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Cognitive impairment is the final outcome of a complex network of molecular mechanisms
ultimately leading to dementia. Despite major efforts aimed at unraveling the molecular
determinants of dementia of Alzheimer type (DAT), effective disease-modifying approaches
are still missing. An interesting and still largely unexplored avenue is offered by
nutraceutical intervention. For instance, robust epidemiological data have suggested
that moderate intake of red wine may protect against several age-related pathological
conditions (i.e., cardiovascular diseases, diabetes, and cancer) as well as DAT-related
cognitive decline. Wine is highly enriched in many polyphenols, including resveratrol.
Resveratrol is a well recognized antioxidant which may modulate metal ion deregulation
outcomes as well as main features of the Alzheimer’s disease (AD) brain. The review will
discuss the potentiality of resveratrol as a neuroprotectant in dementia in relation to the
oxidative stress produced by amyloid and metal dysmetabolism.
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INTRODUCTION
The so-called French paradox arises from the epidemiological
fact that French people, despite their indulgence to a high fat
diet, show a relative low incidence of cardiovascular diseases
(Renaud and De Lorgeril, 1992). Several epidemiological studies
have shown that moderate wine consumption can be effective in
slowing down age-related cognitive decline (Wang et al., 2006;
Panza et al., 2012; Corona et al., 2013). A possible explanation of
this phenomenon has been linked to the national high consump-
tion of wine (20–30 g/day) (Renaud and De Lorgeril, 1992). Albeit
moderate ethanol intake is, generally speaking, “beneficial”, some
more specific effects appear to be related to red wine. Red wine
consumption seems in fact to promote far more protective effects
than consumption of other ethanol containing beverages (Baur
and Sinclair, 2006). Resveratrol, a natural polyphenol, is mainly
present in red wine and has been suspected to be the major driving
force behind the French paradox (Siemann and Creasy, 1992).

AD is one of the most common forms of dementia in the
elderly. To date, no disease-modifying therapies are still available
for AD.

The main four pathological features of the disease are: (1)
extracellular deposition of misfolded β-amyloid (Aβ) in senile
plaques (SPs); (2) intracellular accumulation of hyperphospho-
rylated tau in neurofibrillary tangles (NFTs); (3) severe brain
atrophy; and (4) the presence of areas of chronic inflammation
(Querfurth and Laferla, 2010; Medeiros et al., 2013).

In the last 20 years, deregulation of Aβ metabolism (amyloid
oligomerization, aggregation, and plaques formation) has been

considered the main trigger for AD-related synaptic dysfunction.
Amyloid has been therefore the major target for therapeutic
intervention (Hardy and Higgins, 1992; Mucke and Selkoe, 2012).
Unfortunately, most of these attempts have dramatically failed
or have produced only marginal effects (Reitz, 2012; Krstic and
Knuesel, 2013; Doody et al., 2014).

Better therapeutic strategies are thus needed along with new
acknowledgment that AD is a complex multifactorial syndrome.

Aging is the required paramount condition (Herrup, 2010)
on which, in addition to Aβ together with tau deregulation,
genes, chronic inflammation, mitochondrial, metabolic dysfunc-
tions, impaired insulin signaling, oxidative stress, aberrant cell
cycle reentry, cholesterol dysmetabolism as well as metal ion
dyshomeostasis must synergistically work to promote AD patho-
logical manifestation (Herrup, 2010; Querfurth and Laferla, 2010;
Roberts et al., 2012). While a single-target therapeutic strategy
seems to produce only suboptimal results a broader neuropro-
tective approach, at least theoretically, appears more appealing
(Mudher and Lovestone, 2002).

In this review, we are providing some evidence for resveratrol
as a broad-spectrum neuroprotective agent in aging and hopefully
in AD.

RESVERATROL
Resveratrol has beneficial cardiovascular effects (Siemann and
Creasy, 1992) throughout a great variety of molecular mecha-
nisms (Howitz et al., 2003; Baur and Sinclair, 2006; Lagouge et al.,
2006; Park et al., 2012).
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A recent review on aging determinants has proposed nine
hallmarks for the process (López-Otín et al., 2013). Not surpris-
ingly, almost all of them are also involved in AD development
and progression (Figure 1; Herrup, 2010; Querfurth and Laferla,
2010) and, notably, at least five, are well recognized target for
resveratrol modulation.

In the following sections we have outlined potential effects of
resveratrol on these aging and/or AD molecular targets.

β-AMYLOID AND HYPERPHOSPHORYLATED TAU MISFOLDING
Blockade of Aβ deposition into SPs and inhibition of hyperphos-
phorylation of tau into NFTs has been considered mandatory to
prevent or, at least, delay AD-related cognitive decline.

Resveratrol has been shown to inhibit Aβ fibrils formation
(Porat et al., 2006; Rivière et al., 2007). Moreover, in vitro
and in vivo studies have also indicated that resveratrol reduces
amyloid toxicity by decreasing Aβ production through sirtuin-
dependent activation of a disintegrin and metalloproteinase
domain-containing protein 10 (Donmez et al., 2010). The com-
pound also increases clearance and metabolism via an AMP-
activated protein kinase-pathway and can induce autophagic and
lysosomal Aβ degradation (Marambaud et al., 2005; Vingtdeux
et al., 2010). Resveratrol can effectively interject in the amyloid
cascade through its antioxidant and anti-inflammatory activ-
ity, thereby reducing Aβ-driven production of reactive oxygen
species (ROS) as well as neuroinflammation (Liu and Bitan,
2012).

Effects on tau phosphorylation and deposition have been
less investigated. However, resveratrol-mediated activation of
sirtuin-1 (SIRT1) can lead to direct deacetylation of acetylated
tau, thereby promoting its proteasomal degradation (Min et al.,
2010). In addition, the compound can reduce phospho-tau tox-
icity (induced by cyclin-dependent kinase 5-p25 dependent tau
phosphorylation) by favoring the deacetylation of peroxisome
proliferator-activated receptor gamma, coactivator 1 alpha (PGC-
1α) and p53 (Kim et al., 2007).

CELLULAR METABOLISM
Caloric restriction has been proposed to be effective in increasing
lifespan in several animal models. Fasting has been observed to
promote beneficial effects on preclinical models of AD and aging
not only by extending lifespan but also by ameliorating cogni-
tive performances (Halagappa et al., 2007). Caloric restriction
can in fact promote release of brain-derived neurotrophic fac-
tor (BDNF), a neurotrophin critically involved in counteracting
cognitive decline (Weinstein et al., 2014).

In this context, resveratrol efficiently mimics caloric restric-
tion by inducing expression of SIRT1 (a nicotinamide adenine
dinucleotide (NAD+) dependent deacetylase) which in turn sets
in motion a cascade of PGC-1α-dependent events that ultimately
lead to improved mitochondrial functioning and biogenesis and
boost cellular ROS scavenging (Gomes et al., 2013; López-Otín
et al., 2013).

INFLAMMATION
Areas of localized inflammation and active microglia con-
tribute to neurodegeneration and cognitive decline in AD brains

FIGURE 1 | Synoptic view of the overlap between aging, and thus
AD, hallmarks (see López-Otín et al., 2013) and the molecular targets
of resveratrol. Resveratrol, compared to many other disease modifying
approaches, shows a broader range of beneficial effects targeting many
molecular aspects of AD pathogenesis. Thus, resveratrol may represent
a promising broad-spectrum neuroprotective agent in AD.

(McGeer and McGeer, 2013). Pharmacological and genetic
manipulations aimed at reducing brain inflammation appear to
be effective in slowing/modifying the disease progression in AD
animal models (Heneka et al., 2013; Giuliani et al., 2014).

Resveratrol is effective in reducing the inflammatory status
(Rahman et al., 2006; Chen et al., 2013) in in vitro and in vivo
settings of neuroinflammation (Capiralla et al., 2012; Frozza et al.,
2013).

Mechanisms by which resveratrol attenuate neuroinflamma-
tion are still not completely clear. A major pathway seems to
involve sirtuin-dependent arrest of nuclear factor kappa-light-
chain-enhancer of activated B cells signaling cascades, a step that
results in downstream blockade of microglia activation (Capiralla
et al., 2012; Donmez, 2012; Ye et al., 2013).

MITOCHONDRIAL DYSFUNCTION AND ROS
Mitochondria play an essential role in the cell wellbeing. The
organelles critically control cellular energy and metabolism as well
as intracellular signaling (Rizzuto et al., 2012). On the dark side,
mitochondria are also key players in modulating cellular death
through release of apoptotic factors, blockade of energy supply
and generation and release of ROS. Alterations of mitochondrial
functioning are known in aging and early stages of AD (Wang
et al., 2013).

Mitochondrial electron leakage, followed by ROS production
occurs in neurodegenerative conditions paving the way to lipid
peroxidation, nucleic acid damage, protein oxidation, and, even-
tually, neuronal death (Wang et al., 2013).

Resveratrol counteracts the production of mitochondrial ROS
through two major mechanisms: (1) by efficiently scavenging
hydroxyl, superoxide, and metal-induced radicals (Leonard et al.,
2003); and (2) by increasing mitochondrial functioning and
biogenesis through activation of the SIRT1–PGC-1α pathway,
thereby boosting mitochondrial bioenergetic efficiency (Khan
et al., 2012; Choi et al., 2013; Desquiret-Dumas et al., 2013).

TELOMERES SHORTENING
Telomeres shortening plays a key role in cellular aging and AD
(Cai et al., 2013; Mathur et al., 2014). Short telomeres increase
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DNA vulnerability to stressful insults (i.e., UV irradiation, ROS
production) ultimately leading to aberrant cell functioning and
cell death. Polyphenols has a positive impact upon maintenance of
telomeres length (Jayasena et al., 2013). In that respect, resveratrol
promotes the expression of Werner syndrome ATP-dependent
helicase, a telomere maintenance factor (Uchiumi et al., 2011),
increases the activity of telomerase via a SIRT1-dependent path-
way (Palacios et al., 2010), and spares telomeres and DNA from
ROS dependent damages thanks to its intrinsic scavenging prop-
erties (Jayasena et al., 2013).

METAL IMBALANCE IN THE AD BRAIN: A POTENT TRIGGER
OF OXIDATIVE STRESS
In the brain, metal ions are involved in many essential processes
such as intracellular signaling, modulation of cellular redox and
metabolic states, enzymatic activities and channels functioning
(Billard, 2006; Sensi et al., 2009; Rizzuto et al., 2012; Sekler and
Silverman, 2012; Gaier et al., 2013). Metal homeostasis is strictly
controlled by the interplay of transporters, channels, chaperones
and metalloregulatory sensors (Finney and O’halloran, 2003).
In neurodegenerative conditions and/or aging, this tightly con-
trolled system is lost, thereby leading to disease-promoting metal
imbalance (Bolognin et al., 2009; Breydo and Uversky, 2011;
Jellinger, 2013).

Metal ion dyshomeostasis is in fact involved in several neuro-
logical disorders like Parkinson’s disease (PD), Amyotrophic Lat-
eral Sclerosis (ALS), Prion Protein disease, Huntington’s disease
(HD), and AD. All these neurodegenerative conditions share com-
mon pathological features that include deposition of misfolded
proteins, metal ion deregulation and exposure to oxidative stress
(Boillee et al., 2006; Duce and Bush, 2010; Roberts et al., 2012;
Gonzalez-Dominguez et al., 2014).

In AD, metal ion dyshomeostasis represents a key, though
too often overlooked, pathological step. A metal hypothesis for
AD has been proposed by many authors (Bush, 2008). In that
respect, copper, iron, zinc and aluminum are the metals found
deregulated in AD. All of them are able to alter Aβ metabolism and
deposition (Bolognin et al., 2011). SPs but also NFTs are highly
enriched of these metals. Moreover, all these ions can promote
ROS generation (Sayre et al., 2000; Granzotto and Zatta, 2011;
Pithadia and Lim, 2012; Ayton et al., 2013).

Recent findings have shown that low levels of copper are
sufficient to dramatically affect Aβ homeostasis by increasing Aβ

accumulation and neuroinflammation related to Aβ-deposition
(Singh et al., 2013). Compared to nondemented elderly controls,
brains of AD patients show an increased presence of labile copper
pools, which correlate with oxidative damage in these tissues
(James et al., 2012). Resveratrol is a well known copper chelator
(Tamboli et al., 2011) and, in theory, of some use in AD (Faux
et al., 2010). Unfortunately, the copper-resveratrol complex seems
to be more harmful than beneficial in the context of AD. Resver-
atrol promotes the reduction of copper (II) to copper (I) (de
la Lastra and Villegas, 2007) and several studies have indicated
a pro-oxidant activity of the compound when bound to copper
(Zheng et al., 2006; de la Lastra and Villegas, 2007; Muqbil
et al., 2012). Thus, resveratrol activity on copper homeostasis

appears more harmful than neuroprotective if used as standalone
therapeutic approach. A feasible and, in our opinion, clinically
relevant approach might be represented by the administration of
resveratrol in association with a higher affinity copper chelator.
This would lead, at least in theory, to a dual beneficial effect:
reduction of copper dyshomeostasis coupled with decreased ROS
production.

Iron deregulation has been linked to AD (Weinreb et al.,
2013; Crespo et al., 2014; Gonzalez-Dominguez et al., 2014).
Role of iron in AD pathogenesis is substantiated by the
effectiveness of metal homeostatic therapies aiming at reduc-
ing iron deregulation (Crouch et al., 2007), which results in
(1) decreased free iron accumulation and ferroptosis (Dixon
et al., 2012); (2) decreased iron-dependent ROS production;
and (3) blockade of neurotoxic Aβ-iron conjugates formation
(Liu et al., 2012). To date, in vivo evidence for iron chela-
tion by resveratrol is missing, however the compound prevents
iron-driven mitochondrial dysfunction by inhibiting glycogen
synthase kinase-3 beta activity (a mechanism useful also to
prevent tau hyperphosphorylation) (Shin et al., 2009), and by
reducing peroxidation of lipoproteins and lipids through its
activity as scavenger (Belguendouz et al., 1997; Tadolini et al.,
2000).

Zinc dyshomeostasis has been proposed as a risk factor for
AD. Accumulation of excessive zinc, or its deficiency, are both
involved in the neuronal loss which leads to AD and aging
related cognitive decline (Brewer, 2012). While zinc deficiency
increases neuroinflammation and also affects BDNF matura-
tion and ultimately cognition, aberrant intracellular zinc mobi-
lization or accumulation leads to mitochondrial failure and
ROS production. Extracellular zinc overload within SPs also
inhibits the iron-export ferroxidase activity further increasing
ROS production and ultimately neuronal death (Duce et al.,
2010). Resveratrol does not directly affect zinc levels however
it can be useful in preventing the full development of zinc-
dependent injurious mechanisms. Actually, resveratrol inability
to sequester zinc does not represent a limitation, as the com-
pound can exert antioxidant activities without producing zinc
deficiency.

Aluminum lacks modulatory functions in biological processes;
however, its accumulation in the brain has been demonstrated to
be linked to several neuropathological conditions (Zatta et al.,
2003; Walton, 2013). To date three are the main mechanisms
through which aluminum exerts its neurotoxic effects: (1) pro-
duction of ROS; (2) induction of neuroinflammation; and (3)
formation of toxic aggregates of misfolded proteins (Perl, 2006;
Kumar et al., 2009; Wu et al., 2012; Bolognin et al., 2013). In AD,
aluminum seems to act as an effective cross-linker between tau
phospho-sites, to “freeze” Aβ in its toxic oligomeric state, and to
induce exposure of Aβ hydrophobic clusters aggregates, thereby
boosting toxic properties of these misfolded proteins (Zatta et al.,
2009; Bolognin et al., 2011; Chen et al., 2011; Granzotto et al.,
2011). Aluminum-related oxidative damage occurs through lipid
peroxidation, alteration of the activity of antioxidant enzymes,
alterations of mitochondrial functioning and biogenesis and pro-
motion of DNA injury (Zatta et al., 2002; Sharma et al., 2013).
Resveratrol shows a negligible ability to bind aluminum in vitro
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FIGURE 2 | Metal ions dyshomeostasis is closely related to different
hallmarks of AD pathogenesis, mainly protein misfolding, ROS
production, mitochondrial failure and inflammation. In this figure the

mechanisms through which resveratrol exert its neuroprotective role against
selected metal ions are reported. Of note, most of the resveratrol beneficial
effects against metal ion dyshomeostasis belong to its scavenging properties.

(Granzotto and Zatta, 2011), nevertheless, it seems effective in
reducing in vivo the downstream events of aluminum overload,
namely the aluminum-related ROS production and neuroinflam-
matory response activation (Zaky et al., 2013).

CONCLUSIONS
Resveratrol is a multi target compound and may represent an
effective therapeutic tool in aging-related neurodegenerative pro-
cesses. Consistently, several clinical trials are ongoing to test its
effectiveness as dietary supplement to slow dementia progression
(ClinicalTrials.gov, 2014).

In summary, major effects are associated with its scavenging
activity as well as in the activation of SIRT1 (see Bordone and
Guarente, 2005; Herskovits and Guarente, 2014 for extensive
reviews on the topic). The presence of non-SIRT1 neuronal targets
of resveratrol is debated, suggesting that resveratrol in vivo may
act on other uninvestigated biological targets (Herskovits and
Guarente, 2014). The complementary role of modulator of metal
dependent oxidative injury (Figure 2) represents a still largely
unexplored field in resveratrol biochemistry.

Resveratrol is a multi-target, simple, safe, and cost-effective
dietary supplement. Nevertheless, it should be reminded that
its role as therapeutic agent is not devoid of potential prob-
lems. The pro-oxidant activity in presence of labile copper, the
poor bioavailability and ease degradation all represent major
issue that require new sophisticated efforts (Goldberg et al.,
2003). Synthesis of novel resveratrol analogs is ongoing and
improvement of drug delivery might represent in that regard
the major targets to be considered in order to overcome current
resveratrol limitations. In agreement, pterostilbene, a resveratrol

derivative, has shown promise in preclinical models of neu-
rodegeneration, resulting more efficient than resveratrol itself
in modifying AD- and aging-related cognitive decline (Joseph
et al., 2008; Chang et al., 2012). These results leave the door
open for the use of newly synthesized resveratrol analogs in
aging-related disorders (Bourzac, 2012; Ogas et al., 2013; Pezzuto
et al., 2013).
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