL NETWORKS
Resilience can be studied in terms of change in brain net-
work properties after simulated aging-related brain damage. Our

analysis revealed that resting state functional brain networks of
yoga practitioners and meditators together had greater resilience
to simulated damage than those of controls. This finding is
aligned with our finding of greater resilience to age-related cog-
nitive decline. While decreased network resilience of structural
brain networks has been reported in Alzheimer’s patients (He
et al., 2008), our data reveal conditions that may enhance network
resilience. Although it is tempting to speculate that these network
findings might translate to biological brain resilience, this link has
not yet been established.

GREATER SMALL-WORLDNESS THROUGH MORE INTEGRATION
Recent studies have shown that experienced meditators have
altered resting state functional connectivity within the default
mode network (Jang et al., 2011; Taylor et al., 2012), and increased
connectivity between the posterior cingulate and the dorsal ante-
rior cingulate and dorsolateral prefrontal cortices (Brewer et al.,
2011). The current study extends these findings by demonstrat-
ing differences in graph theoretical global network properties,
thereby capturing more of the full complexity of the functional
network architecture.

We found between-group differences in small-worldness, char-
acteristic path length, and global efficiency, but not in clustering
coefficient. Yoga practitioners and meditators combined had sig-
nificantly shorter characteristic path length and greater global
efficiency and greater small-worldness than controls. Elevated
small-worldness of the yoga practitioners and meditators was
driven by higher network integration (characteristic path length
and global efficiency), rather than by increased network seg-
regation (clustering coefficient). Hence, aging yoga practition-
ers and meditators have a more small-world like resting state
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functional brain network architecture compared to controls by
having stronger integrative connections, efficiently integrating
information from distributed brain regions, rather than hav-
ing more groups of highly connected local brain regions for
specialized information processing.

Long distance γ-synchrony has long been hypothesized to be a
mechanism for large scale network integration related to coherent
cognition, behavior, and consciousness (Singer, 1993; Rodriguez
et al., 1999; Varela et al., 2001), and a recent study revealed that
long-distance synchronization between brain regions, especially
in the β (16–32 Hz) and γ (32–63 Hz) bands is related to cog-
nition and network integration as measured by global efficiency
(Kitzbichler et al., 2011). Interestingly, increased long-distance
gamma (25–42 Hz) synchrony has been related to meditation,
with a significant group (meditators vs. controls) by condition
(meditation vs. baseline) interaction (Lutz et al., 2004). Our find-
ing of shorter characteristic path length in yoga and meditation
practitioners than in controls extends this finding by reveal-
ing group differences in network integration during rest and by
demonstrating altered network integration in yoga practitioners.

We did not find a significant decline of any of the network
properties with age, and no differences in decline between groups.
The absence of a decline in clustering coefficient is in agreement
with a previous study that did not find a difference in modularity,
another measure of network segregation, between young and old
healthy subjects (Meunier et al., 2009).

Although we did not find the expected negative correlation
between age and network integration, probably due to our rel-
atively small sample size and the relatively narrow age range
(39–69 years), growing evidence suggests that there is an age
related decline of integration in functional networks (Achard and
Bullmore, 2007). Achard and Bullmore (2007) found that young
(M = 24.7 years) participants had greater global efficiency than
old (M = 66.5 years) participants. Thus, with a more integrated,
more efficient network organization as compared to controls,
yoga practitioners and meditators might be viewed as having a
younger, less-degraded brain network organization. These find-
ings indicate that it might be possible to reduce age related decline
in functional network integration through meditation and yoga
practice.

MINDFULNESS IS RELATED TO FLUID INTELLIGENCE AND BRAIN
FUNCTIONAL NETWORK RESILIENCE AND INTEGRATION
The correlation between fluid intelligence and mindfulness that
we report here is congruent with previous studies linking both
variables to cognitive flexibility (Colzato et al., 2006; Moore and
Malinowski, 2009; Anicha et al., 2012). We also found a posi-
tive correlation between mindfulness and global efficiency, as well
as a negative correlation between mindfulness and characteristic
path length. Together, these findings are aligned with previ-
ous reports of negative correlations between characteristic path
length and fluid intelligence (Van Den Heuvel et al., 2009; Langer
et al., 2012). Similarly, using diffusion tensor imaging (DTI) trac-
tography derived networks, Li et al. (2009) reported a positive
correlation between global efficiency and intelligence, and a neg-
ative relation between characteristic path length and intelligence.
Wen et al. (2011) reported positive correlations between global

efficiency and processing speed, visuospatial ability, and execu-
tive function. The correlation of mindfulness with measures of
network resilience, network integration and fluid intelligence sug-
gests that mindfulness plays a central role in the prevention of age
related cognitive and neural decline.

YOGA PRACTITIONERS vs. MEDITATORS
To date, much of the neuroimaging literature regarding mind-
body practices has focused on mindfulness meditation. However
there are numerous yoga and meditation traditions, as well as
other mind-body practices such as tai chi. Although there are
important philosophical differences between different Eastern
traditions, there are also numerous similarities (Goleman, 1996).
Previous longitudinal studies that have directly compared differ-
ent styles of meditation or yoga have reported both convergent
and divergent findings. Wolever et al. (2012) failed to show a
difference between a yoga-based and a mindfulness-based inter-
vention on a number of psychological and physiological variables,
though both practices showed greater improvements on perceived
stress, sleep quality, and aspects of heart rate variability in a
workplace setting than a control condition. However, other stud-
ies have found between-group differences between mindfulness
and relaxation interventions on various scales and tests, includ-
ing rumination (Jain et al., 2007), and emotional interference,
psychological well-being, and negative affect (Ortner et al., 2007).

In the current study we recruited individuals whose main prac-
tice was either Kripalu yoga or Vipassana (a.k.a. mindfulness)
meditation. Mindfulness plays a central role in both of these tra-
ditions (Carmody and Baer, 2008; Nyklicek and Kuijpers, 2008;
Shelov et al., 2009; Gard et al., 2012; Wolever et al., 2012), though
in Kripalu the concept of mindfulness is referred to as “witness
consciousness” (Faulds, 2005); and see (Gard et al., 2012) for a
comparison of these concepts. The two groups did not differ sig-
nificantly on any of our metrics, except for network resilience
which suggests these practices have similar effects on brain net-
work organization and cognitive functioning. The significantly
greater resilience in yoga practitioners than in meditators and the
overall trend for larger differences between yoga practitioners and
controls with meditators in between likely due to the fact that the
yoga group had almost twice as much life-time hours of practice
as the meditation group.

LIMITATIONS
It is important to note that a variety of factors are thought to
influence the rate of normal age-related decreases in brain struc-
ture and function including gender, cognitive engagement and
physical exercise (Plassman et al., 2010; Fotuhi et al., 2012; Wilson
et al., 2012). Therefore we matched yoga practitioners, meditators
and controls for age, gender, race, handedness, and education,
and additionally compared them on verbal intelligence, current
exercise, and cognitive spare time engagement (reading, writing,
playing games). Although groups did not significantly differ on
any of these variables, there might be other confounding variables
that we did not control for.

Since the presented study has a cross-sectional design it has
important limitations, such that causality cannot be established.
For example, people endowed with higher fluid intelligence and
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greater brain functional network integration may be more inter-
ested in practicing yoga and meditation. While our present
study with highly experienced yoga practitioners and meditators
revealed interesting and encouraging findings, future longitudi-
nal studies with larger sample sizes and individuals without prior
experience with these mind-body techniques will be required to
establish causality.

CONCLUSION
We have provided evidence that is in line with the hypoth-
esis that age-related decline in fluid intelligence is slower in
yoga practitioners and meditators and that these practitioners
have more efficient and resilient functional brain networks than
matched controls. Furthermore, we reported no significant differ-
ences between yoga practitioners and meditators on most of the
assessed variables and found that mindfulness, which is a key skill
developed through meditation and yoga practice, was positively
correlated with fluid intelligence and global brain network effi-
ciency and resilience. These findings are of theoretical importance
as they provide insight into the global brain functional network
architecture of yoga practitioners and meditators and provide
a potential mechanism for the preserved intellectual capacity
in mindfulness practitioners. Furthermore, these findings have
potential practical implications with a rapidly aging world pop-
ulation and increasing life expectancies (United Nations, 2002;
Administration on Aging, 2012). Longitudinal research is needed
to establish causality between the practice of yoga and meditation
and reduced decline of intelligence and functional brain network
architecture.

ACKNOWLEDGMENTS
This study was funded by NIH award R21AT003673 and
awards from the Kripalu Institute for Extraordinary Living,
Sarah Hancock, and Jeff Walker. The project was made pos-
sible by the resources provided by Shared Instrumentation
Grants 1S10RR023401, S10RR019307, and 1S10RR023043. We
also would like to thank all participants for their contribution.

REFERENCES
Achard, S., and Bullmore, E. (2007). Efficiency and cost of economical brain func-

tional networks. PLoS Comput. Biol. 3:e17. doi: 10.1371/journal.pcbi.0030017
Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. (2006).

A resilient, low-frequency, small-world human brain functional network
with highly connected association cortical hubs. J. Neurosci. 26, 63–72. doi:
10.1523/JNEUROSCI.3874-05.2006

Administration on Aging. (2012). A Profile of Older Americans. June 18.
Available online at: http://www.aoa.gov/AoARoot/AgingStatistics/Profile/2012/
docs/2012profile.pdf

Albert, R., Jeong, H., and Barabási, A. L. (2000). Error and attack tolerance of
complex networks. Nature 406, 378–382. doi: 10.1038/35019019

Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., and Sporns, O. (2009).
Modeling the impact of lesions in the human brain. PLoS Comput. Biol.
5:e1000408. doi: 10.1371/journal.pcbi.1000408

Anguera, J., Boccanfuso, J., Rintoul, J., Al-Hashimi, O., Faraji, F., Janowich, J., et al.
(2013). Video game training enhances cognitive control in older adults. Nature
501, 97–101. doi: 10.1038/nature12486

Anicha, C. L., Ode, S., Moeller, S. K., and Robinson, M. D. (2012). Toward a cogni-
tive view of trait mindfulness: distinct cognitive skills predict its observing and
nonreactivity facets. J. Pers. 80, 255–285. doi: 10.1111/j.1467-6494.2011.00722.x

Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., and Toney, L. (2006). Using
self-report assessment methods to explore facets of mindfulness. Assessment 13,
27–45. doi: 10.1177/1073191105283504

Belleville, S., Clement, F., Mellah, S., Gilbert, B., Fontaine, F., and Gauthier,
S. (2011). Training-related brain plasticity in subjects at risk of developing
Alzheimer’s disease. Brain 134, 1623–1634. doi: 10.1093/brain/awr037

Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y.-Y., Weber, J., and Kober,
H. (2011). Meditation experience is associated with differences in default
mode network activity and connectivity. Proc. Natl. Acad. Sci. U.S.A. 108,
20254–20259. doi: 10.1073/pnas.1112029108

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Carmody, J., and Baer, R. A. (2008). Relationships between mindfulness practice
and levels of mindfulness, medical and psychological symptoms and well-being
in a mindfulness-based stress reduction program. J. Behav. Med. 31, 23–33. doi:
10.1007/s10865-007-9130-7

Chattha, R., Nagarathna, R., Padmalatha, V., and Nagendra, H. R. (2008). Effect
of yoga on cognitive functions in climacteric syndrome: a randomised control
study. BJOG 115, 991–1000. doi: 10.1111/j.1471-0528.2008.01749.x

Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N.
J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl.
Acad. Sci. U.S.A. 101, 3316–3321. doi: 10.1073/pnas.0400266101

Colzato, L. S., Van Wouwe, N. C., Lavender, T. J., and Hommel, B. (2006).
Intelligence and cognitive flexibility: fluid intelligence correlates with feature
“unbinding” across perception and action. Psychon. Bull. Rev. 13, 1043–1048.
doi: 10.3758/bf03213923

Deary, I. J. (2012). Intelligence. Ann. Rev. Psychol. 63, 453–482. doi:
10.1146/annurev-psych-120710-100353

Deary, I. J., Penke, L., and Johnson, W. (2010). The neuroscience of human
intelligence differences. Nat. Rev. Neurosci. 11, 201–211. doi: 10.1038/nrn2793

De Chastelaine, M., Wang, T. H., Minton, B., Muftuler, L. T., and Rugg, M.
D. (2011). The effects of age, memory performance, and callosal integrity
on the neural correlates of successful associative encoding. Cereb. Cortex 21,
2166–2176. doi: 10.1093/cercor/bhq294

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A.,
et al. (2010). Prediction of individual brain maturity using fMRI. Science 329,
1358–1361. doi: 10.1126/science.1194144

Faulds, R. (2005). Kripalu Yoga: A Guide to Practice On and Off the Mat. New York,
NY: Bantam.

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). Mini-Mental State: a
practical method for grading the cognitive state of patients for the clinician.
J. Psychiatr. Res. 12, 189–198. doi: 10.1016/0022-3956(75)90026-6

Fotuhi, M., Do, D., and Jack, C. (2012). Modifiable factors that alter the size of the
hippocampus with ageing. Nat. Rev. Neurol. 8, 189–202. doi: 10.1038/nrneu-
rol.2012.27

Gard, T., Brach, N., Hölzel, B. K., Noggle, J. J., Conboy, L. A., and Lazar, S. W.
(2012). Effects of a yoga-based intervention for young adults on quality of life
and perceived stress: the potential mediating roles of mindfulness and self-
compassion. J. Posit. Psychol. 7, 165–175. doi: 10.1080/17439760.2012.667144

Gard, T., Hölzel, B. K., and Lazar, S. W. (2014). The potential effects of meditation
on age-related cognitive decline: a systematic review. Ann. N. Y. Acad. Sci. 1307,
89–103. doi: 10.1111/nyas.12348

Goldstein, J., and Kornfield, J. (2001). Seeking the Heart of Wisdom: The Path of
Insight Meditation. Boston, MA: Shambhala Pubns.

Goleman, D. (1996). The Meditative Mind: The Varieties of Meditative Experience.
New York, NY: J. P. Tarcher.

Gray, J. R., and Thompson, P. M. (2004). Neurobiology of intelligence: science and
ethics. Nat. Rev. Neurosci. 5, 471–482. doi: 10.1038/nrn1405

Grober, E., and Sliwinski, M. (1991). Development and validation of a model
for estimating premorbid verbal intelligence in the elderly. J. Clin. Exp.
Neuropsychol. 13, 933–949. doi: 10.1080/01688639108405109

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). “Exploring network structure,
dynamics, and function using networkX,” in Proceedings of the 7th Python in
Science Conference, eds G. E. Varoquaux, T. Vaught, and J. Millman (Pasadena,
CA), 11–15.

He, Y., Chen, Z., and Evans, A. (2008). Structural insights into aberrant topological
patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28,
4756–4766. doi: 10.1523/JNEUROSCI.0141-08.2008

Holzschneider, K., Wolbers, T., Roeder, B., and Hoetting, K. (2012). Cardiovascular
fitness modulates brain activation associated with spatial learning. Neuroimage
59, 3003–3014. doi: 10.1016/j.neuroimage.2011.10.021

Frontiers in Aging Neuroscience www.frontiersin.org April 2014 | Volume 6 | Article 76 | 10

http://www.aoa.gov/AoARoot/Aging_Statistics/Profile/2012/docs/2012profile.pdf
http://www.aoa.gov/AoARoot/Aging_Statistics/Profile/2012/docs/2012profile.pdf
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Gard et al. Aging, mindfulness, and brain networks

Jaeggi, S. M., Buschkuehl, M., Jonides, J., and Perrig, W. J. (2008). Improving fluid
intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105,
6829–6833. doi: 10.1073/pnas.0801268105

Jain, S., Shapiro, S. L., Swanick, S., Roesch, S. C., Mills, P. J., Bell, I., et al. (2007). A
randomized controlled trial of mindfulness meditation versus relaxation train-
ing: effects on distress, positive states of mind, rumination, and distraction. Ann.
Behav. Med. 33, 11–21. doi: 10.1207/s15324796abm3301_2

Jang, J. H., Jung, W. H., Kang, D. H., Byun, M. S., Kwon, S. J., Choi, C.
H., et al. (2011). Increased default mode network connectivity associated
with meditation. Neurosci. Lett. 487, 358–362. doi: 10.1016/j.neulet.2010.
10.056

Jausovec, N., and Jausovec, K. (2012). Working memory training: improv-
ing intelligence - Changing brain activity. Brain Cogn. 79, 96–106. doi:
10.1016/j.bandc.2012.02.007

Kitzbichler, M. G., Henson, R. N. A., Smith, M. L., Nathan, P. J., and Bullmore, E. T.
(2011). Cognitive effort drives workspace configuration of human brain func-
tional networks. J. Neurosci. 31, 8259–8270. doi: 10.1523/JNEUROSCI.0440-
11.2011

Kramer, A. F., and Erickson, K. I. (2007). Capitalizing on cortical plasticity: influ-
ence of physical activity on cognition and brain function. Trends Cogn. Sci. 11,
342–348. doi: 10.1016/j.tics.2007.06.009

Kyizom, T., Singh, S., Singh, K. P., Tandon, O. P., and Kumar, R. (2010). Effect of
pranayama and yoga-asana on cognitive brain functions in type 2 diabetes-P3
event related evoked potential (ERP). Ind. J. Med. Res. 131, 636–640.

Langer, N., Pedroni, A., Gianotti, L. R. R., Haenggi, J., Knoch, D., and Jaencke, L.
(2012). Functional brain network efficiency predicts intelligence. Hum. Brain
Mapp. 33, 1393–1406. doi: 10.1002/hbm.21297

Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway,
M. T., et al. (2005). Meditation experience is associated with increased cor-
tical thickness. Neuroreport 16, 1893–1897. doi: 10.1097/01.wnr.0000186598.
66243.19

Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., et al. (2009). Brain anatomical
network and intelligence. PLoS Comput. Biol. 5:e1000395. doi: 10.1371/jour-
nal.pcbi.1000395

Luders, E., Clark, K., Narr, K. L., and Toga, A. W. (2011). Enhanced brain connec-
tivity in long-term meditation practitioners. Neuroimage 57, 1308–1316. doi:
10.1016/j.neuroimage.2011.05.075

Lutz, A., Greischar, L. L., Rawlings, N. B., Ricard, M., and Davidson, R. J.
(2004). Long-term meditators self-induce high-amplitude gamma synchrony
during mental practice. Proc. Natl. Acad. Sci. U.S.A. 101, 16369–16373. doi:
10.1073/pnas.0407401101

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., and Burdette, J. H. (2003). An
automated method for neuroanatomic and cytoarchitectonic atlas-based inter-
rogation of fMRI data sets. Neuroimage 19, 1233–1239. doi: 10.1016/S1053-
8119(03)00169-1

Melby-Lervag, M., and Hulme, C. (2013). Is working memory training effec-
tive? A meta-analytic review. Dev. Psychol. 49, 270–291. doi: 10.1037/a00
28228

Meunier, D., Achard, S., Morcom, A., and Bullmore, E. (2009). Age-related changes
in modular organization of human brain functional networks. Neuroimage 44,
715–723. doi: 10.1016/j.neuroimage.2008.09.062

Moore, A., and Malinowski, P. (2009). Meditation, mindfulness and cogni-
tive flexibility. Conscious. Cogn. 18, 176–186. doi: 10.1016/j.concog.2008.
12.008.

Morrison, J., Hof, P. R. (1997). Life and death of neurons in the aging brain. Science
278, 412–419. doi: 10.1126/science.278.5337.412

Newman, M. E. J. (2004). Analysis of weighted networks. Phys. Rev. E 70:056131.
doi: 10.1103/PhysRevE.70.056131

Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar,
M., et al. (2003). Neural correlates of training-related memory improve-
ment in adulthood and aging. Proc. Natl. Acad. Sci. U.S.A. 100, 13728. doi:
10.1073/pnas.1735487100

Nyklicek, I., and Kuijpers, K. F. (2008). Effects of mindfulness-based stress reduc-
tion intervention on psychological well-being and quality of life: is increased
mindfulness indeed the mechanism? Ann. Behav. Med. 35, 331–340. doi:
10.1007/s12160-008-9030-2

Oken, B. S., Zajdel, D., Kishiyama, S., Flegal, K., Dehen, C., Haas, M., et al. (2006).
Randomized, controlled, six-month trial of yoga in healthy seniors: effects on
cognition and quality of life. Alter. Ther. Health Med. 12, 40–47.

Ortner, C. N. M., Kilner, S. J., and Zelazo, P. D. (2007). Mindfulness meditation and
reduced emotional interference on a cognitive task. Motiv. Emot. 31, 271–283.
doi: 10.1007/s11031-007-9076-7

Pagnoni, G., and Cekic, M. (2007). Age effects on gray matter volume and atten-
tional performance in Zen meditation. Neurobiol. Aging 28, 1623–1627. doi:
10.1016/j.neurobiolaging.2007.06.008

Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. G., Ingvar, M., et al. (2006).
Structure-function correlates of cognitive decline in aging. Cereb. Cortex 16,
907–915. doi: 10.1093/cercor/bhr306

Plassman, B. L., Williams, J. W., Burke, J. R., Holsinger, T., and Benjamin, S. (2010).
Systematic review: factors associated with risk for and possible prevention of
cognitive decline in later life. Ann. Inter. Med. 153, 182–193. doi: 10.7326/0003-
4819-153-3-201008030-00258

Prakash, R., Rastogi, P., Dubey, I., Abhishek, P., Chaudhury, S., and Small, B. J.
(2012). Long-term concentrative meditation and cognitive performance among
older adults. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 19, 479–494.
doi: 10.1080/13825585.2011.630932

Raven, J. (2000). The Raven’s progressive matrices: change and stability over culture
and time. Cogn. Psychol. 41, 1–48. doi: 10.1006/cogp.1999.0735

Raven, J., Raven, J. C., and Court, J. H. (1998). Manual for Raven’s Advanced
Progressive Matrices. Oxford: Oxford Psychologists Press.

Rocha, K. K. F., Ribeiro, A. M., Rocha, K. C. F., Sousa, M. B. C., Albuquerque, F.
S., Ribeiro, S., et al. (2012). Improvement in physiological and psychological
parameters after 6 months of yoga practice. Conscious. Cogn. 21, 843–850. doi:
10.1016/j.concog.2012.01.014

Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., and Varela, F.
J. (1999). Perception’s shadow: long-distance synchronization of human brain
activity. Nature 397, 430–433. doi: 10.1038/17120

Rubinov, M., McIntosh, A. R., Valenzuela, M. J., and Breakspear, M. (2009).
Simulation of neuronal death and network recovery in a computational model
of distributed cortical activity. Am. J. Geriatr. Psychiatry 17, 210–217. doi:
10.1097/JGP.0b013e318187137a

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:
10.1016/j.neuroimage.2009.10.003

Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R., Busa, E.,
et al. (2004). Thinning of the cerebral cortex in aging. Cereb. Cortex 14, 721–730.
doi: 10.1093/cercor/bhh032

Saramäki, J., Kivelä, M., Onnela, J. P., Kaski, K., and Kertesz, J. (2007).
Generalizations of the clustering coefficient to weighted complex networks.
Phys. Rev. E 75:27105. doi: 10.1103/PhysRevE.75.027105

Shelov, D. V., Suchday, S., and Friedberg, J. P. (2009). A pilot study measuring the
impact of yoga on the trait of mindfulness. Behav. Cogn. Psychother. 37, 595–598.
doi: 10.1017/S1352465809990361

Singer, W. (1993). Synchronization of cortical activity and its putative role in
information processing and learning. Ann. Rev. Physiol. 55, 349–374. doi:
10.1146/annurev.physiol.55.1.349

Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proc. Natl.
Acad. Sci. U.S.A. 105, 6791–6792. doi: 10.1073/pnas.0803396105

Streeter, C. C., Whitfield, T. H., Owen, L., Rein, T., Karri, S. K., Yakhkind, A.,
et al. (2010). Effects of yoga versus walking on mood, anxiety, and brain GABA
levels: a randomized controlled MRS study. J. Altern. Complement. Med. 16,
1145–1152. doi: 10.1089/acm.2010.0007

Subramanya, P., and Telles, S. (2009). Effect of two yoga-based relaxation tech-
niques on memory scores and state anxiety. Biopsychosoc. Med. 3:8. doi:
10.1186/1751-0759-3-8

Taylor, V. A., Daneault, V., Grant, J., Scavone, G., Breton, E., Roffe-Vidal, S.,
et al. (2012). Impact of meditation training on the default mode network
during a restful state. Soc. Cogn. Affect. Neurosci. 8, 4–14. doi: 10.1093/scan/
nsr087

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

United Nations. (2002). World Population Ageing, 1950–2050. New York, NY:
United Nations.

Van Den Heuvel, M. P., Stam, C. J., Kahn, R. S., and Pol, H. E. H. (2009). Efficiency
of functional brain networks and intellectual performance. J. Neurosci. 29,
7619–7624. doi: 10.1523/jneurosci.1443-09.2009.

Frontiers in Aging Neuroscience www.frontiersin.org April 2014 | Volume 6 | Article 76 | 11

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Gard et al. Aging, mindfulness, and brain networks

Van Leeuwen, S., Müller, N. G., and Melloni, L. (2009). Age effects on atten-
tional blink performance in meditation. Conscious. Cogn. 18, 593–599. doi:
10.1016/j.concog.2009.05.001

Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brain-
web: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2,
229–239. doi: 10.1038/35067550

Welch, B. L. (1951). On the comparison of several mean values: an alternative
approach. Biometrika 38, 330–336. doi: 10.2307/2332579

Wen, W., Zhu, W., He, Y., Kochan, N. A., Reppermund, S., Slavin, M. J., et al. (2011).
Discrete neuroanatomical networks are associated with specific cognitive abil-
ities in old age. J. Neurosci. 31, 1204–1212. doi: 10.1523/JNEUROSCI.4085-
10.2011

Whitfield-Gabrieli, S., Moran, J. M., Nieto-Castañón, A., Triantafyllou, C., Saxe,
R., and Gabrieli, J. D. E. (2011). Associations and dissociations between default
and self-reference networks in the human brain. Neuroimage 55, 225–232. doi:
10.1016/j.neuroimage.2010.11.048

Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M.,
et al. (2006). Long-term effects of cognitive training on everyday func-
tional outcomes in older adults. J. Am. Med. Assoc. 296, 2805–2814. doi:
10.1001/jama.296.23.2805

Wilson, R. S., Segawa, E., Boyle, P. A., and Bennett, D. A. (2012). Influence of
late-life cognitive activity on cognitive health. Neurology 78, 1123–1129. doi:
10.1212/WNL.0b013e31824f8c03

Wolever, R. Q., Bobinet, K. J., McCabe, K., Mackenzie, E. R., Fekete, E., Kusnick,
C. A., et al. (2012). Effective and viable mind-body stress reduction in the

workplace: a randomized controlled trial. J. Occup. Health Psychol. 17, 246–258.
doi: 10.1037/a0027278

Conflict of Interest Statement: This study was in part funded by the Kripalu
Center for Yoga and Health. As part of the study involved the investigation of
yoga practitioners trained in the tradition of Kripalu yoga, there might be a
perceived conflict of interest. However, the Kripalu Center for Yoga and Health
was not involved in the design, conduct, analysis, or reporting of the study. The
authors declare that the research was conducted in the absence of any commer-
cial or financial relationships that could be construed as a potential conflict of
interest.

Received: 30 January 2014; accepted: 02 April 2014; published online: 22 April 2014.
Citation: Gard T, Taquet M, Dixit R, Hölzel BK, de Montjoye Y-A, Brach N, Salat DH,
Dickerson BC, Gray JR and Lazar SW (2014) Fluid intelligence and brain functional
organization in aging yoga and meditation practitioners. Front. Aging Neurosci. 6:76.
doi: 10.3389/fnagi.2014.00076
This article was submitted to the journal Frontiers in Aging Neuroscience.
Copyright © 2014 Gard, Taquet, Dixit, Hölzel, de Montjoye, Brach, Salat, Dickerson,
Gray and Lazar. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Aging Neuroscience www.frontiersin.org April 2014 | Volume 6 | Article 76 | 12

http://dx.doi.org/10.3389/fnagi.2014.00076
http://dx.doi.org/10.3389/fnagi.2014.00076
http://dx.doi.org/10.3389/fnagi.2014.00076
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

	Fluid intelligence and brain functional organization in aging yoga and meditation practitioners
	Introduction
	Methods
	Participants
	Behavioral Measures
	Image Acquisition
	Procedure and Analysis
	Imaging
	Data preprocessing
	Anatomical parcellation and timeseries extraction
	Network analysis
	Resilience



	Results
	Subject Characteristics
	Age Related Decline in Fluid Intelligence
	Integration and Segregation of Resting State Networks
	Resilience of Resting State Networks
	Mindfulness, Intelligence, and Network Integration

	Discussion
	Slower Decline of Fluid Intelligence
	Resilient Brain Functional Networks
	Greater Small-Worldness Through More Integration
	Mindfulness is Related to Fluid Intelligence and Brain Functional Network Resilience and Integration
	Yoga Practitioners vs. Meditators
	Limitations

	Conclusion
	Acknowledgments
	References


