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Background: Although recent studies point to the involvement of the primary motor cortex
in postural control, itis unknown if age-related deterioration of postural control is associated
with changes in motor cortical circuits. WWe examined the interaction between age and
sensory condition in the excitability of intracortical motor pathways as indexed by short-
interval intracortical inhibition (SICI) and intracortical facilitation (ICF) during standing.

Methods: \We used magnetic brain stimulation to evoke SICl and ICF in 11 young (range 21—
25 years) and 12 healthy old adults (range 60-74 years) while they stood on a rigid platform
or foam, with the eyes open or closed.

Results: There was an overall age-related 43 % reduction in SICI (o = 0.001). SICl lessened
when standing on foam in old (31%) but not in young (1%) adults (condition x group
interaction, p = 0.049). This reduction was associated with increases in center of pressure
velocity (r = —0.648, p = 0.043). Age (p = 0.527) and sensory conditions (p = 0.325) did
not affect ICF

Conclusion: Motor cortical circuits controlling leg muscles are modulated differently in
healthy old vs. young adults during upright posture. Future experiments will clarify whether
this difference mediates impaired postural control or serves as a compensatory mechanism

to counteract postural instability.
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INTRODUCTION
Accumulating evidence points to the involvement of the pri-
mary motor cortex (M1) in postural control (Beloozerova etal.,
2003; Taube et al., 2006, 2008; Tokuno et al., 2009). Several stud-
ies also suggest that training of balance skills is associated with
M1 plasticity (Beck etal., 2007; Schubert et al., 2008) and that this
plasticity correlates with improvements in postural control (Taube
etal., 2007; Taubert etal., 2010). It is well known that postural
control of upright stance progressively declines with age. Many
factors have been identified to contribute to the age-related dete-
rioration of postural control, including reduced muscle strength
(Boelens etal., 2013), impaired sensory abilities (Proske and Gan-
devia, 2012), slowed nerve conduction velocity (Nardone etal.,
1995), and altered spinal reflexes (Koceja etal., 1995; Baudry and
Duchateau, 2012). In addition, the excitability of the corticospinal
pathway, including the direct projections (monosynaptic) from
cortical neurons to spinal motor neurons, is greater in old com-
pared with young adults during upright standing (Baudry etal,,
2014a,b). It is unknown if, in addition to age-related changes in the
corticospinal pathway, aging also influences intracortical circuits
during upright standing.

During manual motor tasks, neuroimaging studies report
greater activation in M1, premotor, and prefrontal areas in old
compared with young adults (Calautti etal., 2001; Mattay etal.,

2002; Ward and Frackowiak, 2003). Similarly, studies using
transcranial magnetic stimulation (TMS) revealed disinhibition
in several M1 inhibitory circuits in old compared with young
adults during manual motor tasks, as reflected by decreases in
interhemispheric inhibition, silent period, cortical reciprocal inhi-
bition, and short-interval intracortical inhibition (Oliviero etal.,
2006; Hortobagyi et al., 2006; Talelli et al., 2008; Marneweck et al.,
2011; Fujiyama etal., 2012; Heise etal., 2013). However, several
other studies report no changes (Oliviero etal., 2006; Smith et al.,
2011) or even increased inhibition with age (Kossev etal., 2002;
McGinley etal., 2010). These inconsistencies in literature are prob-
ably related to differences in task difficulty, age range and the
type of muscle examined. Age-related decreases in intracortical
inhibition have been associated with worse motor performance
measured under a variety of experimental conditions (Marneweck
etal., 2011; Fujiyama etal., 2012; Heise etal., 2013). Thus, there
is ample evidence that aging modifies intracortical processing and
that such modifications can affect motor control (for a review, see
Papegaaij etal., 2014). Hence, it seems reasonable to expect that
age-related changes in intracortical circuits are — at least in part —
responsible for the deterioration in postural control.

Therefore, the purpose of the present study was to examine the
interaction between age and sensory condition in M1 excitability
as indexed by short-interval intracortical inhibition (SICI) and
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intracortical facilitation (ICF) during standing. We manipulated
sensory condition by altering proprioceptive feedback (standing
on a rigid platform vs. foam) and visual feedback (eyes open vs.
eyes closed).

Based on work showing modulations in inhibitory spinal cir-
cuits with sensory conditions and postural task difficulty (Koceja
etal., 1995; Katz etal., 1988; Baudry and Duchateau, 2012), we
hypothesized that behaviorally relevant modulations would also
occur in M1 excitability. Specifically, we expected a reduction of
SICI with altered sensory conditions, to increase M1 excitabil-
ity and consequently the number of motor solutions available.
In addition, based on the previously mentioned studies reporting
cortical disinhibition with aging (Oliviero etal., 2006; Hortobagyi
etal., 2006; Talelli etal., 2008; Marneweck etal., 2011; Fujiyama
etal., 2012; Heise etal., 2013), we expected that old adults would
show a generally reduced SICI compared to young adults. Based
on the findings of Heise etal. (2013), we hypothesized that this
age-related disinhibition during normal standing would result in
a decreased modulation of SICI between tasks. To validate the
putative role of M1 in postural control, we predicted an associa-
tion between the task-related modulation of M1 excitability and
alteration in postural stability. Because of a lack of data concern-
ing ICF modulation during postural tasks, the formulation of a
specific hypothesis is premature.

MATERIALS AND METHODS

PARTICIPANTS

Eleven healthy young adults (age 23 =+ 1 years, range 21-25 years,
4 men) and fourteen healthy old adults (age 68 £ 5 years,
range 60—77 years, 11 men) volunteered for the study. In two
old men (age 66 and 77 years) the stimulation intensity was
above the comfort threshold and we stopped data collection.
Two young and two old adults were left-footed (Hebbal and
Mysorekar, 2006). None of the participants had a history of or
presented with neurological disorders, severe orthopedic disor-
ders, suspicion of pregnancy, non-dental associated metal within
the cranium, or took neuroactive drugs or drugs known to
affect balance. The mini-mental state examination (MMSE) and
short questionnaire to assess health-enhancing physical activity
(SQUASH) were used to determine general cognitive function
and physical activity in daily life. Subjects also completed the
short physical performance battery (SPPB) including standing
balance, walking speed and chair stand tests to specifically evalu-
ate lower extremity function (Table 1). Before the experiment,
subjects signed an informed consent document approved by
the Medical Ethics Committee of the University Medical Center
Groningen.

EXPERIMENTAL SETUP

Surface electromyography (EMG) was recorded (DE-2.1, Del-
sys, Natick, MA, USA) for the right tibialis anterior (TA) by
attaching active electrodes over the muscle belly and the refer-
ence electrode on the medial aspect of the tibia. To minimize
impedance at the electrode-skin contact, the skin was shaven,
abraded with fine-grain sandpaper, and cleaned with alcohol. The
EMG signal was amplified 1000 times (model Bagnoli-8, Del-
sys, Natick, MA, USA), sampled at 5 kHz, and bandpass filtered

Table 1 | Subject characteristics.

Young adults Old adults
Age (years) 23+ 1 68 + 4
Sex (male; female) 4.7 11;3
BMI (kg/m?) 23+ 17 24 4+ 3.6
SPPB score 12+0 12+1
MMSE score 300 30+1
SQUASH
Total score 9718 + 1934 10045 + 3236
Light (min/w) 2337 £+ 580 912 £+ 829
Moderate (min/w) 459 + 309 353 + 284
Heavy (min/w) 222 4+ 229 602 4218

Values are mean + SD, unless indicated differently. BMI: body mass index, SPPB:
short physical performance battery (max. score of 12), MMSE: mini mental state
examination (max. score of 30), SQUASH: short questionnaire to assess health-
enhancing physical activity. Total score is minutes per week x intensity of the
activity. The amount of light, moderate and heavy exercise is expressed in minutes
per week.

with a second order Butterworth filter (10-1000 Hz) using data
acquisition interface and software (Power 1401 and Spike2, Cam-
bridge Electronics Design, Cambridge, UK). Subjects performed
a maximum voluntary contraction (MVC) of the ankle dorsal
flexors while seated in a chair with the knee in 45° flexion and
the ankle in neutral position. The EMG activity recorded dur-
ing this effort was used to express and normalize the background
EMG.

During the main part of the experiment, subjects were
instructed to maintain an upright bipedal stance on two force
plates (Bertec 4060-08, Columbus, OH, USA). With the arms
crossed across the chest, subjects looked at a sharply visible “+”
sign displayed on a projection screen. Foot position was standard-
ized with the heels 9 cm apart and a toe-out angle of 30°. The
center of pressure (CoP) position signal was sampled at 100 Hz,
and filtered using a fourth order low-pass Butterworth filter with
a cut off frequency of 10 Hz. It was not necessary to correct the
CoP position data for height of the foam (6 cm) because pilot
experiments showed a minimal effect.

An 11-video-camera motion analysis system (Vicon, Oxford,
UK) recorded spatial coordinates of reflective markers placed on
the right trochanter major and lateral malleolus. The signal was
sampled at 100 Hz, filtered with a second order low-pass Butter-
worth filter (cut off frequency: 5 Hz), and used online to determine
whether the person was swaying forward or backward.

In a random order, subjects performed four standing con-
ditions with altered sensory states: standing on a rigid surface
with eyes open (rigid — EO) and eyes closed (rigid — EC), stand-
ing on foam (47 cm x 38 cm x 6 cm, Bodybow Healthcare
BV, Nieuwegein, Netherlands) with eyes open (foam — EO) and
eyes closed (foam — EC). Three minute resting periods were given
between conditions to prevent fatigue. We also recorded two peri-
ods of 10 s per surface condition (rigid, foam) where participants
assumed the standardized position without receiving TMS.
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TMS DATA ACQUISITION

In the present study, transcranial magnetic stimuli were delivered
over the left M1 with a double cone coil connected to a Magstim
200% and Bistim? (Magstim, Whitland, UK), except for two old
adults for whom a 90 mm circular coil was used as no clear MEP
was evoked with the double-cone coil. We targeted the TA because
this muscle generally provides a low motor threshold (MT) and
good reliability of MEPs (Cacchio etal., 2009). The optimal loca-
tion for eliciting MEP’s in the TA with the largest amplitude at
a given intensity was determined by moving the coil systemati-
cally in steps of 0.5 cm over the M1 area starting at the vertex. In
general, the optimal location was found 0.5-1.5 cm posterior and
lateral to the vertex. The location was marked on the skull with a
permanent marker to enable the experimenter to hold the coil on
a consistent location throughout the experiment. While standing,
the MT, defined as the lowest intensity in which the MEP’s were
larger than 100 WV in at least three out of five consecutive trials,
was determined (Calautti et al., 2001).

Paired-pulse TMS with an interstimulus interval of 2.5 ms was
used to assess SICI, while an interstimulus interval of 13 ms was
used to assess ICF. The interstimulus intervals were chosen based
on the literature (Roshan etal., 2003; Soto etal., 2006) and pilot
experiments showing greatest inhibition and facilitation at these
intervals. Conditioning and test stimulation intensity were set
at 0.8 and 1.2 MT, respectively. In all standing conditions there
were 10 test MEP, 10 SICI, and 10 ICF trials. To reduce variabil-
ity in MEP size induced by sway direction (Tokuno etal., 2009)
and to minimize the magnitude of background EMG, TMS was
triggered only when the person was swaying forward (negative
angular velocity) and with a minimal interval of 5 s between
trials.

DATA ANALYSIS

Rectified background EMG was averaged in each trial over the
100-ms period preceding the TMS artifact, and expressed as a per-
centage of the EMG activity measured during the MVC trial. The
peak-to-peak amplitude of the TMS-generated MEPs was com-
puted. Using the interquartile range (Tukey, 1977), four percent
of the total number of trials were identified as outliers and were
substituted with the mean. SICI and ICF were expressed as per-
centage inhibition and facilitation, by using the following formula
for SICI: 100 - (conditioned MEP/test MEP x 100), and the fol-
lowing formula for ICF: (conditioned MEP/test MEP x 100) -
100. CoP velocity while standing on the rigid platform and on
foam was used to describe the postural behavior of subjects. CoP
velocity is a highly reliable measure (Demura et al., 2008) that has
proven to discriminate well between age groups and test situations
(Raymakers etal., 2005).

STATISTICAL ANALYSES

All variables were checked for normal distribution prior to anal-
ysis. Background EMG was logarithmically transformed because
of a skewed distribution. We compared MT between young and
old adults using an independent samples t-test. The main anal-
ysis was an Age (young, old) by Condition (rigid-EO, rigid-EC,
foam-EO, foam-EC) two-way repeated measures ANOVA on test
MEP amplitude, SICI, ICF, and background EMG. In case of

a significant condition effect, results were subjected to a post
hoc Tukey’s test. Because CoP velocity was only measured in
two conditions (rigid, foam), this outcome measure was ana-
lyzed in an Age (young, old) by Condition (rigid, foam) two-way
repeated measures ANOVA. A Greenhouse—Geisser correction was
applied when the assumption of sphericity was violated. Pearson
correlation coefficients were computed to assess the association
of background EMG with test MEP amplitude, SICI and ICF,
and the association of test MEP amplitude with SICI, using the
combined age group data. Furthermore, Pearson correlation coef-
ficients were computed to examine the relationship between the
changes in SICI and CoP velocity from rigid to foam condi-
tions in the two age groups. IBM SPSS statistics 20 was used for
statistical analysis. The alpha level was set at 0.05. Results are
presented as mean £ SD in the text and tables and mean £ SE
in Figures 1 and 3. Interaction effects are only reported when
significant.

RESULTS

CENTER OF PRESSURE

There was a significant age x condition interaction effect for CoP
velocity (F,19 = 15.8; p = 0.001; Figure 1), with a greater increase
in CoP velocity from the rigid to the foam condition in old adults
(from 1.75 to 2.58 cm/s, p < 0.001) as compared to young adults
(from 1.54 to 1.85 cm/s, p < 0.001).

TMS MEASURES

Across all subjects, MT was similar in young (49 £ 8%, range
34-55%) and old adults (50 £ 12%, range 31-73%, t;; = —0.2,
p = 0.845). Therefore, the average stimulation intensities were
similar in the two age groups. The effects of sensory condition
on TMS responses from a representative young and old sub-
ject are illustrated in Figure 2. Group data show that test MEP
amplitude was similar in young and old adults (F; = 1.3,
p = 0.261; Figure 3A). However, there was a significant condi-
tion effect (Fy39 = 14.2, p < 0.001). Post hoc tests revealed that
the test MEP’s during standing on foam were greater compared
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FIGURE 1 | Group data (mean + SE) for young and old adults of center
of pressure velocity when standing on a rigid (R) surface and on foam
(F), showing a significant interaction effect (p = 0.001) EO: eyes open.
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FIGURE 2 | Representative responses to transcranial magnetic brain
stimulation in the tibialis anterior muscle of one 23-year-old female and
one 73-year-old male participant while standing on rigid and foam
surfaces with eyes open (EO) and eyes closed (EC). \Waveforms represent
the motor evoked potential averaged over 10 trials in response to an

01s

AW S0
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unconditioned test pulse (thing gray line) and to a conditioned test pulse (thick
black line) at 2.5 ms interval. Note the absence of modulation of short interval
intracortical inhibition (SICI) across the four conditions in the young subject, in
contrast to the old subject who decreases SICI when sensory conditions are
altered.

with those recorded while standing on a rigid surface (p < 0.01),
and during foam-EC compared with foam-EO (p < 0.001). How-
ever, no difference related to vision conditions was observed when
standing on a rigid surface (p > 0.05). The 2 x 4 ANOVA did
not reveal significant modulation between conditions for SICI
(F360 = 1.7, p = 0.185), but SICI was greater in young adults
(67 £ 23%) compared to old adults (39 + 20%) regardless of
standing condition (Fj,9 = 16.5, p = 0.001; Figure 3B). Fur-
thermore, when pooled across vision conditions, the 2 (young,
old) by 2 (rigid, foam) ANOVA revealed a significant age X con-
dition interaction (Fiz0 = 4.4, p = 0.049), with a decrease in
SICI from rigid to foam in old (31% change, p < 0.001) but
not in young adults (p > 0.05). Age and conditions did not
affect ICF (FI,ZO = 04, p = 0.527; F360 = 1.2, p = 0.325;
Figure 3C).

BACKGROUND EMG

Figure 3D shows the group x condition interaction (F;34 = 4.1;
p = 0.031) for the log-transformed background EMG in
the TA, with a greater increase in background EMG when
altering the sensory conditions in old compared to young
adults. Post hoc tests revealed that there was no effect
of sensory condition on background EMG in young adults
(p > 0.05). In old adults all comparisons between conditions
were significant (p < 0.05), except for rigid-EO vs. rigid-
EC (p > 0.05). Moreover, bEMG did not differ between age
groups during the rigid surface conditions (p > 0.05), but
was higher in old adults during the foam surface conditions
(p < 0.001).

CORRELATIONS

To determine whether differences in background EMG could have
caused the condition (rigid vs. foam) and age (young vs. old)
effects in TMS measures, we performed correlation analyses. The
changes in background EMG between the rigid and the foam con-
ditions did not correlate significantly with the changes in test MEP
amplitude (r = 0.27, p = 0.244), SICI (r = —0.29, p = 0.202) or
ICF (r = —0.25, p=0.275). Furthermore, there was no significant
correlation between the changes in test MEP amplitude and SICI
(r=—0.26, p = 0.239) or ICF (r = —0.17, p = 0.444).

Figure 4 shows the relationship between changes in SICI and
CoP velocity from the rigid to the foam condition in young and
old adults. Within the old adults, subjects who reduced their SICI
more when changing from standing on a rigid surface to standing
on the foam, showed a greater increase in CoP velocity (r = —0.65,
p=0.043).

DISCUSSION

This is the first study that examines the effects of age on intracor-
tical circuit excitability during postural tasks. The data confirmed
the overriding hypothesis of an interaction between age and sen-
sory condition in M1 excitability: SICI lessened when standing
on foam compared with standing on a rigid surface in old but
not in young adults. This reduction was associated with a greater
decrease in stability when the support surface was altered. In con-
trast, ICF did not vary with age and sensory conditions. This study
extends the literature reporting on the age-related reductions in
cortical inhibition during manual tasks by demonstrating similar
reductions in cortical inhibition during a postural task.
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FIGURE 3 | Group data (mean + SE) for young and old adults of
(A) amplitude test MEP (condition effect, p < 0.001), (B) short
interval intracortical inhibition (SICI; group effect, p = 0.001;
interaction effect, p = 0.049), (C) intracortical facilitation (ICF),
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(D) background EMG (interaction effect, p = 0.031). Conditions were
standing on a rigid platform and on foam (rigid, foam), with eyes open
and eyes closed (EO, EC). Greater values for SICI and ICF represent
respectively more inhibition and facilitation.

AGE-RELATED DECREASE IN SICI

Previous studies reported inconsistent results concerning the asso-
ciation between age and SICI. The inconsistencies may in part
be due to differences in the strength of corticomotoneuronal
projections to the target muscle. For example, hand muscles com-
pared with forearm muscles have more abundant monosynaptic
projections (Palmer and Ashby, 1992), and SICI investigated in
motor cortex associated with hand muscles has been reported to
be reduced (Marneweck etal., 2011; Heise etal., 2013) or sim-
ilar (Oliviero etal., 2006; Smith etal., 2011) in old compared
with young adults. In contrast, studies examining wrist flex-
ors and extensors found more SICI in old than in young adults
(Kossev etal., 2002; McGinley etal., 2010). As the TA exhibits
nearly similar density of corticospinal projections as hand mus-
cles (Brouwer and Ashby, 1992; Petersen etal., 2003), results of
the present study support the hypothesis of a specific reduction in
SICI for muscles with rich corticospinal projections, suggesting
that aging further strengthens the corticomotoneuronal path-
way by diminishing intracortical inhibition. Nonetheless, this
may also reflect a greater contribution of this pathway dur-
ing upright standing, regardless of leg muscles (Baudry etal.,
2014b).

POSTURE-SPECIFIC REDUCTIONS IN SICI AFFECT PERFORMANCE

In addition to the lower SICI in elderly adults, the present
results show that elderly adults modulated SICI depending on
the sensory conditions, and more specifically the surface of sup-
port. There are several studies showing changes in SICI related
to motor control. For example, SICI is reduced during move-
ment preparation (Heise etal., 2013), during the activation phase
compared with the deactivation phase in cycling (Sidhu etal.,
2013), and after periods of motor practice (Rosenkranz etal.,
2007; Smyth etal., 2010). However, we found no difference in
SICI between tasks in young adults, resulting in a significant
age x condition interaction. It must be noted that this inter-
action was only significant when data was pooled across vision
conditions, probably due to a relatively low number of par-
ticipants. Also, this might indicate that the modulation only
occurs when balance is truly challenged, as changing the sur-
face usually has a bigger impact than removing vision (Baudry
and Duchateau, 2012). The lack of modulation in SICI in young
adults is in line with a previous study that reported similar SICI
levels during voluntary and postural contraction of the soleus
muscle, suggesting that SICI is not specifically modulated dur-
ing upright standing in young adults (Soto etal., 2006). This
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FIGURE 4 | Correlation between the percent changes in short interval
intracortical inhibition (SICI) and center of pressure (CoP) velocity from
the rigid to the foam condition in young and old adults. The regression
line illustrates that in old subjects greater reductions in SIC| were
accompanied by greater increases in CoP velocity (r = —0.648, p = 0.043).

may be because increasing M1 excitability would not improve
muscle coordination needed to perform a difficult postural task.
It may also be that the postural tasks were not challenging
enough for the young adults to require changes in neural control,
although young adults did increase CoP velocity when standing
on foam.

Nonetheless, old adults exhibited a lower level of SICI when
standing on foam compared to standing on a rigid surface.
Within the group of old adults, reductions in SICI correlated
with increases in CoP velocity. This is consistent with other stud-
ies reporting a correlation between low intracortical inhibition
and poor motor performance in old adults (Marneweck etal.,
2011; Fujiyama etal., 2012; Heise etal., 2013). Lower SICI was
associated with poorer performance in the Purdue Pegboard test
for manual dexterity, but not with performance on a pinch grip
force control task (Marneweck etal., 2011). The correlation was
driven by a number of (primarily old) subjects who exhibited
atypically low inhibition, appearing as facilitation. There was also
an association between the strength of intracortical inhibition
measured by the contralateral silent period during an interlimb
coordination task and the performance on this task (Fujiyama
etal., 2012). At last, there was a link between the level of SICI
at rest and single reaction time and two finger tapping speed
(Heise etal., 2013). Although all three papers (Marneweck etal.,
2011; Fujiyama etal.,, 2012; Heise etal., 2013) found an associa-
tion between age-related disinhibition and reductions in motor
performance, these studies did not quantify changes between
tasks, instead reported inhibition only during one specific task
(Marneweck etal., 2011; Fujiyama etal., 2012) or at rest (Heise
etal., 2013). Therefore, the present study is the first to show
that task-related modulation in SICI can be linked to behavior
in old adults. One interpretation could be that the task-specific
reduction in SICI was dysfunctional, negatively affecting postu-
ral control. As phasic activation of GABA-A receptors is thought
to contribute to the regulation of synchronous motor neuronal
activity (Farrant and Nusser, 2005), it is suggested that a general

disinhibition could interfere with this process (Heise et al., 2013),
and therefore induce difficulties when one is required to coordi-
nate the fast contractions of different muscles during standing on
foam.

However, we cannot exclude the possibility that the reduction
in SICI in old adults was a compensatory mechanism. It can be
argued that standing on foam is a relatively more difficult task
for old than young subjects, and that the more subjects were
challenged the more they were ‘forced’ to facilitate M1 activity.
Therefore, neither the previous nor the current data can deter-
mine whether increased instability caused reduced SICI or the
other way around.

NO AGE-RELATED CHANGES IN ICF
We did not find differences in ICF between young and old adults,
which is consistent with two studies that examined ICF in the first
dorsal interosseus muscle (Smith etal., 2009, 2011). However, it
is inconsistent with two other studies that reported lower ICF in
the wrist flexors and extensors of old compared with young adults
(Kossev etal., 2002; McGinley etal., 2010). This is in line with
the earlier proposed shift towards an age-related facilitation of the
muscles with strong corticospinal projections. Given the decrease
in SICI, the lack of change in ICF may indicate that modulation of
cortical circuits with sensory conditions relies more on reducing
strength of inhibitory inputs to increase the potential for more
cortical contribution to control leg muscles rather than increas-
ing cortical activity. This is in agreement with the lack of changes
in test MEP observed in the present study and the absence of
modulation in corticomotoneural excitability with altered propri-
oception (Baudry etal., 2014b). Such adjustments may be relevant
to increase the cortical contribution to postural control without
increasing cortical activity that may induce noisy neural signal.
Although many studies have used ICF to investigate cortical
excitability (Ginanneschi et al., 2005; Soto et al., 2006; Smyth et al.,
2010; Howatson etal., 2011), the neurophysiological origin of ICF
is still under debate (Reis etal., 2008). As N-methyl-D-aspartate
(NMDA) receptor antagonists and glutamate antagonists decrease
ICF, it is often believed to reflect glutaminergic intracortical cir-
cuits (Liepert etal., 1997; Ziemann etal., 1998). However, there
is some evidence that GABAergic inhibition can modulate ICF
(Ziemann etal., 1996). Furthermore, spinal contributions can-
not be excluded (Di Lazzaro etal., 2006). Therefore, conclusions
regarding ICF should be used with caution, and short interval
intracortical facilitation (SICF), an often overlooked measure,
might actually be more valid for determining cortical facilitation
(Di Lazzaro etal., 1999; Clark etal., 2011).

THE INFLUENCE OF BACKGROUND EMG

One limitation of this study is the difference in background EMG
between conditions and groups. Since the level of muscle con-
traction could affect SICI, this might have influenced the results.
However, there are several reasons why we think this is not the case.
First, the contractions were of very low intensity, with an average
of 0.9 and 4.1% of MVC in young and old adults during the most
difficult condition. Second, the age-related decrease in SICI was
also apparent in the rigid-EO condition, while the background
EMG did not differ between groups in that condition. Third, the
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modulation between conditions in SICI did not correlate with the
modulation of background EMG.

FUTURE RECOMMENDATIONS AND CONCLUSIONS

Future studies are needed to better understand the cause-effect
relationship between SICI and postural control in aging. One
aspect in these studies could be to test the hypothesis of an
interaction between age and the strength of corticospinal pro-
jection to the target muscle on the amount of SICI and ICF
by targeting several muscles. If this proves to be true, such
data would address many inconsistencies reported in literature
and provide a deeper insight into the age-related changes of
the neuromotor system. Another aspect could be the association
between behavioral and neurophysiological changes after balance
training.

In conclusion, old compared with young adults exhibited an
overall decreased level of SICI and reduced this even further
when standing with altered proprioception. The reduction in SICI
between tasks was associated with an increased velocity of the CoP.
This suggests that motor cortical circuits control upright posture
differently in old vs. young adults. Future experiments will clarify
whether this difference in control mediates impaired postural con-
trol or serves as a compensatory mechanism to counteract postural
instability.
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