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Contradictory results have been reported on the interaction of beta-amyloid (Aβ) with
cholinergic receptors. The present paper investigates the modulatory effect of Aβ1-40
on the neurotransmitter release evoked by nicotinic (nAChRs) and muscarinic (mAChRs)
receptors. A 3β1-40 inhibits both nicotinic and muscarinic-evoked [ H]DA overflow from rat
nerve endings. Added to perfusion medium, Aβ1-40 is able to enter into synaptosomes;
it exerts its inhibitory effect at extracellular sites when release is stimulated by nAChRs
and intracellularly when release is evoked by mAChRs. Moreover, our data show that Aβ1-
40 acts as non competitive antagonist of heteromeric α4β2* but not of α3β4* nAChRs
which modulate [3H]NA overflow. Positive allosteric modulators of nAChRs counteract its
inhibitory effect. It might be that compounds of this type could be useful to prevent, slow
down the appearance or reverse the cognitive decline typical of the normal processes of
brain aging.
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INTRODUCTION
The predominant clinical symptoms early associated with
Alzheimer’s disease (AD) include a deficiency in memory capa-
bilities and these deficits are linked to a selective impairment
of cholinergic function (Buckingham et al., 2009; Jürgensen and
Ferreira, 2010). It has been reported that a significant decrease in
the number of α4 nicotinic acetylcholine receptors (nAChRs) is
one of the earliest events in the pathogenesis of AD (Burghaus
et al., 2000) even preceding cholinergic neuronal degeneration.
At this regard, accumulating evidences have shown that beta-
amyloid (Aβ), which plays a crucial role both in the early and late
phases of AD, disrupts cholinergic neurotransmission by inter-
acting with presynaptic cholinergic receptors function (Cleary
et al., 2005; Lesné et al., 2006; Mura et al., 2010a; Govoni et al.,
2014). Indeed, several findings suggest that this interaction serves
both a normal physiological process, probably regulating synaptic
plasticity (Parihar and Brewer, 2010), as well as contributes to the
molecular etiology of AD (Dineley, 2007; Bukanova et al., 2014
and references therein) as well as contributes to the molecular
etiology of AD (Dineley, 2007 and references therein). It has to be
noted that the blockade of cholinergic receptors function by Aβ

could also provoke significant secondary effects if these receptors
modulate neurotransmitters release. This is, for instance, the
case of most nAChRs located on nerve endings, which elicit
the release of several neurotransmitters in the CNS (Wonnacott,
1997).

Aβ can interact in different ways with the nAChRs depending
on the receptor subtype as well as on Aβ peptide concentration or

type of preparation (monomers versus oligomers) or incubation
times (Jürgensen and Ferreira, 2010). It seems that Aβ might bind
with high affinity (picomolar range) to α7 receptors (Wang et al.,
2000; Khan et al., 2010; Tong et al., 2011), although this remains
controversial (Small et al., 2007), and produces both stimulatory
(Dougherty et al., 2003; Puzzo et al., 2008; Mura et al., 2012) and
inhibitory effects (Liu et al., 2001; Pettit et al., 2001) suggesting a
distinct regulatory role depending on the receptor location (Tong
et al., 2011). Conversely, at higher concentration (nanomolar) it
produces inhibitory effects (Mura et al., 2012; Zappettini et al.,
2012).

Contradictory results have been also reported describing the
interaction of Aβ with heteromeric nAChR subtypes. Aβ appears
to bind with a lower affinity (nanomolar) to these receptors
producing a functional inhibitory effect (Liu et al., 2001; Pettit
et al., 2001), while similar concentrations elicit in other studies
receptor activation (Pym et al., 2005). Moreover, it has been
also reported that Aβ inhibits only presynaptic α7 nAChRs with-
out any harmful effects on α4β2 nAChR subtypes (Chen et al.,
2006).

Interestingly, we have previously demonstrated that Aβ

inhibits preferentially the effect of stimulatory muscarinic recep-
tors (mAChRs), leaving unchanged the function of inhibitory
subtypes (Grilli et al., 2010; Mura et al., 2010b). However, there
are no evidences of a direct interaction of Aβ with these receptors
and consequently little is known about the Aβ inhibitory mech-
anism. It is also possible that the effect of Aβ on these mAChRs
is indirect, although we cannot exclude the possibility that Aβ
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might act on an unknown site downstream the muscarinic signal
(Janíčková et al., 2013).

Moreover, since the presence of intraneuronal Aβ immunore-
activity has been reported (Mucke and Selkoe, 2012 and references
therein), the possibility that the early synaptic dysfunction might
be generated also by the intraneuronal presence of Aβ should be
considered (Oddo et al., 2006; Spires-Jones and Hyman, 2014).
Indeed, several studies suggest that intraneuronal Aβ might be
more dangerous for the neuron than that secreted (Lundgren
et al., 2014 and references therein).

In conclusion, the interactions between Aβ and cholinergic
receptors in the CNS are yet to be elucidated and the mechanism
of action of the peptide is not yet fully understood.

We have thus decided: (a) to investigate the functional effects
of Aβ1-40, present outside or inside the nerve endings, on the
presynaptic modulation of the release of dopamine (DA) evoked
by nicotinic and muscarinic agonists in rat nucleus accumbens
(NAc); and (b) to explore whether selective agents can antagonize
the action of Aβ.

The results indicate that Aβ1-40 inhibits both nicotinic and
muscarinic cholinergic modulation of DA release acting respec-
tively from outside and inside the nerve endings. Moreover, the
inhibitory effect of Aβ1-40 on nAChRs can be antagonized by des-
formylflustrabromine (DFBr) and galantamine with a mechanism
that presumably involves the positive allosteric site of nAChR.

MATERIALS AND METHODS
ANIMALS AND BRAIN TISSUE PREPARATION
Adult male rats (Sprague–Dawley, 200–250 g) were housed at
constant temperature (22 ± 1◦C) and relative humidity (50%)
under a regular light–dark schedule (light 7.00 a.m.–7.00 p.m.).
Food and water were freely available. The animals were killed by
decapitation and the brain was rapidly removed at 0–4◦C. Fresh
tissue was dissected according to Paxinos and Watson (1986)
sections between Bregma 0.7–2.2 mm for NAc. Experiments were
approved by the Ethical Committee of the Pharmacology and
Toxicology Section, Department of Pharmacy, in accordance with
the European legislation (2010/63/EU) and were approved by
Italian legislation on animal experimentation (protocol number
124/2003-A). All efforts were made to minimize animal suffering
and to use the minimal number of animals necessary to produce
reliable results.

PREPARATION OF β AMYLOID SOLUTIONS
For our experiments, synthetic human Aβ1-40 was dissolved in
a CSF at a concentration of 100 µM (stock solution). Then, this
solution was filtered through a Millipore 0.2 µm pore membrane
and stocked in small aliquots at −80◦C. Working solutions were
freshly prepared by diluting an aliquot of Aβ1-40 stock solution
at the final concentrations used for in vitro analysis just before the
administration.

As far as the characteristics of the Aβ peptides we employed
in our study, we have previously shown that in our experimen-
tal conditions the solutions of Aβ are mostly formed by Aβ

monomers. However, we cannot completely exclude that small
amounts of Aβ oligomers are also present in light of the fact that

aggregation is a concentration and time-dependent process (Mura
et al., 2012).

RELEASE EXPERIMENTS FROM SYNAPTOSOMES
Crude synaptosomes from rat NAc or hippocampus were pre-
pared according to Grilli et al. (2010).

In release experiments, NAc synaptosomes were incubated for
20 min at 37◦C with [3H]dopamine ([3H]DA; final concentration
0.03 µM) in the presence of 6-nitroquipazine (final concentra-
tion 0.1 µM), to avoid false labeling of serotonergic terminals
and of desipramine (final concentration 0.1 µM), to avoid false
labeling of noradrenergic terminals. In a set of experiments, hip-
pocampal synaptosomes were incubated with [3H]noradrenaline
([3H]NA; final concentration 0.03 µM) in the presence of
6-nitroquipazine.

Identical portions of the synaptosomal suspension were then
layered on microporous filters at the bottom of parallel super-
fusion chambers thermostated at 37◦C (Patti et al., 2006; Grilli
et al., 2008). Synaptosomes were superfused at 0.5 ml/min with
standard physiological medium. Starting from t = 36 min to
t = 48 min of superfusion four consecutive 3-min fractions
(b1–b4) were collected. Synaptosomes were exposed to agonists
or to depolarizing agent (4-aminopyridine) at t = 39 min, till
the end of superfusion, while other drugs (antagonists, pep-
tides, antibody, allosteric modulators) were added 8 min before
agonists.

To introduce into synaptosomes a specific amount of Aβ1-40
or 6E10 monoclonal antibody we used an experimental approach
previously experienced (Raiteri et al., 2000; Grilli et al., 2012).
When indicated, rat NAc was homogenized in buffered sucrose
containing Aβ1-40 (2 µM, 200 nM, 20 nM and 2 nM) or 6E10
monoclonal antibody (1 mM) in order to entrap these agents into
subsequently isolated synaptosomes. Based on estimates made by
entrapping of [3H]sucrose, the intrasynaptosomal concentration
of the compounds is about 5% of the original concentration in
the homogenization medium (Raiteri et al., 2000).

Samples collected and superfused synaptosomes were then
counted for radioactivity (fractional efflux). Agonist-induced
effect was expressed as % induced overflow and was evaluated
by subtracting the neurotransmitter content released in the four
fractions collected under basal condition (no drug added) from
that released in presence of the stimulus.

DOT BLOT ANALYSIS
Dot blot analysis of synaptosomal content of Aβ1-40 and 6E10
monoclonal antibody was performed according to De Felice et al.
(2007), with slight modifications.

NAc synaptosomes were incubated in physiological medium
with Aβ1-40 (100 nM) for 10 min at 37◦C, in order to evaluate
the entry of Aβ into nerve terminals under the same condi-
tions of release experiments. Synaptosomes were precipitated,
washed in phosphate-buffered saline (PBS) and lysed in cold
water with sonication. Samples were then centrifuged at 29000 g
for 30 min in order to precipitate membranes. The supernatant
(cytosolic fraction) was spotted on a nitrocellulose membrane
(5 µg of synaptosomal proteins for each sample). Membrane
was incubated for 1 h at room temperature in Tris-buffered
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saline-Tween (t-TBS: 0.02 M Tris, 0.150 M NaCl, and 0.05%
Tween 20) containing 5% non-fat dried milk, in order to block
non-specific binding sites. Then, it was incubated with 6E10
monoclonal antibody (1:2000 in milk/t-TBS 5%), washed three
times in t-TBS and incubated with horseradish peroxidase-linked
anti-mouse secondary antibody (1:10000 in milk/t-TBS 5%) for
1 h at room temperature. Immunoblots were visualized with
an ECL (enhanced chemiluminescence) Plus Western blotting
detection system to detect protein spots. The same procedure
was used to evaluate the presence of Aβ1-40 or 6E10 antibody
in entrapped synaptosomes at the end of release experiments
(40 min). When we studied 6E10 antibody entrapped synap-
tosomes, membrane was incubated only with anti-mouse sec-
ondary antibody (1:10000 in milk/t-TBS 5%) for 1 h at room
temperature.

All the nitrocellulose membranes were finally treated with
Ponceau Red solution to verify the presence of synaptosomal
proteins.

STATISTICAL ANALYSIS
Multiple comparisons were performed with one- or two-way
ANOVA followed by the Bonferroni post-hoc test. Data were
considered significant for P < 0.05, at least. The EC50 and Hill

slope have been calculated according to a four parameter logistic
curve using Sigma Plot (Jandel Scientific, San Rafael, CA, USA).

CHEMICALS
[7,8-3H]Dopamine (21.2 Ci/mmol (0.784 TBq/mmol)) and
[1-7,8-3H]noradrenaline (12.1 Ci/mmol (0.448 TBq/mmol))
were purchased from Perkin Elmer, Monza, Italy. Nicotine
hydrogen tartrate salt, choline, 4-aminopyridine, 6-
nitroquipazine, desipramine, beta-amyloid (40-1), horseradish
peroxidase-conjugated anti-mouse secondary antibody,
Ponceau Red were from Sigma (Sigma-Aldrich, St Louis,
MO, USA); Monoclonal antibody 6E10 was from Covance
ImmunoTechnologies, Dedham, MA; 5-iodo-A-85380,
dihydro-β-erythroidine, α-conotoxin MII, oxotremorine
sesquifumarate, desformylflustrabromine hydrochloride,
galantamine hydrobromide, SR 165845, beta-amyloid (1-40)
were from Tocris (Tocris Bioscience, Bristol, UK).

RESULTS
Figure 1A shows that the stimulatory effect of the in vitro admin-
istration of nicotine on [3H]DA overflow, confirming previously
results (Preda et al., 2008), is strongly inhibited by Aβ1-40 at
100 nM (−46%) but not at 10 nM concentration; Aβ 40-1

FIGURE 1 | (A) Effects of β-amyloid (Aβ) 1-40 on nicotine and
4-aminopyridine (4-AP)-evoked [3H]DA overflow from rat NAc
synaptosomes. Data are means ± SEM of at least four experiments run
in triplicate, *** P < 0.001 versus nicotine. One-way ANOVA followed by
Bonferroni post-hoc test. (B) Effects of Aβ1-40 on [3H]DA overflow
evoked by 5IA85380, alone or in presence of α-conotoxin MII. Data are

means ± SEM of at least four experiments run in triplicate, *** P <

0.001 versus 5IA85380, # P < 0.05 versus 5IA85380 + α-conotoxin MII.
One-way ANOVA followed by Bonferroni post-hoc test. (C)
Representative dot blot of rat NAc nerve endings: untreated
synaptosomes (CONTROL) and synaptosomes exposed for 10 min to
Aβ1-40 (PRE-EXPOSED).
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at 100 nM concentration is ineffective on the nicotine-evoked
[3H]DA overflow. The [3H]DA overflow evoked by 4-AP (10 µM)
is not altered by Aβ1-40 (100 nM). Figure 1B shows that [3H]DA
overflow induced by 5IA85380 an α4, α6 nAChRs agonist, is
inhibited by Aβ1-40 (100 nM) to a similar extent (−36%). In
presence of α-conotoxin MII (50 nM) a specific inhibitor of α6
nAChRs, the 5IA85380-evoked [3H]DA overflow is significantly
decreased (−44%) and further inhibited (−45%) by Aβ1-40
indicating that α-conotoxin MII—resistant nAChRs (α4- non α6)
are inhibited by Aβ1-40. As expected, choline (1 mM) doesn’t
elicit [3H]DA overflow from NAc synaptosomes, which is mostly
modulated by non α7 nAChRs subtypes (Gotti et al., 2009 and
references therein). Figure 1C reports an example of immunoblot
analysis of Aß 1-40 which shows that Aß peptide, administered
in the extracellular medium, enters and is present inside the
isolated nerve terminals under the conditions in which the release
experiments have been performed.

In order to study if the Aβ1-40 inhibitory effect on nAChRs
is exerted on external or internal synaptosomal targets, we inves-
tigated whether a specific Aβ antibody present in the medium

or entrapped into synaptosomes may counteract the inhibitory
effect of Aβ1-40. As shown in Figure 2A, the presence of Aβ anti-
body in the superfusion medium doesn’t modify the 5IA85380-
evoked overflow of [3H]DA, but completely counteracts the
inhibitory effect of Aβ1-40 (100 nM). Conversely, when the Aβ

antibody is entrapped into synaptosomes (Figure 2B), Aβ1-40
is yet able to inhibit the 5IA85380-evoked [3H]DA overflow.
All together these findings suggest the Aβ1-40 inhibitory effect
versus the nicotinic stimulation of DA overflow is due primarily
to an external modulation by Aβ1-40. This hypothesis is also
confirmed by the lack of inhibitory effect of Aβ1-40 when it
is entrapped into synaptosomes. As expected, in these exper-
imental conditions Aβ1-40 added to the superfusion medium
is still able to inhibit the 5IA85380 evoked [3H]DA overflow
(Figure 2B). Figure 2C confirms the presence of 1-40 and Aβ

6E10 antibody in the entrapped synaptosomes after 40 min of
superfusion.

Figure 3 shows the concentration-dependent stimulatory
effect of 5IA85380 on [3H]DA overflow in absence or in presence
of Aβ1-40 in the perfusion medium. The EC50 of 5IA85380 are

FIGURE 2 | (A) Effect of 6E10 monoclonal antibody on the inhibition by
Aβ1-40 of 5IA85380-evoked [3H]DA overflow from rat NAc synaptosomes.
Data are means ± SEM of four experiments run in triplicate, *** P <

0.001 versus 5IA85380. One-way ANOVA followed by Bonferroni post-hoc
test. (B) Effects of Aβ1-40 added to the medium on 5IA85380-evoked
[3H]DA overflow from rat NAc synaptosomes entrapped with 6E10
antibody or Aβ1-40. Data are means ± SEM of at least four experiments

run in triplicate, *** P < 0.001 versus 5IA85380 (control synaptosomes),
◦◦ P < 0.01 versus 5IA85380 (6E10 antibody entrapped); ### P < 0.001
versus 5IA85380 (Aβ1-40 entrapped). Two-way ANOVA followed by
Bonferroni post-hoc test. (C) Representative dot blot of rat NAc nerve
endings: untreated synaptosomes (CONTROL), Aβ1-40 entrapped and
6E10 antibody entrapped synaptosomes after 40 min of incubation
(ENTRAPPED).
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similar (respectively 0.32 ± 0.08 and 0.5 ± 0.12 nM) indicating a
typical non-competitive antagonistic effect.

The possibility of rescuing the inhibitory effect of Aβ was
investigated using two α4β2 nicotinic compounds, DFBr and
galantamine, supposed to act as positive allosteric modulators at
the α4β2 nAChRs (Kim et al., 2007; Pandya and Yakel, 2011).

Figure 4A shows that DFBr (10 nM), in our experimental
conditions, is able to produce a modest, not significant, increase of

the 5IA85380-evoked [3H]DA overflow but is able to counteract
the inhibitory effect of Aβ1-40 (100 nM). Similarly, galantamine
(10 nM), which is ineffective on the 5IA85380-evoked [3H]DA
overflow, also shows the capacity of antagonizing the inhibitory
effects of Aβ1-40 (Figure 4B).

Figure 5 describes the pharmacological features of the nAChR
that modulates the release of noradrenaline (NA) in rat hip-
pocampus. This receptor is known to be pharmacologically

FIGURE 3 | Concentration-dependent effect of 5IA85380, alone or
in presence of Aβ1-40, on [3H]DA overflow from rat NAc
synaptosomes. Data are means ± SEM of at least four experiments
run in triplicate, ### P < 0.001 versus 5IA85380 (100 pM), ◦◦◦ P <

0.001 versus 5IA85380 (100 pM) + Aβ1-40 (100 nM), * P < 0.05
versus 5IA85380 (300 pM), *** P < 0.001 versus 5IA85380 (1 nM)
and 5IA85380 (10 nM) respectively. One-way ANOVA followed by
Bonferroni post-hoc test.

FIGURE 4 | (A) Effect of desformylflustrabromine (DFBr) on the inhibition by
Aβ1-40 of 5IA85380-evoked [3H]DA overflow from rat NAc synaptosomes.
Data are means ± SEM of six experiments run in triplicate, *** P < 0.001
versus 5IA85380. One-way ANOVA followed by Bonferroni post-hoc test. (B)

Effect of galantamine on the inhibition by Aβ1-40 of 5IA85380-evoked [3H]DA
overflow from rat NAc synaptosomes. Data are means ± SEM of four
experiments run in triplicate, * P < 0.05 versus 5IA85380. One-way ANOVA
followed by Bonferroni post-hoc test.
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FIGURE 5 | Effect of dihydro-β-erythroidine (DHβE), SR 165845 and
Aβ1-40 on nicotinic-evoked [3H]NA overflow from rat hippocampal
synaptosomes. Data are means ± SEM of at least four experiments run in
triplicate, *** P < 0.001 versus nicotine. One-way ANOVA followed by
Bonferroni post-hoc test.

different from those present on DA nerve terminals (Risso
et al., 2004; Azam and McIntosh, 2006; Kennett et al., 2012).
The nicotine-evoked [3H]NA overflow is not antagonized by
DHβE (1 µM) but counteracted by the specific α3β4 antagonist
SR165845 (10 µM; Zaveri et al., 2010). As expected 5IA85380
is unable to elicit [3H]NA overflow. Quite interestingly, Aβ1-
40, at the same concentration used in the previous experiments
(100 nM), doesn’t produce any inhibitory effect.

The possibility that Aβ1-40 may differentially inhibit the
nAChR and mAChR subtypes which control [3H]DA release
has also been investigated. Figure 6A shows that oxotremorine,
a selective muscarinic agonist, is able to elicit [3H]DA over-
flow, probably activating an M5 mAChR subtype present on DA
nerve endings (Grilli et al., 2008). Aβ1-40 (100 nM, but not
10 nM) present in the superfusion medium produces a significant
inhibitory effect on M5-evoked [3H]DA overflow as previously
demonstrated (Grilli et al., 2010) but, quite interestingly, in
synaptosomes entrapped with 6E10 antibody, which doesn’t alter
oxotremorine-elicited [3H]DA overflow, Aβ1-40 added to the
superfusion medium is ineffective. These results suggest that Aβ1-
40 must enter into nerve endings to produce the inhibitory effect.
This has been confirmed in synaptosomes in which Aβ1-40 has
been entrapped. The peptide is still capable of inhibiting the
muscarinic stimulation of DA overflow at very low concentrations
(10 nM and 1 nM, Figure 6B).

DISCUSSION
It has been reported that the extracellular application of Aβ might
induce extensive neuronal changes including altered synaptic
plasticity and neuronal damage. This is in agreement with exper-
iments using monoclonal antibodies showing that the principal
location of Aβ in Alzheimer brains is mostly extracellular (Mucke

FIGURE 6 | (A) Effects of Aβ1-40 added to the medium on
oxotremorine-evoked [3H]DA overflow from rat NAc synaptosomes
entrapped with 6E10 monoclonal antibody. Data are means ± SEM of three
experiments run in triplicate. *** P < 0.001 versus oxotremorine (control
synaptosomes). Two-way ANOVA followed by Bonferroni post-hoc test. (B)
Effects of Aβ1-40 entrapped in rat NAc synaptosomes on
oxotremorine-evoked [3H]DA overflow. Data are means ± SEM of three
experiments run in triplicate. * P < 0.05; ** P < 0.01; *** P < 0.001 versus
oxotremorine (control synaptosomes). One-way ANOVA followed by
Bonferroni post-hoc test.

and Selkoe, 2012 and references therein). However, it is well
accepted that Aβ in the brain is present both extracellularly and
intracellularly (Mohamed and Posse de Chaves, 2011; Mucke and
Selkoe, 2012). The intraneuronal Aβ peptide could represent both
an amount of normally produced Aβ ready to be secreted or
previously secreted Aβ monomers which have been taken back
up into neurons (Walsh et al., 2000). There is now increasing
evidence that intracellular Aβ accumulation is associated with
neuritic and synaptic pathology (Mohamed and Posse de Chaves,
2011), in particular with early synaptic dysfunction (Oddo et al.,
2006). At this regard, in triple transgenic mouse model of AD the
intraneuronal presence of Aβ correlates very well with long-term
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potentiation abnormalities and synaptic dysfunction (Mohamed
and Posse de Chaves, 2011 and references therein).

The present research shows that in rat NAc synaptosomes
the extracellular application of Aβ1-40 inhibits both nicotinic
and muscarinic cholinergic modulation of DA release by acting
respectively from outside and inside the nerve endings likely
through two different mechanisms of action.

As shown in Figure 1, Aβ1-40, used at nanomolar concentra-
tions, is able to inhibit the overflow of [3H]DA elicited by the
activation of nAChR subtypes which modulate the release of DA
in NAc (Gotti et al., 2009 and references therein). The inhibition
of nicotinic-evoked [3H]DA overflow depends on the interaction
of Aβ1-40 with nAChRs through a non-competitive antagonism;
indeed, Aβ1-40 inhibits by 40% the effect of the nicotinic agonist
5IA85380 without producing changes of its EC50.

The inhibitory effect of Aβ1-40 is evident both when the
nAChR subtypes are stimulated by nicotine, 5IA85830 alone and
in the presence of α-conotoxin MII, which excludes the involve-
ment of the nAChRs containing the α6 subunit (likely α6β3β2
and/or α6α4β3β2). Since the inhibitory effect of Aβ against the
5IA85380-evoked [3H]-DA overflow is similar in the presence or
in the absence of α-conotoxin MII, it can be speculated that the
inhibitory effect of Aβ1-40 concerns all the α4β2* nAChR sub-
types that modulate [3H]DA overflow including the α-conotoxin
MII resistant nAChRs (probably α4β2 and/or α4α5β2). When
defining the receptor subtypes we use asterisks to indicate the
possible presence of unidentified nAChR subunits. Conversely, Aβ

is not effective on the α3β4 nAChRs that elicit [3H] NA overflow
in the hippocampus. As shown in Figure 5, these receptors are not
inhibited by Aβ1-40 when used at the same nanomolar range of
concentration active in NAc. This difference is in agreement with
other previously reported findings (Pym et al., 2005). Our results
seem therefore to indicate a certain specificity of action of Aβ1-40
for some selective nAChRs subtypes, although the possibility that
it might be effective also on α3β4 nAChRs, when used at higher
concentrations, has to be taken into consideration (Nery et al.,
2013).

The nicotinic-evoked DA release is of exocytotic type involving
the activation of α4β2* receptors present on the DA terminals, a
subsequent depolarization of the nerve endings and the activation
of voltage-operated calcium channels (Wonnacott, 1997). It is
worth noting that the mechanism of DA release triggered by
non-α7 nAChRs present on nerve terminals involves the acti-
vation of intracellular pathways that are not impaired by the
presence of Aβ1-40, as illustrated in Figure 2B. This result clearly
demonstrates that the inhibitory effect of Aβ1-40 on the function
of nAChRs occurs through a mechanism external to the nerve
ending. This point is further supported by the finding that Aβ1-40
is ineffective in inhibiting the depolarization-evoked DA overflow
elicited by other depolarizing agents (Figure 1A).

Another significant point of this study is the demonstration
that the inhibitory effect of Aβ1-40 can be reversed by the Aβ

directed antibody and by some compounds acting as allosteric
modulators at nAChRs. It is significant to note that the effect
of Aβ1-40 is no longer evident in the presence of both DFBr
and galantamine. DFBr has been characterized as selective pos-
itive allosteric modulator of α4β2* nAChRs, at low micromolar

concentration, but not active on α7 or α3β4 nAChR subtypes
(Weltzin and Schulte, 2010; Pandya and Yakel, 2011), while
galantamine is a well-known α7 positive allosteric modulator
which is also effective on α4β2 nAChRs (Samochocki et al.,
2003). In our experimental conditions, DFBr (10 nM) produces
only a slight increase, although not significant, of the 5IA85380-
evoked DA overflow while galantamine is completely ineffective.
However, both drugs are able to rescue the Aβ1-40-induced
inhibition of nAChRs stimulation. In line with these findings,
it has been previously shown that DFBr prevents the functional
blockade by Aβ1–42 of ACh-induced currents in oocytes express-
ing α4β2 receptors (Pandya and Yakel, 2011). From our results,
it is difficult to establish the precise mechanism of action of
the two drugs. However, since it is inconceivable to assume
that the Aβ1-40 inhibitory effect might be compensated by a
functional potentiating effect of these agents if administered
together with Aβ1-40 it is therefore reasonable to speculate that
the antagonistic effect of the two drugs might be due to a direct
interference with the site of action of Aβ1-40. Whether this
relates to the allosteric site of the α4β2* nAChR or to other
binding sites is difficult to determine. Nonetheless, it is inter-
esting to mention that drugs acting as positive allosteric mod-
ulators on α4β2* do not work as modulators on α3β4 nAChRs
(Williams et al., 2011) and Aβ1-40 is ineffective on this nAChR
subtype.

A different view emerged when considering the muscarinic
control of DA release in the same brain area. In a recent study,
we pharmacologically characterized as M5 the mAChR subtype
which modulate DA release in the rat NAc and reported that
it can be inhibited by the extracellular application of Aβ1-40
at nM concentration (Grilli et al., 2010). Here we clearly show
that the inhibitory effect of Aβ1-40 on the mAChR-elicited
[3H]DA overflow is not due to the binding of Aβ1-40 to the
external surface of mAChRs or to binding to other external sites.
Indeed, this inhibitory effect is achieved inside the nerve terminal
through a mechanism which possibly requires the binding of
Aβ1-40 to a site downstream the mAChR signal (Figures 6A,B).
This finding was in a way expected since data from the literature
confirm that Aβ1-40 does not bind to any mAChRs (Kelly et al.,
1996; Wang et al., 2000). Quite interestingly, Aβ1-40 present in
the superfusion medium is therefore able to enter into the nerve
endings (cf. Figure 1C) and to perform its selective inhibitory
action from inside. It is interesting that Aβ1-40 present inside
the nerve endings inhibits the muscarinic stimulation of [3H]DA
release in concentrations much lower (1 nM) than those effective
in interfering with the nicotinic modulation outside the nerve
endings (100 nM; cf. Figures 6B, 1A). The fact that Aβ1-40 is
effective inside the neuron at very low concentrations could be
relevant suggesting that Aβ1-40 could be more likely connected
with the small production from APP that occurs inside the neuron
(Mohamed and Posse de Chaves, 2011) and not necessarily due to
the entry of Aβ from the extracellular environment. This should
be a further support to the hypothesis that the effect of Aβ at the
intracellular level might be an earlier pathological event which
precedes other neurodegenerative processes.

It is well accepted that the facilitation of neurotransmitter
release by M1, M3 and M5 mAChRs is mediated by signal
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transduction pathways involving the protein kinase C (Zhong
et al., 2003). Therefore the possibility that Aβ1-40 may act inhibit-
ing this function downstream the mAChR activation is likely to
occur (Olariu et al., 2002; Zhong et al., 2003; Preda et al., 2008;
Mura et al., 2010a), although other mechanisms of action cannot
be excluded.

CONCLUSION
In conclusion, we have demonstrated that Aβ1-40 inhibits both
nicotinic- and muscarinic-evoked DA overflow by two different
mechanisms: interacting extracellularly with a nAChRs binding
site or through an internal modulation involving the downstream
signal transduction of M5 mAChR subtypes. Moreover, we have
found that the inhibitory effect of Aβ1-40 on nAChRs could be
rescued by DFBr and galantamine with a mechanism which prob-
ably involved the positive allosteric modulator site of α4*nAChRs.

The demonstration that the inhibitory effect of Aβ can be
selectively reverted may open up new and important therapeutic
perspectives, especially with regard to the potential use of drugs
of this type in the early stages of the disease when it could be
very important to slow down its progression. As reported in the
introduction, a variety of studies indicates that Aβ may have an
important role in cognitive dysfunction and memory deficits. It
might be that compounds of this type could be useful even in
healthy subjects to prevent, slow down the appearance or reverse
the cognitive decline typical of the normal processes of brain
aging.

AUTHOR CONTRIBUTIONS
Guendalina Olivero performed the release and the dot-blot exper-
iments, revised critically the paper and approved the final version;
Jiayang Chen, Stefania Preda, and Elisa Mura performed the
release experiments and revised critically the paper and approved
the final version; Massimo Grilli contributed to the design of the
work and coordinated the release experiments, performed the
dot-blot experiments, revised critically the paper and approved
the final version; Stefano Govoni and Mario Marchi provided a
substantial contributions to the design of the work and to the
interpretation of data and wrote the paper.

ACKNOWLEDGMENTS
This work was supported by Italian MIUR to Prof. Mario
Marchi (Prot. No. 2009R7WCZS_003), by University of Genoa
“Athenaeum Research Project” and by Italian MIUR to Prof.
Govoni. This work was supported by a grant of the Alzheimer’s
Association (NIRG-11-205183) to Elisa Mura. We wish to thank
Maura Agate and Dr. Silvia E. Smith, Ph.D (University of Idaho,
IBEST, School of Life Sciences) for editorial assistance.

REFERENCES
Azam, L., and McIntosh, J. M. (2006). Characterization of nicotinic acetylcholine

receptors that modulate nicotine-evoked [3H]norepinephrine release from
mouse hippocampal synaptosomes. Mol. Pharmacol. 70, 967–976. doi: 10.
1124/mol.106.024513

Buckingham, S. D., Jones, A. K., Brown, L. A., and Sattelle, D. B. (2009). Nicotinic
acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid
neuroprotection. Pharmacol. Rev. 61, 39–61. doi: 10.1124/pr.108.000562

Bukanova, J. V., Sharonova, I. N., and Skrebitsky, V. G. (2014). Amyloid β pep-
tide, (25–35) in picomolar concentrations modulates the function of glycine

receptors in rat hippocampal pyramidal neurons through interaction with
extracellular site(s). Brain Res. 1558, 1–10. doi: 10.1016/j.brainres.2014.02.031

Burghaus, L., Schütz, U., Krempel, U., de Vos, R. A., Jansen Steur, E. N., Wevers,
A., et al. (2000). Quantitative assessment of nicotinic acetylcholine receptor
proteins in the cerebral cortex of Alzheimer patients. Brain Res. Mol. Brain Res.
76, 385–388. doi: 10.1016/s0169-328x(00)00031-0

Chen, L., Yamada, K., Nabeshima, T., and Sokabe, M. (2006). Alpha7 nicotinic
acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction
in beta-amyloid infused rats. Neuropharmacology 50, 254–268. doi: 10.1016/j.
neuropharm.2005.09.018

Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A.,
Selkoe, D. J., et al. (2005). Natural oligomers of the amyloid-beta protein specif-
ically disrupt cognitive function. Nat. Neurosci. 8, 79–84. doi: 10.1038/nn1372

De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira,
S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through
an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the
Alzheimer drug memantine. J. Biol. Chem. 282, 11590–11601. doi: 10.1074/jbc.
m607483200

Dineley, K. T. (2007). Beta-amyloid peptide—nicotinic acetylcholine receptor
interaction: the two faces of health and disease. Front. Biosci. 12, 5030–5038.
doi: 10.2741/2445

Dougherty, J. J., Wu, J., and Nichols, R. A. (2003). Beta-amyloid regulation of
presynaptic nicotinic receptors in rat hippocampus and neocortex. J. Neurosci.
23, 6740–6747.

Gotti, C., Clementi, F., Fornari, A., Gaimarri, A., Guiducci, S., Manfredi, I., et al.
(2009). Structural and functional diversity of native brain neuronal nicotinic
receptors. Biochem. Pharmacol. 78, 703–711. doi: 10.1016/j.bcp.2009.05.024

Govoni, S., Mura, E., Preda, S., Racchi, M., Lanni, C., Grilli, M., et al. (2014).
Dangerous liaisons between Beta-amyloid and cholinergic neurotransmission.
Curr. Pharm. Des. 20, 2525–2538. doi: 10.2174/13816128113199990503

Grilli, M., Lagomarsino, F., Zappettini, S., Mura, E., Preda, S., Govoni, S., et al.
(2010). Specific inhibitory effects of β-amyloid on presynaptic muscarinic recep-
tor subtypes modulating neurotransmitter release in the rat nucleus accumbens.
Neuroscience 167, 482–489. doi: 10.1016/j.neuroscience.2010.01.058

Grilli, M., Patti, L., Robino, F., Zappettini, S., Raiteri, M., and Marchi, M. (2008).
Release-enhancing presynaptic muscarinic and nicotinic receptors coexist and
interact on dopaminergic nerve endings of rat nucleus accumbens. J. Neu-
rochem. 105, 2205–2213. doi: 10.1111/j.1471-4159.2008.05307.x

Grilli, M., Summa, M., Salamone, A., Olivero, G., Zappettini, S., Di Prisco, S.,
et al. (2012). In vitro exposure to nicotine induces endocytosis of presynaptic
AMPA receptors modulating dopamine release in rat nucleus accumbens nerve
terminals. Neuropharmacology 63, 916–926. doi: 10.1016/j.neuropharm.2012.
06.049
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