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Cross sectional studies of patients at risk of developing Alzheimer disease (AD) have
identified several brain regions known to be prone to degeneration suitable as biomarkers,
including hippocampal, ventricular, and whole brain volume. The aim of this study was
to longitudinally evaluate an index based on morphometric measures derived from MRI
data that could be used for classification of AD and healthy control subjects, as well as
prediction of conversion from mild cognitive impairment (MCI) to AD. Patients originated
from the AddNeuroMed project at baseline (119 AD, 119 MCI, 110 controls (CTL)) and
1-year follow-up (62 AD, 73 MCI, 79 CTL). Data consisted of 3D T1-weighted MR images,
demographics, MMSE, ADAS-Cog, CERAD and CDR scores, and APOE e4 status. We
computed an index using a multivariate classification model (AD vs. CTL), using orthogonal
partial least squares to latent structures (OPLS). Sensitivity, specificity and AUC were
determined. Performance of the classifier (AD vs. CTL) was high at baseline (10-fold
cross-validation, 84% sensitivity, 91% specificity, 0.93 AUC) and at 1-year follow-up (92%
sensitivity, 74% specificity, 0.93 AUC). Predictions of conversion from MCI to AD were
good at baseline (77% of MCI converters) and at follow-up (91% of MCI converters).
MCI carriers of the APOE e4 allele manifested more atrophy and presented a faster
cognitive decline when compared to non-carriers. The derived index demonstrated a
steady increase in atrophy over time, yielding higher accuracy in prediction at the time of
clinical conversion. Neuropsychological tests appeared less sensitive to changes over time.
However, taking the average of the two time points yielded better correlation between
the index and cognitive scores as opposed to using cross-sectional data only. Thus,
multivariate classification seemed to detect patterns of AD changes before conversion
from MCI to AD and including longitudinal information is of great importance.
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INTRODUCTION
Alzheimer disease (AD) is one of the most common forms of
neurodegenerative disorders characterized by a gradual loss of
cognitive functions such as episodic memory. A revision of the
National Institute of Neurological and Communicative Disorders
and Stroke (NINCDS) and the Alzheimer disease and related
Disorders Association (ADRDA) criterion (McKhann et al., 1984)
for the diagnosis of AD has been suggested. The new research
criterion is still centered on a clinical core of early and signifi-
cant episodic memory impairment, but also includes at least one
abnormal biomarker among magnetic resonance imaging (MRI),

positron emission tomography (PET) and cerebrospinal fluid
(CSF) (Albert et al., 2011; McKhann et al., 2011; Sperling et al.,
2011). Since evidence for use of these biomarkers is growing, it
strengthens their role in the diagnosis of AD. MRI provides struc-
tural information about the brain and has for many years been
widely used for early detection and diagnosis of AD (O’Brien,
2007; Ries et al., 2008; Tondelli et al., 2012). With this technique
it is possible to measure both regional (hippocampus/entorhinal
cortex) and global (whole brain) atrophy, which are considered
sensitive surrogate markers, capable of quantifying the extent
of brain degeneration in dementia (Apostolova et al., 2006).
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However, more atypical patterns of AD have also been observed
with different clinical presentations. Brain atrophy patterns char-
acterized by hippocampal volume loss in limbic-predominant
cases and increased temporoparietal and frontal atrophy in hip-
pocampal sparing cases, with typical AD cases showing atrophy in
all regions (Whitwell et al., 2012). A goal of structural neuroimag-
ing analysis in AD is to identify a pattern of atrophy (regional
and/or global) that can help predict further cognitive decline or
establish a probable diagnosis. It is possible to obtain multiple
volumetric and cortical thickness measures from high resolution
MRI by automated segmentation techniques. Multivariate tech-
niques enable utilization of information from different regions of
the brain to distinguish between different dementias and patient
groups (Teipel et al., 2007; Davatzikos et al., 2008; Klöppel et al.,
2008; Vemuri et al., 2008; Magnin et al., 2009; Plant et al.,
2010; Westman et al., 2011). Moreover, it has been proposed that
structural information can be condensed into an index by using
multivariate techniques (Fan et al., 2008; Mattila et al., 2011;
Spulber et al., 2013).

We have previously introduced an index derived from a
multivariate discrimination model [orthogonal partial least
squares to latent structures (OPLS)] (Spulber et al., 2013). The
index was characterized based on cross-sectional data from the
AddNeuroMed and ADNI cohorts. In the present study we
expand the analysis to longitudinal MRI data with the aim to lon-
gitudinally evaluate the index. For this purpose; (1) a multivariate
classification model was trained using baseline AD and control
(CTL) MRI scans; (2) the derived classification model was applied
to AD, CTL (1-year follow-up) and MCI individuals (baseline and
1-year follow-up); (3) resulting in an individual index which was
used to compute descriptive statistics and perform group anal-
ysis; (4) finally, the index annual rate of change was calculated
and compared to the cognitive scores’ annual rate of change, and
the average index was calculated and compared to average cog-
nitive scores for each diagnostic group, and after stratification by
atrophy pattern and APOE e4 status.

MATERIALS AND METHODS
SUBJECTS AND INCLUSION CRITERIA
All patients originated from the AddNeuroMed project, part of
InnoMed (Innovative Medicines in Europe), a European Union
programme designed to make drug discovery more efficient.
The project is designed to develop and validate novel surro-
gate markers in AD and includes a human neuroimaging strand
(Simmons et al., 2009, 2011) which combines MRI data with
other biomarkers and clinical data. Data was collected from
six different sites across Europe: University of Kuopio, Finland,
University of Perugia, Italy, Aristotle University of Thessaloniki,
Greece, King’s College London, United Kingdom, University of
Lodz, Poland, and University of Toulouse, France. MR images
from a total of 119 AD patients, 119 MCI patients, and 110
healthy controls (CTL) were available. Only a subsample of 62
AD patients, 73 MCI patients and 79 CTL individuals were fol-
lowed longitudinally however. Table 1 provides demographics
of the whole and longitudinal datasets, Table 2 summarizes the
cognitive scores per diagnostic group, and Figure 1 depicts the
disposition of the diagnostic groups. All AD and MCI subjects

Table 1 | Subject demographics at baseline.

N Gender M/F Age Years of APOE e4

education carriers

WHOLE AddNeuroMed DATASETa

AD 119 41/78 75.5 ± 6.0 8.0 ± 4.0 64 [54%]

CTL 110 50/60 73.0 ± 6.5 10.8 ± 4.8 31 [28%]

MCI 119

MCI-c 22 14/8 72.8 ± 6.4 9.2 ± 4.3 13 [59%]

MCI-nc 97 46/51 74.7 ± 5.4 8.8 ± 4.3 26 [27%]

AddNeuroMed LONGITUDINAL DATASET b

AD 62 16/46 74.0 ± 5.6 8.6 ± 4.0 34 [55%]

CTL 79 35/44 74.5 ± 5.5 10.3 ± 4.5 25 [32%]

MCI 73

MCI-c 13 8/5 71.8 ± 5.7 9.5 ± 4.3 8 [62%]

MCI-nc 60 30/30 75.7 ± 0.7 9.2 ± 4.4 15 [25%]

Data is presented as mean ± standard deviation. The longitudinal dataset

consists of individuals followed longitudinally over 1-year and assessed using

cognitive batteries and MRI scans. AD, Alzheimer disease; CTL, healthy con-

trol; MCI-c, MCI converters; MCI-nc, MCI non-converters; MCI, Mild cognitive

impairment.
aSignificant differences in Age (AD vs. CTL Mann-Whitney test P = 0.002) and

years of education (AD vs. CTL and MCI vs. CTL Mann-Whitney test P < 0.004).
bSignificant differences in Age (MCI-c vs. MCI-nc Mann-Whitney test P = 0.04),

gender (AD vs. MCI Mann-Whitney test P = 0.009) and years of education (AD

vs. CTL Mann-Whitney test P = 0.014).

were recruited from local memory clinics of the six participating
sites while the control subjects were recruited from non-related
members of the patient’s families, caregiver’s relatives or social
centers for the elderly. Written consent was obtained where
the research participant had capacity, and in those cases where
dementia compromised capacity then assent from the patient and
written consent from a relative, according to local law and pro-
cess, was obtained. This study was approved by ethical review
boards in each participating country. The inclusion and exclu-
sion criteria were as follows. Alzheimer disease: Inclusion criteria:
(1) ADRDA/NINCDS and DSM- IV criteria for probable AD. (2)
Mini Mental State Examination score range between 12 and 28.
(3) Age 65 years or above. Exclusion criteria: (1) Significant neu-
rological or psychiatric illness other than AD. This would exclude
patients with vascular dementia or large infarcts, for example. (2)
Significant unstable systematic illness or organ failure. All AD
subjects had a Clinical Dementia Rating (CDR) scale score of
0.5 or above. Mild Cognitive Impairment and controls: Inclusion
criteria: (1) Mini Mental State Examination score range between
24 and 30. (2) Geriatric Depression Scale score less than or equal
to 5. (3) Age 65 years or above. (4) Medication stable. (5) Good
general health. Exclusion criteria: (1) Meet the DSM- IV criteria
for Dementia. (2) Significant neurological or psychiatric illness.
(3) Significant unstable systematic illness or organ failure. The
distinction between MCI and controls was based on: the subject
scores 0 on Clinical Dementia Rating Scale = control. The subject
scores 0.5 on Clinical Dementia Rating scale = MCI. Additionally,
for the MCI subjects it was preferable that the subject and infor-
mant reported occurrence of memory problems. There is an
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Table 2 | Cognitive scores at baseline and 1-year follow-up.

AD MCI CTL

Baseline 1-year Baseline 1-year Baseline 1-year

WHOLE AddNeuroMed DATASET

MMSE 20.9 ± 4.8 – 27.1 ± 1.7 – 29.1 ± 1.2 –

CDR-sum 6.5 ± 3.3 – 1.4 ± 0.9 – 0.1 ± 0.2 –

ADAS1 6.6 ± 1.5 – 5.6 ± 1.2 – 3.8 ± 1.5 –

AddNeuroMed LONGITUDINAL DATASET

MMSE 22.2 ± 4.4 21.6 ± 4.9 27.2 ± 1.7 26.3 ± 2.9 29.1 ± 1.2 28.8 ± 0.3

CDR-sum 5.6 ± 3.0 7.2 ± 4.0 1.6 ± 0.9 2.1 ± 1.5 0.1 ± 0.2 0.1 ± 0.4

ADAS1 6.3 ± 1.5 6.5 ± 1.8 5.5 ± 1.2 5.5 ± 1.4 3.9 ± 1.6 3.7 ± 1.5

Data is presented as mean ± standard deviation. AD, Alzheimer disease; MCI, mild cognitive impairment; CTL, healthy control; MMSE, Mini Mental State

Examination; CDR-sum, Clinical Dementia Rating sum of boxes; ADAS1, Alzheimer Disease Assessment Scale.

FIGURE 1 | AddNeuroMed longitudinal population: at baseline 348

individuals were assessed using cognitive and MRI methods, with 214

individuals subsequently followed longitudinally. AD, Alzheimer
disease; MCI, mild cognitive impairment; CTL, healthy control.

overlap regarding CDR-sum-of-boxes and MMSE scores between
AD and MCI patients.

At baseline, a health interview was administrated to all partic-
ipants following a standardized protocol available at http://www.

innomed-addneuromed.com and data on demographics, medical
history, current health status, medication use and family his-
tory were collected. For AD and MCI cases, information on the
duration and severity of cognitive decline was obtained from the
subjects or informants through a detailed questionnaire: the pres-
ence of memory problems, time of their onset, subsequent course,
and investigations performed.

For all participants, cognition, behavior, functional status, and
global severity were assessed and the MMSE (Folstein et al.,
1975) and the Clinical Dementia Rating scale (CDR) (Hughes
et al., 1982) were administered. Evaluation of AD included the
Hachinski ischemic scale (Hachinski et al., 1975), the AD assess-
ment scale-cognitive subscale (ADAS-Cog) (Rosen et al., 1984),
Neuropsychiatric Inventory (Cummings et al., 1994), and the

Alzheimer disease Cooperative Study (ADCS)-activities of daily
living scale (Galasko et al., 1997). Evaluation of MCI and CTL
individuals comprised the Consortium to Establish a Registry
for Alzheimer Disease (CERAD) Cognitive Battery (Morris et al.,
1989) and the Geriatric Depression Scale (GDS) (Yesavage and
Sheikh, 1986). The same procedure was used at 12 month follow-
up. MRI findings were not known to clinicians, so as not to
influence the clinical diagnosis.

The ADAS-cog and the CERAD battery use the same 10-word
recall task. The only difference is that the scoring is inverted.
The mean number of words not recalled in the CERAD word
list immediate recall task was calculated. The variable obtained
was named ADAS1, corresponding to the first subtest of ADAS-
Cog. This was performed to obtain comparable measures between
groups. CDR global was used for diagnosis as described above,
but CDR sum of boxes were used in relation to the index.

MRI ACQUISITION
Data acquisition for the AddNeuroMed study was designed to be
compatible with the Alzheimer Disease Neuroimaging Initiative
(ADNI) (Jack et al., 2008). Data was collected from 4 General
Electric, 1 Siemens, and 1 Picker MR-scanner. The imaging pro-
tocol for both studies included a high resolution sagittal 3D
T1-weighted MPRAGE volume (voxel size 1.1 × 1.1 × 1.2 mm3)
and axial proton density/T2-weighted fast spin echo images. The
MPRAGE volume was acquired using a custom pulse sequence
specifically designed for the ADNI study to ensure compatibility
across scanners. Full brain and skull coverage was required and
detailed quality control carried out on all MR images according
to the AddNeuroMed quality control procedures (Simmons et al.,
2009, 2011).

REGIONAL VOLUME SEGMENTATION AND CORTICAL THICKNESS
PARCELLATION
FreeSurfer (version 4.5.0) was used for image processing and
analysis. The pipeline produces regional cortical thickness and
volumetric measures. Cortical reconstruction and volumetric
segmentation includes removal of non-brain tissue using a
hybrid watershed/surface deformation procedure (Segonne et al.,
2004), automated Talairach transformation, segmentation of the
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subcortical white matter and deep gray matter volumetric struc-
tures (including hippocampus, amygdala, caudate, putamen, ven-
tricles) (Fischl et al., 2002, 2004; Segonne et al., 2004), intensity
normalization (Sled et al., 1998), tessellation of gray matter and
white matter boundary, automated topology correction (Fischl
et al., 2001; Ségonne et al., 2007) and deformation following
intensity gradients to optimally place the gray/white and gray/CSF
borders at the location where the greatest shift in intensity defines
the transition to the other tissue class (Dale and Sereno, 1993;
Dale et al., 1999; Fischl and Dale, 2000). Once the cortical mod-
els are complete, registration to a spherical atlas takes place,
which utilizes individual cortical folding patterns to match corti-
cal geometry across subjects (Fischl et al., 1999). This is followed
by parcellation of the cerebral cortex into units based on gyral
and sulcal structure (Fischl et al., 2004; Desikan et al., 2006).
The pipeline generated 68 cortical thickness measures (34 from
each hemisphere) and 50 regional volumes. Volumes of white
matter hypointensities, optic chiasm, right and left vessel, and
right and left choroid plexus were excluded from further analysis.
White matter hypointensities were excluded since most subjects
were characterized by zero values. Cortical thickness and volu-
metric measures from the right and left side were averaged. In
total 57 MRI measures were used as input variables for multi-
variate analysis, see Table 3. Using tkmedit, the image processing
steps were visually inspected to ensure they had been carried out
correctly and corrected for skull-stripping errors and gray/white
matter boundary (cases where significant image artifacts or gross
brain abnormalities result in segmentation errors were excluded).
These segmentation approaches have been used for multivari-
ate classification of Alzheimer’s disease and healthy controls
(Westman et al., 2010; Mangialasche et al., 2013), neurophysi-
ological image analysis (Liu et al., 2011; Ferreira et al., 2014),
imaging-genetic analysis (Liu et al., 2010b; Velayudhan et al.,
2013), and biomarker discovery (Thambisetty, 2008; Thambisetty
et al., 2010).

DATA PREPROCESSING
All volumetric measures from each subject were normalized by
the subject’s intracranial volume (ICV). The ICV was estimated
based on an affine transform in Freesurfer, while cortical thick-
ness measures were not normalized (Westman et al., 2013).
Preprocessing of each variable was performed using mean cen-
tering and unit-variance scaling.

ORTHOGONAL PARTIAL LEAST SQUARES TO LATENT STRUCTURES
Orthogonal partial least squares to latent structures (OPLS)
(Trygg and Wold, 2002; Bylesjö et al., 2006; Wiklund et al., 2008)
is a supervised multivariate data analysis method included in
the software package SIMCA (Umetrics AB, Umea, Sweden). In
OPLS, the information related to class separation is found in the
first component of the model, the predictive component. The
orthogonal components in the model, if any, relate to variation
in the data not connected to class separation. Focusing the infor-
mation related to class separation on the first component makes
data interpretation easier (Wiklund et al., 2008).

Each OPLS model receives a Q2(Y) value that describes its sta-
tistical significance for separating groups. Q2(Y) values > 0.05 are

Table 3 | FreeSurfer variables included in the study.

Cortical thickness Subcortical volume

Banks of superior temporal sulcus Third ventricle

Caudal anterior cingulate Fourth ventricle

Caudal middle frontal gyrus Brainstem

Cuneus cortex Corpus callosum anterior

Entorhinal cortex Corpus callosum central

Fusiform gyrus Corpus callosum midanterior

Inferior parietal cortex Corpus callosum midposterior

Inferior temporal gyrus Corpus callosum posterior

Isthmus of cingulate cortex CSF

Lateral occipital cortex Accumbens

Lateral orbitofrontal cortex Amygdala

Lingual gyrus Caudate

Medial orbitofrontal cortex Cerebellum cortex

Middle temporal gyrus Cerebellum white matter

Parahippocampal gyrus Hippocampus

Paracentral sulcus Inferior lateral ventricle

Frontal operculum Putamen

Orbital operculum Cerebral cortex

Triangular part of inferior frontal gyrus Cerebral white matter

Pericalcarine cortex Lateral ventricle

Postcentral gyrus Pallidum

Posterior cingulate cortex Thalamus proper

Precentral gyrus Ventral DC

Precuneus cortex

Rostral anterior cingulate cortex

Rostral middle frontal gyrus

Superior frontal gyrus

Superior parietal gyrus

Superior temporal gyrus

Supramarginal gyrus

Frontal pole

Temporal pole

Transverse temporal cortex

Insula

regarded as statistically significant (Eriksson et al., 2006), where

Q2(Y) = 1 − PRESS/SSY

PRESS (predictive residual sum of squares) = ∑
(yactual −

ypredicted)2 and SSY is the total variation of the Y matrix after
scaling and mean centering (Eriksson et al., 2006). Q2(Y) is the
fraction of the total variation of the Ys (expected class values) that
can be predicted by a component according to cross-validation
(CV).

INDEX: HIGH-DIMENSIONAL CLASSIFICATION FROM MULTIPLE MRI
FEATURES
An OPLS model was created at baseline for AD vs. CTL (119
AD and 110 CTL). Cortical thickness measures and subcorti-
cal volumes were analyzed separately, which means a separate
OPLS model is created for each set of variables. The two mod-
els are then combined using hierarchical modeling (Westman
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et al., 2012). The OPLS model creates an index for each indi-
vidual subject, which tends to be close to 1 for AD patients
and 0 for CTL individuals. Index values above 0.5 indicate a
more AD-like characteristic while values below 0.5 a more CTL-
like characteristic. The AD vs. CTL OPLS model derived from
the training data was applied on the longitudinal data of AD,
CTL, and MCI individuals. This produced an index reflecting
the degree to which the individual’s pattern resembled the pat-
tern of AD patients or the pattern of CTL individuals. Although
age and education were significantly different between groups,
the model did not consider them as confounding variables since
multivariate models seemed to be robust to the presence of differ-
ences in age and/or years of education because the overall pattern
of atrophy is a strong predictor of AD in and of itself (Klöppel
et al., 2008; Vemuri et al., 2008; Misra et al., 2009; Aguilar et al.,
2013).

STATISTICAL COMPARISONS
Basic descriptive statics were used to characterize diagnostic
groups and stratified according to a specific criterion (e.g., gen-
der or time point). Linear regression was used to illustrate
dependences and quantified by computing linear correlation
coefficients. Statistical significance was determined by applying
repeated One-Way ANOVA and non-parametric matched-paired
test. Area under the ROC (receiver operating characteristic) curve
(AUC) was calculated using the web-based application JROCFIT
(Eng J. ROC analysis: web-based calculator for ROC curves.
Baltimore: Johns Hopkins University; www.jrocfit.org).

RESULTS
OPLS MODEL CREATION
The resulting classification model enabled high discrimination
between AD and CTL individuals (7-fold CV: 84% sensitivity,
91% specificity, 0.93 AUC). As part of the model, the top 10
most important variables for discrimination were: hippocampus,
entorhinal cortex, amygdala, temporal pole, superior temporal
gyrus, inferior lateral ventricle, middle temporal gyrus, fusiform
gyrus, inferior temporal gyrus, and parahippocampal gyrus (see
Table 3 for a list of all variables included in the analysis).

INDEX
The index was computed for all individuals in the longitudinal
dataset. Figure 2A and Table 4 summarize the distribution of the
index per diagnostic group, per time-point; and Figure 2B sum-
marizes the distribution of the index annual rate of change per
diagnostic group. Overall, we observed increased atrophy over
time, AD patients showed the fastest increase (One-Way ANOVA
P = 0.044). The index was highest in the AD group, followed by
MCI converters (MCI-c), MCI non-converters (MCI-nc), and the
CTL group. CTL subjects had values below 0.5. However, in older
individuals with normal cognition AD-like values (>0.5) were
more frequent (Figure 3).

Taking the average index from baseline and follow-up data
and stratifying the diagnostic groups according to pattern of
atrophy resulted in good separation of AD-like AD patients and
CTL-like CTL subjects, as well as AD-like MCI-c and CTL-like
MCI-nc patients, and revealed subgroups of subjects with values

FIGURE 2 | Box-plots illustrating the distribution of (A) an MRI index

according to diagnosis and stratified by time point; (B) Index annual

rate of change stratified by diagnosis. Index annual rate of change =
index at 1-year − index at baseline. ∗One-tailed T -test p < 0.002;
∗∗One-tailed paired T -test p < 0.003; AD, Alzheimer disease; MCI-c, MCI
converter; MCI-nc, MCI non-converter (stable); MCI, mild cognitive
impairment; CTL, healthy control.

Table 4 | MRI index computed for the longitudinal dataset.

AD MCI CTL

Baseline 1-Year Baseline 1-Year Baseline 1-Year

Average 0.70 0.86 0.49 0.56 0.26 0.36

Stdev 0.29 0.31 0.28 0.30 0.19 0.19

Median 0.74 0.91 0.46 0.55 0.22 0.33

Min 0.10 0.21 0.01 −0.05 −0.13 −0.03

Max 1.21 1.48 1.24 1.38 0.73 0.74

Q1 0.52 0.66 0.32 0.33 0.12 0.20

Q3 0.91 1.08 0.65 0.75 0.42 0.53

Stdev, Standard deviation; Q1, First quartile; Q3, Third quartile; AD, Alzheimer’s

disease; MCI, mild cognitive impairment; CTL, healthy control; OPLS, orthogonal

partial least squares to latent structures.

in between (Figure 4A). Also, for each diagnostic group, having a
different pattern of atrophy resulted in a different index of annual
rate of change, although non-significant, except for the CTL
group (Figure 4B). Those CTL individuals having an AD-like pat-
tern of atrophy had a significantly higher rate of atrophy (Index
annual rate of change: AD-like > CTL-like; Mann-Whitney
p = 0.028).

OPLS CLASSIFICATION AND MCI PREDICTIONS
Sensitivity, specificity and AUC are reported for classification (AD
vs. CTL) and prediction of MCI conversion to AD (Table 5).

Individual classification accuracy was significantly lower (p <

0.001) at baseline (7-fold CV: sensitivity 81%, specificity 90%,
0.90 AUC) compared to 1-year follow-up (sensitivity 92%, speci-
ficity 75%, 0.93 AUC). Classification accuracy increased due to
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FIGURE 3 | Average index vs. age, for the 79 CTL individuals part of the

longitudinal dataset. Average index = (index at baseline + index at
1-year)/2. CTL, healthy control.

FIGURE 4 | Box-plots illustrating the distribution of (A) Average index

according to diagnosis and stratified by pattern of atrophy, all groups

are significantly different except for AD-like AD and AD-like MCI-c (---

Two-sided T -test p = 0.76). (B) Index annual rate of change stratified by
diagnosis and pattern of atrophy. Index annual rate of change = index at
1-year − index at baseline. ∗∗Mann-Whitney p = 0.028; Average index =
(Index at baseline + index at 1-year)/2. AD, Alzheimer disease; MCI-c, MCI
converter; MCI-nc, MCI non-converter (stable); MCI, mild cognitive
impairment; CTL, healthy control.

an increase in sensitivity, but there was a decrease in specificity
as well.

MCI individuals were labeled as AD-like or CTL-like based on
their individual index. Furthermore, they were stratified as con-
verters (MCI-c) or non-converters (MCI-nc) based on the 1-year
follow-up diagnosis. We report the number of MCI-c subjects
identified as AD-like. Out of 13 MCI-c subjects 11 were predicted
as AD-like from baseline data, while 12 were classified as AD at
follow-up.

Table 5 | Performance and prediction based on the AD vs. CTL

classification model.

AD-like CTL-like Sensitivity Specificity AUC

(%) (%)

TRAINING SET (BASELINE, N = 348)*

AD 100 19 84 91 0.93 ± 0.02

CTL 10 100

LONGITUDINAL DATASET (BASELINE, N = 214)**

AD 50 12 81 90 0.90 ± 0.03

CTL 8 71

MCI-c 11 2 85 65 0.80 ± 0.08

MCI-nc 21 39

LONGITUDINAL DATASET (1 YEAR, N = 214)

AD 57 5 92 75 0.93 ± 0.02

CTL 20 59

MCI-c 12 1 92 47 0.75 ± 0.09

MCI-nc 32 28

A training set was used to train a classifier and applied on the longitudinal

dataset; see Figure 1 for a description of the datasets. AD, Alzheimer disease;

CTL, healthy control. MCI, mild cognitive impairment; MCI-c, MCI converters;

MCI-nc, MCI non-converters; AUC, area under the receiver operating character-

istic curve. *Training model using cross-validation. **Values recalculated from

the baseline cross-validated model.

COGNITIVE SCORES AND MRI INDEX
Given that changes in brain structure (e.g., atrophy) should relate
to cognitive performance, an exploratory statistical analysis was
carried out on the cognitive data available. After stratification by
diagnostic group, only CDR-sum showed significantly differences
between baseline and 1-year scores for AD (P < 0.001) and MCI
(P < 0.001) patients, reflecting an increased impairment; there
were no significant changes in ADAS1 or MMSE.

The association between the index and CDR-sum was assessed
based on the linear correlation coefficient for each diagnostic
group at each time point. At baseline, there was no correla-
tion for MCI patients (Spearman’s r = 0.220; P = 0.093), while
a mild non-significant correlation was found for AD patients
(Spearman’s r = 0.29; P = 0.063) (Figure 5A). At 1-year follow-
up, there was a fair correlation for MCI patients (Spearman’s
r = 0.40; P = 0.001), and a good correlation for AD patients
(Spearman’s r = 0.59; P < 0.001) (Figure 5B). This suggests that
at 1-year follow-up AD and MCI patients became more atrophied
and more impaired, and the index and CDR-sum scores became
more correlated.

Since computing the average index from baseline and follow-
up data and stratifying by diagnostic groups yielded signifi-
cant differences for the index analysis, this procedure was also
applied on the cognitive measures. Computing the average index
and average cognitive scores, there were significant correla-
tions between the index and MMSE (Figure 6A; Spearman’s
r = −0.614, p < 0.001), ADAS1 (Figure 6B; Spearman’s r =
0.562, p < 0.001) and CDR-sum (Figure 6C; Spearman’s r =
0.679, p < 0.001). When the analysis was restricted to the AD
group, significant correlations were found between the average
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FIGURE 5 | Scatter plots and regression lines showing the relationship between the index and CDR-sum scores for (A) baseline and; (B) 1-year

follow-up data. AD, Alzheimer disease; MCI, mild cognitive impairment; CDR-sum, clinical dementia rating sum of boxes.

FIGURE 6 | Scatter plots and regression lines showing the relationship

between (A) average index and average MMSE; (B) average index and

average ADAS1, and (C) average index and average CDR-sum. Average
index = (average index at baseline + average index at 1-year)/2. MMSE,
Mini Mental State Examination; CDR-sum, Clinical Dementia Rating sum of
boxes; ADAS1, Alzheimer Disease Assessment Scale.

index and average MMSE (Spearman’s r = −0.438, p < 0.001),
average ADAS1 (Spearman’s r = 0.549, p < 0.001) and average
CDR-sum (Spearman’s r = 0.412, p = 0.001). In the CTL group
there was significant correlation only between the average index

and average CDR-sum (Spearman’s r = 0.236, p = 0.036). For
the MCI groups there were no significant correlations.

Having a different pattern of atrophy may be reflected in
having a different cognitive performance. In particular, there
was a faster rate of cognitive decline in AD-like subjects com-
pared to CTL-like in MMSE (for AD Mann-Whitney p = 0.035;
for CTL Mann-Whitney p = 0.05, one-sided T-test p = 0.03),
ADAS1 (for MCI-c Mann-Whitney p = 0.013) and CDR-sum
(for AD Mann-Whitney p < 0.001). Additionally, stratification
of CTL individuals by pattern of atrophy resulted in signifi-
cant correlations between the average index and average MMSE
(only AD-like CTL Spearman’s r = −0.465, p = 0.039), average
ADAS1 (only AD-like CTL Spearman’s r = 0.504, p = 0.023) and
average CDR-sum (only CTL-like CTL Spearman’s r = 0.351,
p = 0.006).

EFFECT OF APOE ON THE MCI POPULATION
Carrying the APOE e4 allele is the strongest genetic risk fac-
tor associated with AD. This was used to stratify individuals as
carriers vs. non-carriers and look for an association in cogni-
tive decline consistent with AD pathology. Carriers showed a
higher index compared to non-carriers at baseline and follow-up
(baseline P = 0.041; 1-year P = 0.014) indicative of an AD-like
atrophy pattern. Moreover, carriers showed an increase in ADAS1
(P = 0.017) and CDR-sum (P = 0.013) score compared to non-
carriers at 1-year follow-up (Figure 7). Therefore, MCI carriers of
the APOE e4 allele seemed to be more atrophied and presented a
faster cognitive decline compared to non-carriers.

DISCUSSION
The approach taken in the present study was to extend previ-
ous work on a MRI based severity index to include longitudinal
MRI data, to investigate changes in the index over time, and its
relationship with cognitive performance measures. The approach
enabled individual patient classification for identification of AD
and CTL subjects with accuracies ranging from 80 to 90%. This
classification performance is in agreement with previous results
(Aguilar et al., 2013; Spulber et al., 2013). The main regions
important for the differentiation of AD vs. CTL were primarily
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FIGURE 7 | Box-plots showing stratification by APOE status of

(standardized) MCI’s index and cognitive scores. Standardized values
were calculated by computing z-scores from average data. Average data =
(data at baseline + data at 1-year)/2. e4+, APOE e4 carrier; e4−, APOE e4
non-carrier; MCI, mild cognitive impairment; MMSE, Mini Mental State
Examination; CDR-sum, clinical dementia rating sum of boxes; ADAS1,
Alzheimer Disease assessment scale.

located in the medial temporal lobe as reported in the literature
(Davatzikos et al., 2009; Cuingnet et al., 2011; Tondelli et al., 2012;
Aguilar et al., 2013; Spulber et al., 2013).

Each individual is predicted by applying the AD vs. CTL clas-
sification model which produced an index reflecting the degree
to which the individual’s MRI pattern of atrophy resembles that
of an AD subject or CTL subject, in line with results from simi-
lar approaches reported in the literature (Davatzikos et al., 2009;
Mattila et al., 2011; Clark et al., 2012).

The number of AD patients identified as AD increased when
follow-up data was used. Likewise, the number of MCI patients
that would convert to AD identified as AD-like based on their
atrophy pattern increased when follow-up data was used. This
indicates that the model derived from baseline data captures brain
changes, thus convergence to actual diagnosis becomes more
accurate with disease progression. However, the number of CTL
individuals identified as CTL decreased, and similarly the num-
ber of MCI-nc identified as CTL-like decreased. In other words,
the index increased indicating that the pattern of brain atro-
phy resembled more that of an AD patient. Probably due to a
natural consequence of aging each individual’s index increases
over time, and for some individuals, compensatory mechanisms
enabled them to cope with brain degeneration and remain cog-
nitively normal. For instance, some older individuals seemed
to present a pattern typical of AD pathology even though they
had normal cognition, an observation also previously reported
(Davatzikos et al., 2009). Further, subjects with a more AD-like
pattern at follow-up, may also convert at an even later time-
point. There are also important factors such as age to consider
which can influence the results, although age provided no signif-
icant additional information to the multivariate models (Aguilar
et al., 2013). This could be because the multivariate models are
robust to the addition of demographic variables. Another possi-
ble explanation could be that the overall pattern of atrophy is a
strong predictor of AD in itself (Klöppel et al., 2008; Misra et al.,
2009; Vemuri et al., 2009), without the need for any additional

information such as age. The use of correction methods for
age, for example, have also been previously proposed by others
(Dukart et al., 2011).

Stratifying each diagnostic group by their pattern of atrophy
resulted in significant differences, indicating that a composite
index has captured part of the individual variability present in the
sample. The subgroup of older CTL with an AD-like pattern of
atrophy presented a faster annual rate of atrophy compared to the
CTL-like CTL individuals, while the subgroup of AD-like MCI-
c and AD-like AD patients showed no significant differences in
their average index. These results confirm that MCI patients that
will convert to AD (at 1-year follow-up) presented with a pattern
of atrophy indistinguishable from that of AD patients. Control
subjects presented a heterogeneous distribution of atrophy, some
having a more AD-like pattern of atrophy with a faster annual rate
of atrophy and faster cognitive decline compared to CTL individ-
uals having a CTL-like pattern of atrophy. Whether this group
of healthy individual showing a more AD-like pattern of atro-
phy represents preclinical AD (Sperling et al., 2013) is difficult to
determine and would require a longer follow-up and additional
AD biomarkers.

Analysis based on the application of a MRI-based index to
track longitudinal atrophy changes suggests that a composite
measure consisting of multiple regional brain measures con-
densed into an index could be used to monitor disease progres-
sion. This is in contrast to the observed longitudinal change in
cognitive performance over the same period, which resulted in
no or mild decrease in cognitive scores. Cognitive tests showed
inconclusive proof of further deterioration over 1-year, perhaps
because they are based on limited and finite scales insensitive to
subtle changes. The index however seemed capable of capturing
subtle structural decline thanks to a richer atrophy distribution,
thus being able to handle biological and disease heterogeneity. For
instance, we observed that CDR-sum score increased at a steeper
rate compared to the index. Thus, to overcome this limitation,
it has been proposed to create richer cognitive distributions by
constructing novel composite scores employing machine learning
algorithms, that are able to predict conversion from MCI to AD
better than standard cognitive scores (Llano et al., 2011).

The significant association between atrophy and cognition was
captured by taking the average index and average cognitive scores,
reflecting longitudinal changes rather than cross-sectional mea-
sures. More impaired individuals displayed a higher index, there-
fore reflecting greater severity. Besides severity, when patients
were stratified based on patterns of atrophy, having an AD-like
pattern of atrophy was associated with a faster rate of cognitive
decline when compared to patients having a CTL-like pattern
of atrophy. In individuals with preserved cognition stratification
by pattern of atrophy revealed associations between cognitive
scores and severity of AD. This association may reflect very early
mild cognitive decline, since AD-like CTL individuals with higher
index values and higher rate of atrophy had an associated cogni-
tive decline. As discussed above, using average values increased
the correlation between the index and cognition. Atrophy and
cognitive decline are separate but yet tightly connected processes.
These processes do not occur simultaneously so by including the
longitudinal information, the relationship becomes more evident.
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Further, the sensitivity of correctly classified AD and MCI-c sub-
jects increases over time, supporting the inclusion of longitudinal
information. The increased rate of atrophy observed in AD-like
CTL subjects could potentially be used to identify preclinical AD.
This again highlights the importance of longitudinal information.

The analysis seems to support the idea that significant atrophy
in brain morphology (neurodegeneration) occurs at preclinical
stages of dementia and that this does not correlate well with cog-
nitive decline (Burns and Iliffe, 2009; Smith, 2012; Jack et al.,
2013), maybe because precise measures of cognitive decline are
particularly difficult at this stage, and also because of individual
variation due to cognitive reserve and genetic background (Small
et al., 2004; Koppel and Goldberg, 2009; Wisdom et al., 2011;
Bogdan et al., 2012). In line with these observations, APOE-status
seemed to explain some of the individual variability observed
in MCI individuals, carriers of the APOE e4 allele seemed not
only more impaired, but also more atrophied when compared to
non-carriers, suggesting that the APOE e4 allele (Corder et al.,
1993, 1995; Lambert and Amouyel, 2011) could modulate the
degree of phenotypic expression even in cases of mild cognitive
decline (Liu et al., 2010a; Sun et al., 2012). Some of the individual
variation in the MCI group could be partially explained by strati-
fying the sample into carriers and non-carriers. While for AD and
CTL individuals there was no significant association with APOE
e4 status, possibly indicating that cognitively normal individuals
seemed to be well preserved irrespectively of their APOE status
(Ferencz et al., 2013; Khan et al., 2014), and AD patients would
show a high degree of cognitive decline and atrophy independent
of their APOE status (Aguilar et al., 2013). The effect of APOE
status has also been investigated in animal models of AD showing
that the combination of genetic and lifestyle factors are important
(Maioli et al., 2012).

Multivariate methods such as OPLS provide a way to sepa-
rate groups based on the simultaneous contribution of several
input morphometric variables. Such multivariate methods offer
the advantage of requiring few statistical comparisons to obtain
good generalization and good estimates of confidence (OPLS and
SVM). The clinical value of such techniques can be demonstrated
by producing models with high predictive value that help identify
individuals at risk of cognitive decline atypical of normal aging
and closer to dementia patients, either independently or in com-
bination with other established methods (Hampel et al., 2010;
Tondelli et al., 2012).

STUDY LIMITATIONS
Only 1-year longitudinal data was available for analysis, and this
short follow-up is a limitation that needs to be considered when
interpreting the results. For instance, it is difficult to establish
the correct final diagnosis for MCI-nc patients due to the short
follow-up, some of these patients may convert to AD in the future,
while some may revert to cognitively normal. It is also difficult to
determine whether CTL subjects are not already in a preclinical
stage of AD, or whether this is part of normal variation in healthy
aging; however, in addition to a longer follow-up, the inclusion of
other biomarkers would be needed to establish whether a cogni-
tively normal subject is already in a preclinical stage. Finally, none
of the AD patients is known to have changed diagnosis to another

dementia type; however information is only available up to 1-year
follow-up.

CONCLUSION
MRI as a measure of neurodegeneration shows dynamic and inde-
pendent atrophy in several brain areas. As an alternative to mon-
itoring individual patterns of brain degeneration from multiple
individual regions, the temporal evolution of brain degenera-
tion can be characterized by a condensed index. This approach
offers the advantage of facilitating the integration of other clin-
ical biomarkers into a simplified and integrated dynamic model
of individual progression. Based on a descriptive statistical analy-
sis, it was possible to identify correlates of cognition and severity,
as well as identify potential modulators of individual variation
such as genetic background. This interaction can be positively
correlated with AD pathology and explains some inter individ-
ual variability (APOE e4 allele carriers). However, even if it was
possible to observe an increase in the severity level over time,
neither the knowledge of baseline severity nor its rate of change
could predict future rate of cognitive decline. Great variation was
observed: patients having high index and preserved cognitive sta-
tus, as well as patients having poor cognitive performance and
low index. Stratification by pattern of atrophy reduced part of
the variation observed and adding the longitudinal information
markedly increased the relationship between the index and cogni-
tion. Of both research and clinical interest, a longer follow-up will
be necessary to determine whether CTL individuals with unusu-
ally high index values are at greater risk for memory impairment
and eventual conversion to AD. The higher rate of change in
the index in AD-like control subjects represents an interesting
group for further study to determine if they harbor pre-clinical
AD. This is relevant both in the context of clinical trials and
early clinical diagnosis. Further studies should focus on individ-
ual tracking of disease development using cognitive, structural,
functional, and metabolic biomarkers and test whether the pro-
posed index remains valid as a surrogate of neurodegeneration,
or more broadly as a proxy of brain integrity.
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