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This paper uses human movement analyses to assess the susceptibility of brain stroke,
one of the most important causes of disability in elders. To that end, a computerized
battery of nine neuromuscular tests has been designed and evaluated with a sample
of 120 subjects with or without stoke risk factors. The kinematics of the movements
produced was analyzed using a computational neuromuscular model and predictive
characteristics were extracted. Logistic regression and linear discriminant analysis with
leave-one-out cross-validation was used to infer the probability of presence of brain stroke
risk factors. The clinical potential value of movement information for stroke prevention was
assessed by computing area under the receiver operating characteristic curve (AUC) for
the diagnostic of risk factors based on motion analysis. AUC mostly varying between
0.6 and 0.9 were obtained, depending on the neuromuscular test and the risk factor
investigated (obesity, diabetes, hypertension, hypercholesterolemia, cigarette smoking,
and cardiac disease). Our results support the feasibility of the proposed methodology and
its potential application for the development of brain stroke prevention tools. Although
further research is needed to improve this methodology and its outcome, results are
promising and the proposed approach should be of great interest for many experimenters
open to novel approaches in preventive medicine and in gerontology. It should also be
valuable for engineers, psychologists, and researchers using human movements for the
development of diagnostic and neuromuscular assessment tools.
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INTRODUCTION
A brain stroke, or cerebrovascular accident, is characterized by
the sudden loss of brain functions caused by an interruption of
the blood supply to the brain or by the rupture of blood vessels
in the brain. Its prevalence increases markedly with aging. Each
years, 50,000 Canadians and 795,000 Americans are victims of
this disease. In Canada and United-States, it is the third cause
of mortality, causing direct and indirect costs of Can$ 3.6 bil-
lion (evaluated in 2000) and US$ 68.9 billion (evaluated in 2009)
(Lloyd-Jones et al., 2009; Fondation des maladies du coeur, 2012).
For surviving patients, the consequences can be various. Among
subjects of 65 years old or more of the Framingham Study cohort,
6 month post-stroke, 50% were suffering from hemiparesis, 30%
were unable to walk without assistance, 26% needed assistance for
their daily activities and 26% were institutionalized. Also, apha-
sia, depression, incontinence, sensitive deficits, social integration
difficulties, and hemianopsis were frequent symptoms (between
15 and 40%) (Kelly-Hayes et al., 2003).

Although brain strokes are unexpected outcomes which strike
suddenly, the scientific literature reports for example, that some
events are known to happen significantly more often before
brain strokes such as transient ischemic attack (Hankey, 1996),

silent brain infarction (Kobayashi et al., 1997; Bokura et al.,
2006), and pre-stroke dementia (Klimkowicz et al., 2004).
These phenomena may be indicative of a particular pre-stroke
state of the cerebrovascular system. Moreover we have shown
recently that brain stroke risk factors can be associated with
the deterioration of many cognitive and psychomotor charac-
teristics (O’Reilly and Plamondon, 2011). It is in this con-
text that we investigate in this paper if the state of the neu-
romuscular system of a person might be indicative of an
incoming brain stroke. If this is the case, covert and overt
responses to psychomotor tests could be expected to correlate
with the brain stroke susceptibility and possibly be used for
prevention.

In this context, it might be interesting to look at the motor con-
trol for pre-stroke markers. Although somewhat unconventional,
this kind of approach follows a fruitful line of investigations using
pattern recognition analyses of fine motor control for biomedi-
cal applications. This has been the case for example for studying
Parkinson disease (Van Gemmert et al., 2003), Alzheimer dis-
ease (Werner et al., 2006), and schizophrenia (Caligiuri et al.,
2009), as well as for designing neuropsychological tests (Fairhurst
et al., 2008; O’Reilly and Plamondon, 2010a) for the detection
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of various health problems or for the recovery from injuries
(Yancosek and Mullineaux, 2011).

The present paper reports on a feasibility study verifying the
potential of this approach by analyzing the possibility of assessing
the brain stroke susceptibility through motion analysis. In this
line of thoughts, we have gathered a transversal database of 120
subjects who have performed a variety of neuromuscular tests. In
this paper, we present a summary of the outcome of our research
program in terms of area under the receiver operating characteris-
tic curve (AUC) for the classification of brain stroke risk factors as
a demonstration of the level of clinical potential of human move-
ment information for the development of brain stroke prevention
tools.

METHODS
SAMPLE
One hundred and twenty volunteers recruited within the École
Polytechnique community and from the patients of a rehabilita-
tion hospital (Hôpital De Réadaptation Villa Medica) participated
in the experiment. They were taken from a wide age range (25–85
years old) and from both genders (68 women, 52 men).

Eight participants had a stroke in the past and 63 had some of
the following health risk factors (abbreviation; number of subjects
affected): diabetes mellitus (DM; 15), obesity (OB; 10), hyper-
tension (HT; 40), hypercholesterolemia (HC; 28), cardiac disease
(CD; 24), and cigarette smoking (CS; 13). From these 63 partici-
pants, 25 had only one risk factor, 18 had two, 12 had three, seven
had four, and one had five. The other 57 were free of these risk
factors and were considered as healthy. Risk factors were evalu-
ated from a medical form processed by a neurologist (Dr. L.-H.
Lebrun) for the subjects from École Polytechnique whereas, for
the hospital patients, this information was collected by the same
neurologist from the medical records of the patients. The exper-
imenters were kept blind in regard of the presence of stroke risk
factors in the subjects.

From our sample, 112 participants reported themselves as
right-handed, seven as left-handed and one as ambidextrous. The
participants performed the experiment with their dominant hand
(the ambidextrous one used his right hand) and the left-handed
were given reversed guiding sheets to mitigate the effect of the
hand used in the experiment. Figure 1 shows the distribution
of the age for both gender. A more complete description of this
sample can be found elsewhere (O’Reilly and Plamondon, 2011;
O’Reilly, 2012).

Every participant in this experiment received a brochure
explaining the experiment and gave an informed written con-
sent. The experimental protocol was approved by the ethics board
of the École Polytechnique de Montréal and of the Hôpital de
Réadaptation Villa Medica.

MATERIAL
An in-house system was built to emit real-time (1 ms accuracy)
audio and visual stimuli to the subjects and to accurately track the
end-effector of the movement performed as response. Both fea-
tures are essential for modern computerized modeling of human
movements performed in responses to stimuli. Movements were
captured using a Wacom Intuos2 digitizing tablet, which can

FIGURE 1 | Distribution of age, for both gender, in our sample.

record 2D Cartesian coordinates of a pen tip (either a stylus or an
inking pen, depending on whether the feedback provided by the
inked trace is wanted) at 200 Hz and with a 100 lines per millime-
ter spatial resolution. Guiding sheets were used to indicate to the
subjects the starting positions and the targets to hit. These sheets
were placed under the transparent plastic fold of the tablet to
reduce friction. The patterns of these guiding sheets were reversed
for left-handed subjects such that, for a given task, the same mus-
cles are involved for both right and left-handed participants. A
stimulator—an apparatus allowing to emit auditory (1 kHz beep
of a 500 ms duration) and visual (various patterns displayed on
a matrix of 8 × 10 light-emitting diodes [LED] with three possi-
ble colors: green, red, yellow) stimuli—linked through the serial
port of the data acquisition computer was used for the interac-
tion with the subject. Synchronization between the Wacom tablet
and the stimulator was performed by an in-house software name
Sign@medic, which also managed the experiment workflow and
the data recording.

NEUROMUSCULAR TESTING
Since no neuromuscular test was readily available to investi-
gate our research hypotheses using modern movement modeling
tools, it was necessary to synthesize a new battery of tests from
information taken in the psychophysical literature. Thus, different
tests have been derived to assess, through the analysis of move-
ment kinematics, the performances of the subject with respect to
various cerebral functions. This protocol was designed, tested and
optimized, over 2 months, with a few subjects from both groups
(not included in the present group of participants) until it was
established that the instructions were clearly understood by the
participants. The order of the tasks and the number of repetitions
were also fixed taking into consideration that the participants,
particularly the aged ones, should not be tired at the end of the
data collection.

The next subsections present—in the same sequential order
used to test the subjects—the corresponding literature and the
description of the nine neuromuscular tests constituting this
battery.

Task #1: Initial signatures
Handwriting movements have been extensively studied along the
years (e.g., Simner et al., 1996; Caligiuri and Mohammed, 2012
and the proceedings of the International Graphonomics Society
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biannual conferences) and their usefulness in medical diagnos-
tic has been demonstrated (Schroter et al., 2003; Van Gemmert
et al., 2003; Caligiuri et al., 2010). The first test of our battery
takes advantage of this gathered knowledge by proposing a task
requiring the production of a special kind of handwriting move-
ments: the handwritten signatures. The signing process involves
highly complex fine motor control to generate a mostly ballistic
and overlearned movement.

In this test, four samples of handwritten signature have to be
performed using an inking Wacom pen. The subject is allowed
to signal if he/she feels that a produced written signature is not
representative of his/her usual signature. In this case, the trial is
rejected and a replacement specimen is collected. Figure 2 shows
the guiding sheets on which the subject signs.

Between each signature, the subject must remove the pen from
the tablet and wait for the system to be ready for recording, indi-
cated by the stimulator by a blinking red screen. In this task, no
other stimulus is emitted to indicate when the movement must
start, leaving the subject free to sign repetitively at his/her own
pace.

A signature verification system (Sign@matic) (Plamondon
et al., 1992; Plamondon, 1994) is operated by Signa@medic. The
three first signatures collected are used to register the subject to
the system and the fourth one is used to verify if the subject can
be recognized by comparing this signature with the first three
references. If the system fails to recognize the fourth signature
as belonging to the participant, it is probable that the signature
set has a large variability and that the subject might not be in
optimal physical conditions to perform the experiment. A fifth
signature is then requested to check this hypothesis and allow a
better characterization of the initial neuromuscular conditions.

Task #2: Fast pen stroke/simple reaction to a visual stimulus
This test involve the visual areas and is based on the well-known
simple reaction test (SRT) (Luce, 1986). It examines the capacity
of the subject to react as quickly as possible to a visual stimu-
lus. It is also based on the various forms of reaching tests (e.g.,
Levin, 1996; Lum et al., 1999; Minegishi and Takahashi, 2001;
Prablanc et al., 2003; Wagner et al., 2008) since, contrarily to

FIGURE 2 | Guiding sheet used to collect handwritten signatures.

usual implementations of reaction time tests, which often only
request pressing a button, we are interested by the kinematic of
the whole movement of the upper-limb, from the starting point
to the targeted zone.

In this test, neither the precision nor the direction is impor-
tant, only the speed of execution of the movement is. The subject
performs the test using a Wacom stylus over the tablet’s trans-
parent plastic fold and following the guiding sheet shown in
Figure 3. In this figure, the black circle represents the starting
point and the gray area is the target zone where the subject
must stop his/her movement. The dimensions of this sheet are
such that a valid movement (i.e., beginning in the starting zone
and ending in the target zone) must have at least 130 mm of
amplitude.

After the experimenter has shown to the subject an exam-
ple of how the task must be done, the subject can try the
experimental protocol as long as necessary to feel comfortable
with the test and the equipment. Movements recorded dur-
ing this learning period are automatically labeled as “in learn-
ing” and are discarded from the dataset used for statistical
analysis.

When the participant signals that he/she is ready, the recording
of at least 15 valid trials starts. Each trial follows this procedure:

(1) The LED screen blinks from red to black to indicate that the
system is ready for acquisition. The subject can position the
tip of the stylus on the starting point.

(2) At the moment the stylus hits the digitizer, the stimulator
stops blinking and a random delay is started. This delay is
exponentially distributed such that, regardless of the dura-
tion the subject has waited for the stimulus, the probability
that it will be emitted during the next millisecond is always
the same (Luce, 1986). The parameters of this flat hazard dis-
tribution have been chosen such that the delay is between 0
and 10 s.

(3) As soon as the delay expires, the LED screen becomes green,
signaling the subject to reach for and stop in the target zone
as fast as possible.

(4) After the pen tip has been immobilized in the target zone,
the subject must lift the pen away from the tablet. When
the stylus exits the active zone of the tablet1, the stimulator
starts sending a red blinking signal and the procedure can be
repeated for the required number of times.

When a subject starts moving before the stimulus emission, the
stimulator shows a yellow blinking “X” and emits a beep inform-
ing the subject that an anticipated start has been made. These data
are automatically labeled as invalid.

Task #3: Fast pen stroke/choice reaction to a visual stimulus
This test evaluates the capacity of a subject to react quickly and to
make a good choice at the same time, both characteristics being
of equal importance. Compared to the SRT, the choice reaction

1It corresponds to the space where the tablet can still track the stylus although
the pen tip is not in contact with the tablet anymore. It is about 2.5 cm above
the surface in Wacom tablets.
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FIGURE 3 | Guiding sheets for the fast pen stroke test with simple

stimulus. The black circles and the gray areas indicate respectively the
starting and the target zones. This sheet in (A) is used for right-handed

subjects. Left-handed subjects are given identical guiding sheets except that
they are mirror reflected with respect to a vertical symmetry axis, as
shown in (B).

test (CRT) involves decisional processes adding a layer of com-
plexity and therefore increasing the average reaction time (Luce,
1986). As for the preceding test, this task also involves the visual
areas.

The protocol for this test is identical to the preceding one,
with two exceptions. First, 30 valid trials are recorded. Second,
the guiding sheet used for the test is different and is shown
in Figure 4. As can be seen, two target zones are placed on
each side of the sheet (gray arrows) with the starting area
(black circle) being at the center. Moreover, the stimulus used
is changed for a green arrow indicating the required direction
of the movement (i.e., if the stimulus arrow points to the right,
the movement must be rightward). The direction of the stimulus
(leftward vs. rightward arrow) is chosen randomly from trial to
trial.

Task #4: Fast pen stroke/simple reaction to an auditory stimulus
This test is identical to the test #2 except that it involves the
auditory area. The trigger is a 1 kHz beep of 500 ms duration.

Task #5: Speed/accuracy trade-off
Speed/accuracy trade-off (SAT) tests have been under a lot of
investigation following the work of Fitts (Fitts, 1954; Fitts and
Peterson, 1964)2. These seminal papers linked the average dura-
tion of the movement to the logarithm of a difficulty index
being evaluated as the ratio between the amplitude of the move-
ment and the width of the target. Speed/accuracy tradeoffs have
been recognized as a good window into how the brain works
when spatial and timing constraints are involved. Accordingly,
this protocol has been adapted to study the behavior under a lot
of different conditions such as in the presence of obstacles (Jax
et al., 2007; Vaughan et al., 2010), with or without visual feed-
back (Wu et al., 2010), with different configurations of target
geometry (Bohan et al., 2003), in presence of visual illusions (Van
Donkelaar, 1999; Mendoza et al., 2005), with moving targets
(Chiu et al., 2011), and so on.

2See Plamondon and Alimi (1997) for an exhaustive review of the research on
this topic up to 1997.

FIGURE 4 | Guiding sheet for the fast pen stroke on a choice visual

stimulus. The black circle and the gray areas indicate respectively the
starting and the target zones.

This task has been added to the battery to assess the ability
of the participants to coordinate spatial and temporal proper-
ties of their movements under competing speed (temporal) and
accuracy (spatial) requirements. A 4 × 4 factorial design with two
repetitions have been used with the experimental factors being
(1) the distance between the centers of the starting and the target
zones (modalities: 45, 90, 135, and 180 mm) and (2) the width of
the target zone (modalities: 30, 22.5, 15, and 7.5 mm). The guid-
ing sheets used for this test are shown in Figure 5. On each of
these, four starting points are indicated as black circles while the
target zone is shown as a gray band.

The subject is allowed a learning period only on the first guid-
ing sheet (Figure 5A). On every page, the subject begins the first
trial in the starting circle closer to the target, and then moves to
the next closer, and so on for the four starting positions. The
participant then repeats these four movements once more. The
identical procedure (except for the learning period) is followed
with each guiding sheet, presented to the subject in decreasing
order of target width.

For this task, the interaction with the stimulator is as described
for the test #2 except that the auditory signal is used.
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FIGURE 5 | Guiding sheets for the speed/accuracy trade-off task. The
black circles and the gray areas indicate respectively the starting and the
target zones. The distance between the centers of the starting and the target
zones are 45, 90, 135, and 180 mm and the width of the target zones are (A)

30 mm, (B) 22.5 mm, (C) 15 mm, and (D) 7.5 mm. These sheets are for
right-handed subjects. Left-handed subjects are given guiding sheets that are
identical except for being mirror reflected with respect to a vertical
symmetry axis.

Task #6: Fast pen stroke sequence
This test evaluates the capacity of the subject to produce draw-
ings requiring a sequence of fast pen strokes with both speed
and accuracy. It allows studying the subject ability to coordinate
motor command sequences. Guiding sheets used for this test are
shown in Figure 6. In this test, the subjects must perform move-
ments with triangular trajectories by sequencing three fast target
reaching motions. The subject must start from the black circle,
pass through the two intermediate targets (gray zones) and then
stop the pen tip in the starting zone. As the movement must be
performed as quickly as possible, the participant must not halt at
intermediate targets.

The guiding sheets are presented in decreasing order of trian-
gle size. Before starting valid recordings, the subject is allowed
to practice as long as wanted, but only on the first sheet. On
each sheet, the test must be performed (i.e., a triangular move-
ment must be made) two times in clockwise directions and then
two times in counter clockwise direction. Thus, 12 movements
per subject are recorded in a factorial design 2 × 3 × 2 (rota-
tion directions × triangle sizes × repetitions). The movement is
initiated following an auditory stimulus.

Task #7: Oscillations at maximal speed
Oscillations are fundamental patterns in human behaviors.
Accordingly, they have been well studied in the context of hand-
writing (Teulings and Maarse, 1984; Stelmach and Teulings,
1987). Movement models considering the motor control as com-
posed of coupled oscillators has even been proposed (Yamanishi

et al., 1980; Hollerbach, 1981; Gangadhar et al., 2007). Simple
oscillatory movements have therefore been included in this bat-
tery with the hypothesis that neuromuscular degradation could
be assessed by looking at some characteristics of such movements.
More specifically, this test is performed to evaluate the rhythmical
properties of the subject as his/her forearm or hand is oscillating
at maximal frequency. Since only the speed is important in this
test, large target zones have been defined in its guiding sheet (see
Figure 7). No practice or learning period is allowed for this test to
avoid generating muscular fatigue. For the same reason, only one
acquisition is performed. After the subject is in position (in the
starting area shown as a black circle), an auditory cue signals the
start of the movement: he/she must oscillate the pen as fast as pos-
sible between the two gray zones. After 10 s, a long beep indicates
the end of the trial.

Task #8: Synchronized oscillations
This test evaluates the capacity of the subject to synchronize
his/her movement with an auditory metronome. Its protocol is
identical to the one of the task #7 except that after the start sig-
nal, the stimulator emits short beeps at a half-second interval for
duration of 10 s. After this 10-s period, the auditory metronome
stops but the subject must continue to move backward and for-
ward the pen at the same frequency until the stop signal (a long
beep) is emitted 5 s later. Two trials are recorded, the first one
being a practice. The first part of the second trial is used to analyze
the adaptation while the second part is used to study the steady
state.
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FIGURE 6 | Guiding sheets for the fast pen stroke sequence test. The
black circles indicate the starting and the gray circles specify the target
zones that have to be crossed prior to coming back to the black dots.

The targets are 15 mm in diameters and are positioned at the apexes of
equilateral triangles with vertexes of (A) 135 mm, (B) 90 mm, and (C)

45 mm long.

FIGURE 7 | Guiding sheet for the test involving oscillatory movements

(#7 and #8). The black circle and the gray areas indicate respectively the
starting and the target zones.

Task #9: Final signatures
This final signature acquisition is performed as a mean to mon-
itor if the neuromuscular state of the subject has been affected
by the experiment. The protocol is identical as for test #1 except
that only one signature is recorded. However, a second signature is
collected if the Sign@matic software does not recognizes success-
fully the subject (e.g., the testing procedure has induced fatigue
or influenced the motor control properties resulting in signatures
at the end of the test that are significantly different than those
produced at the onset of the experiment).

DATA COLLECTION
For the data acquisition, the participant is invited to take a com-
fortable position and to place the tablet as wanted (see Figure 8).
To normalize the stimulus perception, the stimulator is placed at
a fixed distance of 68 cm from the border of the table and ori-
ented such that its screen is perpendicular to the subject’s line of
sight.

The experimenter (not shown in Figure 8) is sitting at the
right-hand side of the subject and demonstrates every task on its
own set of guiding sheets. He also leads the subject as needed.
Sited at the right of the experimenter and separated by an opaque

FIGURE 8 | Experimental setup showing the subject sited comfortably

and ready to make a movement over the Wacom tablet (B) as soon as

the stimulator (A) gives the cue. Reproduced, with slight modifications,
from O’Reilly et al. (2013).

panel to avoid distracting the subject, the system operator mon-
itors the recording, verifies the validity of the recorded signals
and informs the experimenter of any potential problem. He also
has to record every event in a log book and discard manually
invalid acquisitions that have not been detected automatically
by the acquisition software. Frequent causes for rejecting move-
ments are: (1) participant performing slow movements when fast
movements are required; (2) participant not stopping his/her
movement before lifting the pen from the tablet; (3) participant
not lifting enough the pen from the tablet between two move-
ments (for movement segmentation and experiment automation,
the pen must exit the active zone of the Wacom digitizer between
every trials); (4) participant starting his/her motion before the
stimulus onset.

The total duration of the experiment is between 30 and 60 min,
including subject welcoming and acknowledgement.

MOVEMENT KINEMATICS MODELING
Collected movements have been modeled according to the
Kinematic Theory of Rapid Human Movement (Plamondon,
1995a,b) used in numerous motor control studies in the last
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20 years. This framework proposes that movements are con-
trolled by a series of motor commands dispatched through the
neuromuscular system, each command resulting in a lognormal
contribution to the observed speed profile. As example, for the
simplest movements analyzed here (i.e., the fast reaching motions
associated with the reaction time tests), the resulting movement
is considered as being the synergetic result of two neuromuscu-
lar systems. The first one, the agonist, pushes the end-effector
(the pen tip) toward its target. The second one, the antago-
nist, has a directly opposed contribution and is mainly used to
break the motion, although it can also be useful in stabilizing the
movement and increasing its precision (Lestienne, 1979). Both
neuromuscular systems are triggered at the same time t0 by com-
mands of amplitude D1 and D2, respectively. These commands
propagate through the neuromuscular systems and produce the
lognormal impulse responses �1 and �2, respectively. With this
modeling, the observed speed profile can be represented by the
delta-lognormal curve which is expressed by

�� = D1�1 − D2�2 (1)

with the �i terms being time-shifted lognormals

�i = 1

σi
√

2π(t − t0)
exp

(
(ln (t − t0) − μi)

2

−2σ2
i

)
(2)

The μi and σi parameters associated with the lognormal com-
ponents represent the time delays and the response spreads
(both on a logarithmic time scale) of the neuromuscular sys-
tems whereas the t0 and the Di parameters are the command
parameters.

The lognormal patterns of this model are naturally emerg-
ing from a converging behavior predicted by application of the
central limit theorem, once applied to a system modeling of the
neuromuscular networks. This representation considers a neu-
romuscular system as composed of a complex arrangement of
subsystems which reaction to a motor command is cascaded
such that they produce outputs with cumulative time delays fol-
lowing a law of proportionate effects (Plamondon, 1995a). This
methodology has been validated, among other things, by the
observation of an event-related potential (ERP) occurring at time
t0 (O’Reilly et al., 2013) and by the experimental observation of
a law of proportionate effects in EMG recordings (Plamondon
et al., 2013a).

The model described in (1, 2) is appropriate for describing fast
reaching movements and have therefore been used in analysing
the kinematics of movements produced in task #2, #3, #4,
and #5.

This modeling scheme can be generalized to model arbi-
trarily complex movements, such as handwritten signatures for
example. To that end, a vector version of the previous represen-
tation is used. Such a data description is known as the Sigma-
Lognormal modeling (Plamondon and Djioua, 2006; O’Reilly
and Plamondon, 2009) and proposes a time superposition of
lognormal neuromuscular components acting around circle-arc

trajectories such that the velocity of the movement is described by

−−→
v (t) =

N∑
i = 1

Di�i

[
cos(φi(t))
sin(φi(t))

]
=
[

vx(t)
vy(t)

]
(3)

with the movement direction being described using an error
function (erf)

φi (t) = θsi + (θei − θsi)

2

[
1 + erf

(
ln (t − t0i) − μi

σi
√

2

)]
(4)

As shown in (4), this model introduces two supplementary
parameters to described the trajectory of the movement in a
plane, the starting (θs) and the ending (θe) trajectory direction
angles. This model is adapted for the description of complex tra-
jectories and has therefore been used to model the kinematics of
movements gathered in task #1, #6, and #9.

As for the oscillatory motion recorded in task #7 and #8, they
have been analyzed using a model which is half way between the
Delta-Lognormal and the Sigma-Lognormal models: the Omega-
Lognormal model. It analyzes the motion in one dimension as an
alternate sequence of lognormals and is defined by

�� =
N∑

i = 1

D1i�(t − t01i; μ1i, σ1i) −
M∑

j = 1

D2j�
(
t − t02j; μ2j, σ2j

)
(5)

with |N − M| ∈ {0, 1} .

PARAMETER EXTRACTION
Parameter extractors are necessary to analyze movements using
the lognormal models described in the preceding section. For the
delta-lognormal parameters of task #2, #3, #4, and #5, the IIX sys-
tem (Djioua and Plamondon, 2009) cascaded with a direct search
optimization has been used. For the stereotypical patterns of the
task #6, a prototype-based extractor (O’Reilly and Plamondon,
2010b) has been used to extract the sigma-lognormal parame-
ters whereas the more polyvalent Xzero Robust extractor (O’Reilly
and Plamondon, 2009) has been used for the signatures gathered
in task #1 and #9. Finally, for oscillatory motions (task #7 and
#8), a modified version of the Xzero Robust extractor has been
used (O’Reilly, 2012).

STATISTICAL ANALYSIS
Various characteristics were defined to represent the neuromus-
cular health of our subjects. The most important are the central
tendency (evaluated as the median) and the spread (evaluated as
the median of the absolute deviation from the median) of the log-
normal parameters (t0, Di, μi, and σi) and of the most frequently
studied experimental measurements (e.g., reaction time, move-
ment duration, amplitude and time occurrence of the maximum
speed, etc.). The exact set of characteristics varied from a neuro-
muscular test to the other given the different characteristics of the
motion associated with these different tests.

For each test, about 20 of these features were computed.
Computation and evaluation of the usefulness of a large number
of features has been avoided to reduce the probability of
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over-fitting. The best subset of a maximum of six features was
defined using a semi-exhaustive selection algorithm (O’Reilly,
2012). A probability for the subjects to have the different brain
stroke risk factors was evaluated using two techniques com-
monly used for medical diagnosis: the logistic regression and the
a posteriori probability associated with the linear discriminant
analysis (Tabachnick and Fidell, 2007). A leave-one-subject-out
cross-validation was applied to get unbiased predictions from the
logistic and the discriminant analysis. All statistical analyses were
performed using the R statistical software.

To focus on the clinical usefulness of the developed tools
in evaluating the brain stroke susceptibility rather than on the
statistical significance of relationships between movement char-
acteristics and risk factors, a pattern recognition approach has
been used. The performances of the classifiers developed for this
purpose have been assessed using the area under the receiver
operating characteristic curve (AUC) instead of more classical
techniques such as ANOVAs which are more appropriate when
investigating statistical significance.

The reader interested in more details regarding this method-
ology can consult the previous technical publications on this
topic (O’Reilly and Plamondon, 2011, 2012a,b; O’Reilly, 2012;
Plamondon et al., 2014).

RESULTS
Table 1 reports the quality of risk factors classification based only
on movement information. The results are measured using the
AUC, a statistic corresponding to the probability of classifying
correctly two subjects, knowing that one is having the risk fac-
tor and one is free of it. Scores of 0.5 and 1.0 are associated with a
random and a perfect classification, respectively. A rule of thumb
used in clinical setting makes a parallel with the traditional aca-
demic point system to qualify the quality of the AUC associated
with a diagnostic test: 0.9–1.0 is excellent, 0.8–0.9 is good, 0.7–0.8
is fair, and 0.6–0.7 is poor (Tape, 2012). Although such a qual-
itative assessment depends on the problem at hand, this rule of
thumb can be used as a starting point when no previous data are
available to compare the AUC reached in a study with previously
established results.

In Table 1, the results for each neuromuscular test are shown
in the different columns whereas the risk factors are associated
with the rows. Median AUCs are given for each test (last row) and
for each risk factor (last column) to help appreciate which tests
are more discriminative and which risk factors are better discrim-
inated. The cell at the lower right corner of the table gives the
overall average.

AUC varying mostly between 0.6 and 0.9 have been obtained,
the majority (83%) of these being over 0.7 and 35% being over
0.8. Looking at the Table 1 in more details, a few key observa-
tions must be pointed out. As can be seen in its rows, the best
results are achieved for the discrimination of the diabetes and
the cardiac disease with a mean AUC of 0.85 and 0.81, respec-
tively. Hypertension, hypercholesterolemia, and obesity seem to
be a little more difficult to assess using this methodology although
the mean AUC of 0.77, 0.75, and 0.78 nevertheless indicates
a significant relationship. Cigarette smoking is the least well
characterized risk factor with a mean AUC of 0.61.

Results for task #2, #3, and #4 are bootstrapped averages and
are all significantly larger than 0.5 (i.e., are better than chance)
using a 95% confidence interval.

In looking at the columns of Table 1, we can see that some tests
seem more discriminative than others. In general, better results
have been obtained with simpler task (e.g., mean AUC between
0.78 and 0.81 for the SRT and CRT tests) than for complex ones
(e.g., signatures with a mean AUC of 0.71).

AUCs are useful as they sum up the behavior of a classifier in
one statistic which allows reporting a large number of results in
little space, as in Table 1. They, however, are not as much flex-
ible as the complete ROC curves. Although the 42 ROC curves
associated with Table 1 AUCs could not be reported, the ROC
curves associated with the task #2, #3, and #4 are presented in
Figure 9 to allow the reader to better appreciate our results. Also,
interested readers can consult the ROC curves related to task #6
in O’Reilly and Plamondon (2011). One should be aware, how-
ever, that the clinically usable portion of these curves is dependent
on the risk factor prevalence in the targeted population and the
minimal precision (or positive predictive value) that is acceptable
(O’Reilly and Nielsen, 2013). For a given application, these two

Table 1 | AUC for risk factors classification for the different neuromuscular tests.

Risk factor Task #2 Task #3 Task #4 Task #5 Task #6 Task #7 Task #1&9 Median

Visual SRT CRT Auditory SRT SAT Triangles Oscillations Signatures

DM 0.85 0.89 0.82 0.85 0.82 0.76 0.82 0.82

HT 0.76 0.76 0.76 0.74 0.80 0.77 0.76 0.76

HC 0.81 0.73 0.78 0.75 0.73 0.66 0.69 0.73

CS 0.69 0.72 0.82 0.71 0.70 0.60 0.34 0.70

CD 0.81 0.85 0.82 0.80 0.81 0.74 0.82 0.81

OB 0.78 0.85 0.88 0.73 0.68 0.75 0.73 0.75

Median 0.80 0.81 0.82 0.75 0.77 0.75 0.75 0.76

Abbreviations: DM, diabetes mellitus; HT, hypertension; HC, hypercholesterolemia; CS, cigarette smoking; CD, cardiac disease; OB, obesity; SRT, simple reaction

time; CRT, choice reaction time; SAT, speed-accuracy trade-off. Note: results for task #8 are not reported due to the fact that the analysis of this task was problematic

because different strategies were used by different participants (e.g., fast movements followed by pauses vs. slower but continuous movements) and some subjects

failed to oscillate at the requested frequency.

Frontiers in Aging Neuroscience www.frontiersin.org July 2014 | Volume 6 | Article 150 | 8

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


O’Reilly et al. Movement analysis for stroke prevention

FIGURE 9 | ROC curve for the results obtained in visual SRT, auditory SRT, and CRT task for every risk factor: (A) DM, (B) CS, (C) OB, (D) HT, (E) HC,

and (F) CD.

parameters should be set before choosing an operating point on
these curves.

DISCUSSION
NEUROMUSCULAR TESTING
In our investigation, simpler tasks were more predictive than
complex ones. This might seem surprising since tasks requir-
ing significantly more information processing were expected to
better discriminate some risk factors, as shown in the case of
nicotine abstinence (Marzilli and Shea, 2000). This difference
of performance between simple and complex tasks might come
from the larger number of repetitions collected for simple tasks
(e.g., 15 for SRT and 30 for CRT) as compared to the complex
ones (e.g., 5–7 for the signatures). Hence, we cannot conclude
without any doubt on whether better results are to be attributed
to the simplicity of the task, to a more robust modeling, or to
the availability of more repetitions. However, comparable results
have been found applying a similar methodology to assess the
learning of kindergarten pupils (Duval et al., 2013; Duval et al.,
submitted).

Two supplementary comments are worth noting: First, regard-
less of the exact cause of the better discrimination obtained
with simpler movements, the important variability of human
movement encountered during our analyses suggests that it is

preferable to collect large number of repetitions in order to
achieve a good statistical characterization of the motor control.
Therefore, future studies should consider many repetitions by
experimental condition at the expense of reducing the number
of different tasks. About 30 valid trials seem an adequate num-
ber when possible (i.e., for ethical reasons, it might be difficult to
get that many repetitions from very young, very old, or severely
diseased participants).

Second, given the length of the experiment (30–60 min), the
fixed order of test presentation, and the fact that more complex
movements are presented later in the experiment, the hypothesis
that the test order could partially account for this higher dis-
criminative power of simpler tests cannot be ruled out. However,
results of unpublished work (e.g., our work with children) sup-
porting the same observation with different tests presented in a
different order suggest that at least part of this observation is not
related to the test presentation order.

PREDICTABILITY OF RISK FACTORS
It is worth noting that, on one hand, the consistency of the results
across the different tests for some risk factors (e.g., the high AUC
for the DM factor, the low AUC for the CS factor) supports the
reliability of the AUC obtained for these risk factors. On the other
hand, the variability of the results for some other factors (e.g.,
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the AUC for the OB factor vary between 0.68 and 0.88, depend-
ing on the test) indicates one of two things: (1) that the tests are
differentially assessing these risk factors or (2) that the observed
variability is a statistical artifact (e.g., due to the relatively small
number of subjects being affected by some of the analyzed risk
factors). Our experiment will have to be duplicated to validate
the reproducibility of these patterns before a decisive conclusion
can be reached on that matter.

Our analyses also revealed a lower discrimination of cigarette
smoking as compared to the other investigated risk factors. This
might be the result of the opposing effects of long-term cigarette
smoking and of short-term presence of nicotine in the blood
stream. Whereas the first one has detrimental effects on motor
control (Hill, 1989; Kalmijn et al., 2002), the second one has
positive effects such as reduced reaction time (Davranche and
Audiffren, 2002; Hahn et al., 2009) and increased vigilance (Ernst
et al., 2001; Griesar et al., 2002). As neither the duration between
the last cigarette consumption and the experiment nor the his-
tory of cigarette smoking have been controlled or registered in
this experiment, it is not possible to discriminate between these
two separate and opposite effects using a post-hoc analysis. This
remark about short vs. long-term effects can be widened to the
other risk factors highlighting the importance, in the planning of
future experiments, to discriminate between the long and short
term effects by controlling or recording the appropriate variables.

COMMENTS ON THE GENERAL APPROACH
In this study, the presence of brain stroke risk factor is used as a
proxy for brain stroke susceptibility as there is no gold standard
index for stroke susceptibility. Although we present the diagnostic
results for risk factors, this is not the end goal of this research pro-
gram since many of these risk factors can easily be evaluated with
high precision and reliability. Evaluating the possibility of diag-
nosing risk factors using movement characteristics is only used
as a mean to show the potential of human movement characteris-
tics for the evaluation of stroke susceptibility. The results reported
herein are a first step necessary to build a sufficiently solid ground
for including this type of assessment in longitudinal studies.

Such a prospective study will be important to improve further
upon the figures of Table 1. For example, an important problem
that needs to be addressed is the lack of a gold standard index of
stroke susceptibility to compare the results of such new method-
ologies to (e.g., an index similar to the one proposed by Wang
et al., 2003 for predicting heart stroke). The development of such
an index is critical for the development of preventive tools and can
only be evaluated soundly in such longitudinal investigations.

Considering the statistical interpretation of the AUC, our
results support that there is a significant amount of information
in the characteristics of human movements that is correlated with
the brain stroke susceptibility. Of course, as of now, not all the
information about the brain stroke risk factors can be extracted
from motion analysis. As these results are obtained for a new
trend of research, there is probably room for improvement but
our present results are indicative of the potential of this tech-
nique. This methodology will need further fine tuning to lower
the experimental error, to increase the statistical power of the
analysis, and to augment the reliability of the results. Hopefully,

as this approach is enhanced, the initial results published herein
will improve and we will be in good position to rule on the final
clinical usefulness of the movement analysis for the development
of brain stroke prevention tools.

PERFORMANCE EVALUATION: PATTERN CLASSIFICATION VS.
ANALYSES OF VARIANCE
In this study, we have privileged using the pattern recognition
techniques with AUC assessment rather than more classical analy-
ses of variance (ANOVAs). This choice has been made because the
classification approach does not aim per se at deciding whether
or not a risk factor is related to the brain stroke susceptibil-
ity independently of any other confounding factors, it aims at
determining how well we can predict stroke susceptibility for
a representative set of subjects regardless of the presence of
other correlated factors. In this context, the pattern recognition
approach has the definitive advantage of being more indicative of
clinical usefulness as it evaluates directly the diagnostic accuracy.
It could be argued that a limitation of this approach is that it does
not provide a framework which can easily control for the effect
of external factors (e.g., age, gender)3. However, from the point of
view of a classification problem, such a control of external effects
has little sense and traditional analyses of variance can find sta-
tistically significant relationships that have no clinical usefulness
because the effect size of the relationship is so weak that it cannot
be used for any diagnostic application.

LIMITATIONS
This experiment has some limitations that need to be addressed
by future works. First, some potentially confounding variables
were not recorded (e.g., the education level of the partici-
pants), which could be partly responsible for the association
we observed between movement features and brain stroke risk
factors. Regarding more specifically the education level of the
participants, it must be noticed that the simplicity of the tasks
and its easy acceptance and understanding by all the participants-
particularly the aged ones who often refer to the whole protocol
as a funny primary school tests-partly diminish the impact of this
factor.

Second, this dataset is unbalanced in many regards, notably
with respect to risk factor prevalence. The evidences gathered
in this study about the relationship between stroke risk factors
and the human movement characteristics supports the allocation
of a more substantial financial support, a requirement for plan-
ning more extensive studies designed to gather larger and better
balanced sample.

Third, for reasons discussed in previous subsections, we chose
a pattern classification approach for this study. Further investi-
gation of this dataset with statistical analysis of variance would
nevertheless be very useful to complete and corroborate these
results. Indeed, control and assessment of the impact of some
confounding factors (e.g., age, gender, level of incapacity, edu-
cation) is much easier in this framework than in the approach

3However, O’Reilly and Plamondon (2011) evaluated whether human move-
ments contains information on the presence of stroke susceptibility that
cannot be accounted by age and gender.
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used in this paper. An effort to perform such an evaluation
has been previously made in O’Reilly and Plamondon (2011)
which describes, on the same data set and for the triangu-
lar drawing test, the impact of age and the gender on the
relationship between movement features and brain stoke risk
factors.

POTENTIAL FOR FUTURE APPLICATIONS
The proposed computerized measurements may have a great
potential as it could be implemented easily on tablets (e.g., iPad),
intelligent phone, and so on. Thus, this technology might have
a bright future not only for the neurologist, medical doctor or
psychologist office, but also as a useful tool for telemedicine and
personal health monitoring of aging people.

Moreover, this methodology can be used in context of other
situations than brain stroke. For example, it is presently investi-
gated for the development of preventive approaches in Parkinson
disease (Van Gemmert et al., 2013) and Alzheimer disease
(Impedovo et al., 2013) and it has been shown to be sensitive to
aging in general (Plamondon et al., 2013b).

CONCLUSION
This paper presents a brand new model-based approach using
movement analysis for preventive medicine. It provides evidences
that there are links between brain stroke risk factors and the char-
acteristics of human movements when these are modeled using
lognormal patterns. It is expected that these results will motivate
researchers to further explore these new fields of investigation to
establish an appropriate methodology. As the stroke susceptibility
assessment based on human movement analysis is a novel area of
research, efforts in defining an adequate methodological frame-
work and improving it are critical. It is hoped that this paper
will contribute to the establishment of such a framework. This
fundamental work is motivated by the encouraging results that
have been obtained, outcomes suggesting that the characteristics
of human movements can be used as biomarkers for assessing the
brain stroke susceptibility. In the long run, it is hoped that this
research trend will allow the inclusion of movement bio-signals
within new brain stroke prevention tools.

It should be emphasized that the objectives of our research
program in general and of this study in particular is not in itself
the diagnostic of brain stroke risk factors as there is already
efficient tests for this purpose. It has to be seen in the wider
perspective of studying the relationships that the brain stroke sus-
ceptibility and that a possible pre-stroke state both share with the
characteristics of the motor control, keeping in mind the long-
term goal of developing better ways to assess the risk of suffering
from a stroke. This first investigation is an important step toward
an eventual prospective study incorporating the tools we propose
herein. In a final application, the movement information might
be collected through the evermore ubiquitous movement tracking
devices (computer mouse, camera, handheld devices) and inte-
grated with other information such as the doctor’s knowledge of
the patient risk factors.

Further investigation will be necessary to better define the
potential and the limitations of the proposed approach. These
will have to corroborate the results reported herein and examine

the properties of this measurement methodology, properties such
as validity, specificity, and test-retest reliability. More attention
will also have to be paid to (1) the pathophysiology linking the
motor control to the brain stroke susceptibility, (2) the short
vs. long-term effects of the risk factor on the movements, and
(3) the possible complementariness vs. redundancy of the dif-
ferent neuromuscular tests used in our battery. Nevertheless, the
results obtained so far are promising and will hopefully bring
more attention to this innovative topic.
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