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We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cogni-
tively intact subjects with Parkinson’s disease (PD) at an early stage of the disease. Fourteen
patients and 13 healthy subjects were imaged with single photon emission computed
tomography and the radiotracer 5-[123I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([123I]5IA).
Patients were selected according to several criteria, including short duration of motor signs
(<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients,
nAChR density was significantly higher in the putamen, the insular cortex and the supple-
mentary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the
middle temporal gyrus. Disease duration positively correlated with nAChR density in the
putamen ipsilateral (ρ=0.56, p < 0.05) but not contralateral (ρ= 0.49, p=0.07) to the clini-
cally most affected hemibody.We observed, for the first time in vivo, higher nAChR density
in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our find-
ings support the notion of an up-regulated cholinergic activity at the striatal and possibly
cortical level in cognitively intact PD patients at an early stage of disease.
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INTRODUCTION
At an early motor stage, Parkinson’s disease (PD) is predom-
inantly characterized by a progressive loss of the nigrostriatal
dopaminergic neurons leading to a severe state of dopamine
depletion. In addition to the decline in dopaminergic function,
other neurotransmitter systems are involved in PD, including
the nicotinic cholinergic system (Jellinger, 1991; Posadas et al.,
2013). Indeed, anti-cholinergics were the first widely accepted
treatment for parkinsonism. In 1867, Ordenstein first reported
their antiparkinsonian effect, which Charcot had discovered fortu-
itously when administering tinctures of deadly nightshade (Atropa
belladonna) for excessive salivation in parkinsonian patients
(Lang and Blair, 1989).

The two primary sources of acetylcholine (ACh) in the brain
include local interneurons that are interspersed among their cel-
lular targets and projection neurons that innervate distal areas.
Most brain regions, including the pedunculopontine and lat-
erodorsal tegmental areas, belong to the latter category, whereas
the former includes the striatum and nucleus accumbens. ACh
signals through two classes of receptors localized both pre- and
postsynaptically: metabotropic muscarinic acetylcholine recep-
tors (mAChRs) and ionotropic nicotinergic acetylcholine recep-
tors (nAChRs). Presynaptic mAChRs (M2, M4) act as inhibitory

autoreceptors on the cholinergic terminals, with M4 predominant
in striatum. Postsynaptic mAChRs can be either inhibitory (M2,
M4) or excitatory (M1, M3, M5). Although the actual mechanism
of action in PD is not known, clinically available anti-cholinergics
(e.g., trihexyphenidyl, benztropine, etc.) act mainly as compet-
itive antagonists of mAChRs (Brocks, 1999). The nAChRs are
pentameric ligand-gated ion channels composed of α-subunits
(homomeric receptors) or of α- (α2–α7) and β-subunits (β2–β4)
(heteromeric receptors) (reviewed in Gotti and Clementi, 2004).
Presynaptic nAChRs induce release of a number of neurotrans-
mitters, including dopamine. Postsynaptic nAChRs depolarize
neurons, increase their firing rate, and can contribute to long-term
potentiation (reviewed in Picciotto et al., 2012).

The striatum is a nodal structure of the basal ganglia cir-
cuits and one of the brain areas with the highest concentration
of markers of cholinergic transmission. Large aspiny cholinergic
interneurons (ChIs) constitute <2% of the entire striatal neuronal
population but exert a powerful influence on its output, which
is mediated by the medium spiny neurons (MSNs). Dopamine
depletion elicits an increased excitability of ChIs, mainly due to
the removal of D2-mediated inhibitory control (Maurice et al.,
2004). In addition, rhythmic firing of the ChIs and breakdown of
autoinhibition of ACh release by M4 results in the unregulated
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release of ACh, which selectively increases excitability of MSNs,
particularly those of the indirect pathway (Aosaki et al., 1995;
Kreitzer and Malenka, 2007). Increased cholinergic activity in sub-
jects with PD was not confirmed by anatomopathological studies
that documented mainly an extensive nAChR reduction in the
brain of patients with PD (Perry et al., 1989; Rinne et al., 1991;
Aubert et al., 1992). In vivo studies in non-demented PD subjects
are instead limited and controversial. Molecular imaging using
either 2-[18F]FA-85380 and positron emission tomography (PET)
or [123I]5IA and single photon emission computed tomography
(SPECT) demonstrated variably reduced nAChRs density in cor-
tical areas only (i.e., frontal and parietal lobes), amygdala (Fujita
et al., 2006; Oishi et al., 2007; Meyer et al., 2009) or in the striatum
and substantia nigra (Kas et al., 2009).

In the present study, we investigated by means of 5-[123I]iodo-
3-[2(S)-2-azetidinylmethoxy]pyridine ([123I]5IA), a specific α4β2
nAChR ligand, and SPECT ([123I]5IA-SPECT) a group of PD
patients specifically selected for a short disease duration, the
capability to be withdrawn from all dopaminergic medications
for 3 days, and normal scores from extensive neuropsychological
evaluation.

MATERIALS AND METHODS
Healthy subjects were enrolled at the Yale University School of
Medicine with the approval of the Yale Human Investigation
Committee, the West Haven Veterans Administration Human
Subjects Subcommittee, the Radiation Safety Committee, and
the Food and Drug Administration. [123I]5IA-SPECT in patients
with PD was performed at the University Hospital of Würzburg
and approved by the University Hospital of Würzburg and the
German Federal Office for Radiation Protection (Bundesamt für
Strahlenschutz, Salzgitter, Germany). All participants gave written
informed consent.

SUBJECTS
The study involved 14 subjects with PD (8 males; median age:
64 years, range: 52–78 years; recruited at Saarland University) and
a control group of 13 neurologically intact adults (5 males; median
age, 61 years, range: 51–78 years; recruited at Yale University).
Median age of PD patients at motor symptoms onset was 60 years
(43–75 years). The diagnosis of PD was made according to the
UK Parkinson Disease Brain Bank criteria and patients evalu-
ated with the Unified Parkinson Disease Rating Scale (UPDRS).
Median UPDRS-III (motor part) score was 21 (range, 9–33) in
meds-off phase (12 h l-DOPA withdrawal; selegiline, rasagiline,
amantadine, cabergoline, pergolide, and prolonged formulations
of dopamine agonists were discontinued for 72 h). The right hemi-
body showed more severe akinetic–rigid signs in all but two PD
patients (UPDRS-22 median score right: 3 and left: 1; UPDRS-
23/24/25 grand median score right: 1 and left 0). The average
l-DOPA daily dose was 114± 147 mg and the average l-DOPA
equivalent daily dose (LEDD) was 626± 412 mg. All patients had
a positive response to dopaminergic drugs. Clinical inclusion cri-
teria for subjects with PD were as follows: (1) UPDRS part I score
of 0; (2) disease duration <7 years (anamnestic to first motor
symptoms onset); (3) Hoehn and Yahr scale, stage 2; (4) no psy-
chiatric disorders or other neurological diseases other than PD;

and (5) absence of any signs indicative for atypical parkinsonism
(e.g., gaze abnormalities, autonomic dysfunction, psychiatric dis-
turbances, etc.). All subjects had no cognitive decline as well as
no deficit in visual attention, task switching, memory, or learning
strategies, as assessed by the Mini Mental State Examination (score
>27), Word list (Learning recall, Intrusions, Savings, and Recog-
nition), Visuoconstructive Ability (Figure drawing, Figure recall,
and Figure savings),Verbal Fluency Test, Modified Boston Naming
Test, Phonemic Fluency, and Trail-making test A and B. Patients
were excluded from the study if they were taking cholinergic or
anti-cholinergic drugs. Further exclusion criteria were pregnancy
or breastfeeding, a partner who was capable of childbearing and
smoking in the last 5 years.

None of the controls had a history of neurological disorders,
head trauma with loss of consciousness, epilepsy, brain surgery, or
excessive drug or alcohol consumption at any time during their
life. All participants gave written informed consent following a
protocol approved by the local institutional Ethics Committee.

RADIOCHEMISTRY
[123I]5IA was prepared by [123I]iododestannylation of the
corresponding stannyl precursor 5-(tri-n-butylstannyl)-3-([1-t -
butoxycarbonyl-2(S)-azetidinyl]pyridine as described previously
(Lorenz et al., 2014). In details, to a 1.5-ml conical vial
(Pierce, Sankt Augustin, Germany) containing carrier-free sodium
[123I]iodide (typically 300–500 MBq in 50–150 µl 0.02 N NaOH;
GE Healthcare,Braunschweig,Germany) were added in the follow-
ing order: 50 µg of 5-SnBu3-A85380 dissolved in 25 µl of ethanol,
5 µl 1 M HCl, and 15 µg chloramine-T (in 10 µl H2O). After
30 min incubation at 40°C, 30 µl of trifluoroacetic acid was added
to the mixture and the sealed vial heated for additional 15 min at
100°C. After cooling at room temperature, the mixture was made
alkaline by adding 150 µl of 1 M aqueous K2CO3. [123I]5IA was
then isolated from the starting materials and radioactive impu-
rities by reverse-phase high-performance liquid chromatography
(HPLC), using a reversed phase RP-C18 column (Nucleosil 100-
7, 250 mm× 4 mm; CS-Chromatography Service, Germany) and
water/ethanol/H3PO4 (90:10:0.1, v/v/v), as eluent at a flow rate
of 1.3 ml/min, while monitoring ultraviolet (UV) at 254 nm with
a UV detector (HP1100) and radioactivity with a scintillation
detector (Berthold, Wildbad, Germany), respectively. The fraction
containing [123I]5IA was collected into a sterile tube, buffered with
PBS (pH 7.0) under sterile conditions and sterile-filtered through
a 0.22-µm filter (Millipore, Eschborn, Germany) into an evacu-
ated sterile vial for investigation. [123I]5IA was obtained with an
isolated radiochemical yield of 85± 6% (n= 30) and a radiochem-
ical purity >99%. The specific activity as determined from the
UV absorbance at 254 nm exceeded 125 GBq/µmol (the detection
limit of our system). The injection solution was additionally qual-
ity controlled by HPLC [Nucleosil RP-100-7, 250 mm× 4 mm;
water/ethanol/phosphoric acid, 90:10:0.1 (v/v/v) at 1.3 ml/min].

IMAGE DATA ACQUISITION AND ANALYSIS
Patients fasted at least 4 h before [123I]5IA administration. Possi-
ble iodine uptake by the thyroid was blocked by oral medication
with sodium perchlorate (Irenat®, Bayer, Leverkusen, Germany).
Patients received 185± 5 MBq of freshly prepared [123I]5IA
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intravenously over 60 min. The above described radiosynthesis
provided [123I]5IA in form of carrier-free (n.c.a.) tracer, with
the highest possible specific activity. The approximate adminis-
trated mass in an injectable solution with 185 MBq of [123I]5IA
was <0.001 nmol (<1 pmol).

Cerebral SPECT imaging was acquired with a dual-head
gamma camera (E.Cam Duet, Siemens Medical Solutions, Hoff-
man Estates, IL, USA) equipped with medium energy collimators.
At 2 and 4 h after injection of [123I]5IA, 120 views (40 s per view)
were acquired over a 360° circular orbit, and reconstructed into a
128× 128 matrix with a pixel size of 3.9 mm and slice thickness of
3.9 mm. Imaging at 4 h after injection was chosen in accordance
with previous kinetic modeling data in healthy volunteers (Oishi
et al., 2007; Cosgrove et al., 2012) and for practical reasons con-
cerning scanning the patients. Reconstruction was performed with
filtered back-projection with a Butterworth filter (order 8, cutoff
0.4) followed by attenuation correction according to the Chang
method (Chang, 1978), with an attenuation coefficient of 0.11/cm
to generate the transversal slices.

For further data analysis, the reconstructed transverse sections
were transferred to a Hermes workstation (Hermes Medical Solu-
tions, Stockholm, Sweden). Brain regions were analyzed using the
brain analysis program BRASS (version 3.5, Hermes Medical Solu-
tions, Stockholm, Sweden). Each image volume was recorded to
match to the built-in ECD template using an affine transform
(nine parameters). Manual fitting was necessary,because of the low

background uptake resulting in insufficient contrast for automatic
delineation of the brain contour. The ECD template consisted of a
three dimensional region of interest (ROI) map of 46 predefined
brain regions. The mean count per voxel was determined for each
region in both hemispheres. The normalized data were calculated
as the ratio of mean count per voxel to mean count per voxel of the
global [123I]5IA brain uptake (= average of all 46 measured brain
regions) for each region and each subject. We selected as a reference
the whole brain uptake as the most conservative approach (Terrière
et al., 2010). We also performed a statistical parametric mapping
(SPM version 8, Wellcome Department of Cognitive Neurology,
UCL, London, UK) analysis. This method allows exploratory
voxel-by-voxel group comparisons throughout the entire brain
volume without requiring an a priori hypothesis. The template for
SPM analysis was provided by Oishi et al. (2007). Of relevance
to this manuscript, we performed a voxel-based analysis applying
the proportional scaling global mean, thresholded at p < 0.05 and
corrected for Family wise-error (FWE). Brain regions (approxi-
mate Brodmann areas) were estimated based on the methods of
Talairach and Tournoux (1988) after adjustment (www.mrc-cbu.
cam.ac.uk/Imaging/mnispace.html) for differences between MNI
and Talairach coordinates.

STATISTICAL ANALYSIS
Normality of data distribution was tested by the Shapiro–
Wilks test. Gender distribution among groups was tested with

FIGURE 1 | Binding values of nAChRs of the caudate nucleus and
putamen of PD patients and HC. Compared to controls, nAChRs density
was bilaterally lower in the caudate nucleus (p < 0.01, Wilcoxon rank-sum
test) and higher in the putamen of PD patients (p < 0.001, Wilcoxon rank-sum

test). No significant difference was found when comparing ipsilateral and
contralateral (or left and right) side, both in patients and controls. Contralateral
refers to the side opposite to the clinically most affected hemibody. Right is
conventionally contralateral for HC.
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chi-square. Demographic and brain imaging data were compared
by means of Wilcoxon rank-sum test. Spearman’s Rho test was
used to identify correlations among [123I]5IA binding values and
clinical and demographic data. Statistical analyses were performed
with the JMP statistical package, version 8.0.2 (SAS Institute).

RESULTS
We found significant differences in [123I]5IA binding values within
the striatum of cognitively intact PD patients at an early dis-
ease stage compared to controls. In particular, the putamen
showed a higher density of nAChRs bilaterally (1.36± 0.1 vs.
1.08± 0.1, contralateral to the clinically most affected hemibody
and 1.37± 0.13 vs. 1.09± 0.09, ipsilateral; p < 0.001 all), whereas
the caudate nucleus had a lower nAChRs density (0.86± 0.12 vs.
1.04± 0.15, contralateral and 0.81± 0.2 vs. 1.11± 0.21 ipsilateral;
p < 0.01 all) (Figure 1). Two functionally correlated cortical areas,
namely the insular cortex and the orbitofrontal cortex showed
higher and lower nAChR density, respectively (Table 1). Disease
duration positively correlated with nAChR density in ipsilateral

Table 1 | Binding values of nAChRs.

PD HC p Value

Putamen C 1.36±0.10 1.08±0.10 <0.0001

Putamen I 1.37±0.13 1.09±0.09 <0.0001

Caudate C 0.86±0.12 1.04±0.15 <0.01

Caudate I 0.81±0.20 1.11±0.21 <0.01

Thalamus C 1.68±0.23 1.67±0.18 0.46

Thalamus I 1.62±0.24 1.68±0.20 1.00

Sensorimotor L 1.07±0.07 1.05±0.09 0.40

Sensorimotor R 1.02±0.07 1.02±0.08 0.88

Frontal lobe L 0.93±0.06 0.95±0.08 0.19

Frontal lobe R 0.92±0.06 0.95±0.09 0.11

Orbitofrontal L 0.85±0.08 1.00±0.11 <0.001

Orbitofrontal R 0.83±0.10 1.00±0.10 <0.001

Temporal lobe L 0.97±0.05 0.96±0.08 0.73

Temporal lobe R 0.94±0.05 0.96±0.08 0.05

Parieto-temporal L 1.00±0.04 0.90±0.07 0.16

Parieto-temporal R 0.94±0.04 0.96±0.08 0.43

Insular cortex L 1.13±0.09 0.95±0.09 <0.001

Insular cortex R 1.13±0.10 0.91±0.07 <0.001

Gyrus cinguli L 0.85±0.07 0.88±0.10 0.16

Gyrus cinguli R 0.86±0.09 0.90±0.10 0.40

Occipital L 0.89±0.05 0.86±0.08 0.05

Occipital R 0.87±0.05 0.85±0.07 0.38

Cerebellum cortex L 1.01±0.06 0.98±0.01 0.22

Cerebellum cortex R 1.01±0.06 0.98±0.01 0.30

Cerebellum white matter L 1.12±0.07 1.07±0.04 0.17

Cerebellum white matter R 1.16±0.07 1.10±0.04 0.05

Pons and midbrain 1.33±0.13 1.34±0.09 0.69

For the striatum and thalamus only we listed the binding values of contralateral

(C) and ipsilateral (I) with respect to the clinically most affected hemibody. For

healthy controls, left hemibody refers conventionally to ipsilateral. Other brain

regions are listed as left (L) and right (R). p Value refers to Wilcoxon rank-sum

test.

(ρ= 0.56, p < 0.05) but not contralateral putamen (ρ= 0.49,
p= 0.07) (Mitsis et al., 2009a). This correlation was statistically
significant also when weighted for age and disease duration.

The SPM analysis confirmed a reduced nAChRs density in the
(right) caudate nucleus (Table 2; Figure 2B). This analysis also
showed in PD patients a lower density of nAChRs in left mid-
dle frontal gyrus (BA11) and left middle temporal gyrus (BA21)
(Table 2; Figure 2B). On the contrary, cholinergic activity was
increased in the supplementary motor area (SMA) (i.e., right
precentral gyrus and right middle frontal gyrus, BA6) (Table 2;
Figure 2A).

DISCUSSION
Despite the long history of the dopamine-ACh balance hypothe-
sis, we are just beginning to understand why and how dopamine
depletion triggers a profound deterioration of basal ganglia circuit
dynamics, such as over-activation of cholinergic system activity
leading to motor and cognitive disturbances.

Our findings support the notion of an up-regulated cholinergic
activity at a striatal and possibly cortical level in cognitively intact
PD patients at an early stage of disease. Higher nAChR density
may occur as a compensatory mechanism to maintain dopamin-
ergic tone, in particular in the putamen, the region with the most
extensive loss of dopaminergic innervation at the early motor stage
of disease (Isaias et al., 2007). Enhanced [123I]5IA binding was
also present in the limbic cortex, a brain area possibly involved in
the pathophysiology of PD at a pre-motor stage (Bohnen et al.,
2010). The SPM analysis specifically showed an increased cholin-
ergic activity in the SMA, which is considered a key structure of the
cortico-basal ganglia motor loop (Nachev et al., 2008). This finding
is of particular relevance given the functional connectivity between
SMA and the putamen (Yu et al., 2013). Indeed, deep brain stim-
ulation of the subthalamic nucleus, which is now an established
surgical therapy in PD (Bronstein et al., 2011; Merola et al., 2011),
as well as dopaminergic drugs, reduce blood flow (Hershey et al.,
2003; Bradberry et al., 2012) and glucose metabolism (Trošt et al.,
2006) in the SMA of PD patients. Of relevance, such an increased
[123I]5IA binding was selectively contralateral to the less affected
hemibody of PD patients. Thus further suggesting a putative
cholinergic compensatory activity at a cortical level upon stri-
atal dopaminergic innervation loss. Additional imaging studies,

Table 2 | Brain regions of significantly correlation between the

voxel-by-voxel [123I]5IA distribution in the PD group as compared with

the control group in statistical parametric mapping (SPM8) analyses.

Region – Brodmann area Coordinate (Talairach) Z score

INCREASED

R precentral gyrus – BA6 24, −18, 68 5.22

R middle frontal gyrus – BA6 32, −1, 57 5.12

DECREASED

R caudate nucleus 4, 7, 12 4.82

L middle frontal gyrus – BA11 −28, 41, −9 5.41

L middle temporal gyrus – BA21 −64, −12, −7 6.00

−56, −2, −15 4.84

−53, −22, −13 5.97
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FIGURE 2 | Statistical parametric mapping results. Group contrast giving relative increase (A) or decrease (B) in [123I]5IA uptake in PD patients applying the
proportional scaling global mean, thresholded at p < 0.05 and corrected for FWE.

assessing both cholinergic and dopaminergic innervation changes,
in the same PD patient, might further clarify dopamine-ACh inter-
play at different clinical stages. Of relevance, it is worth mentioning
that [123I]5IA binding is an indirect measurement of choliner-
gic activity, as it describes nAChRs density mainly at a post-
synaptic level. Other compounds, targeting acetylcholinesterase or
vesicular acetylcholine transporters, might better elucidate an up-
regulation of the cholinergic activity, especially at a pre-synaptic
level (see later).

The caudate nucleus and the orbitofrontal cortex showed
instead lower [123I]5IA binding. This finding may suggest a differ-
ent dopamine-ACh balance in striatal areas that are less-deprived
of dopamine (Isaias et al., 2007). However, it might also suggest a
greater impairment of cholinergic innervation in the orbitofrontal
basal ganglia circuit than in the motor or limbic circuits at an early
stage of PD, even in cognitively intact PD patients. An association
between anti-cholinergic drug use and cognitive decline in PD has
been documented (Ehrt et al., 2010). It should be noted, however,
that clinically available anti-cholinergics (e.g., trihexyphenidyl,
benztropine, etc.) mainly act as competitive antagonists at
mAChRs. A stepwise executive dysfunction has been described in
cognitively intact PD patients (Taylor et al., 1986) who suffer dam-
age to the frontal lobes and/or fibers connecting the frontal lobes
with the head of the caudate during electrode implantation for
deep brain stimulation (Okun et al., 2012). The role of [123I]5IA-
SPECT as a screening tool for identifying patients at risk for
(surgery-related) cognitive decline should be further investigated.

No previous studies have described higher nAChR binding lev-
eling in PD patients compared to controls. Discrepancies might
be related to the relatively short disease duration and the early
disease stage of patients enrolled in this study. In addition, we
carefully excluded patients with cognitive problems by means of
an extensive neuropsychological evaluation (Mitsis et al., 2009b).
We also enrolled patients able to stop their dopaminergic therapy
for 3 days to limit a possible acute effect of dopaminergic drugs
on nAChRs binding measurement. Indeed, l-DOPA treatment
significantly decreased in vitro [123I]5IA binding in the striatum,
but not in cerebral cortex in normal squirrel monkeys (Quik
et al., 2003). Similarly, a high daily dose of dopamine agonist

showed a significant negative correlation with density of nAChRs
in the cerebellum, temporal, parietal, and occipital cortices (Oishi
et al., 2007). In previous studies, dopaminergic drugs were not
suspended (Fujita et al., 2006; Meyer et al., 2009) or stopped for
12 h only (Kas et al., 2009), despite the long half-life of some
dopaminergic drugs (e.g., ergot derivatives) (Oishi et al., 2007).
Still, even a drug-withdrawal of 72 h, as in our study, might not
be sufficient in avoiding an acute drug effect on [123I]5IA bind-
ing, especially when patients are taking long-lasting dopaminergic
drugs (e.g., dopamine agonists). A study on drug naïve patients is
warranted, also to avoid a putative chronic effect of dopaminergic
drugs on the striatal cholinergic system.

The majority of anatomopathological studies (Perry et al., 1989;
Rinne et al., 1991; Aubert et al., 1992), but not all (Lange et al.,
1993), reported a loss of nAChR agonist binding in the striatum
of PD patients. Post-mortem findings are however not directly
comparable with our results as they cannot detach possible com-
pensatory changes early at a disease stage. In many cases, it is also
unclear whether these studies have included demented patients
(Rinne et al., 1991; Court et al., 2000).

Few PET studies with [11C]methyl-4-piperidinyl propionate
acetylcholinesterase ([11C]PMP) (Gilman et al., 2010) but not oth-
ers (Shinotoh et al., 1999; Bohnen et al., 2006, 2010) described a
reduced striatal cholinergic activity in patients with PD. Indeed,
in a large cohort of non-demented PD patients, cholinergic pro-
jection alterations, investigated by means of [11C]PMP and PET,
were highly heterogeneous with over 65 out of 101 subjects with
PD showing neocortical and thalamic acetylcholinesterase activity
within the normal range (Bohnen et al., 2012). It is worth mention-
ing that [11C]PMP and PET does not allow accurate measurements
of brain areas with high acetylcholinesterase activity levels, such
as the striatum.

Last but not least, the uptake of [123I]iodobenzovesamicol
(IBVM), an in vivo marker of the vesicular ACh transporter
binding, was reduced only in parietal and occipital cortex (Kuhl
et al., 1996) but not in the basal ganglia of non-demented PD
patients.

Such a great variability in cholinergic activity in PD patients
deserves further studies as it might unmask endogenous
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neuroprotective or compensatory mechanisms (Quik et al., 2012,
2013) and overall help profiling the disease changes at an early
stage of the disease. In particular, there is increasing evidence that
nicotine and other drugs that act at nAChRs may be beneficial
in the management of PD. Several studies in animals have shown
that nicotine administration enhances dopaminergic integrity in
the striatum, especially when administered before/during but not
after nigrostriatal damage (Huang et al., 2011). Indeed, a cholin-
ergic loss does not parallel dopaminergic state in PD patients as
measured by means of 18F-DOPA and PET (Kas et al.,2009) or with
markers of disease severity (i.e., UPDRS-III), disease duration, and
daily dose of l-DOPA and dopamine agonists (i.e., LEDDs) (our
study, Bohnen et al., 2006; Oishi et al., 2007; Kas et al., 2009).

Finally, several limitations of this study must be acknowledged.
In particular: (1) there is no region devoid of nAChRs and there-
fore we could not measure accurately non-specific binding and
then calculate a specific binding for the striatal area; (2) the low
resolution of SPECT and the different methodological techniques
in acquiring brain images might have contributed to the lack of
correlations with markers of disease severity and progression or
even account for discrepancies with previous studies; (3) ROIs
were not drawn on single patient anatomical template (e.g., MRI-
based); and (4) the several clinical inclusion criteria defined highly
homogeneous cohorts but greatly limited the number of partici-
pants to this study. Despite these limitations, mostly related to the
difficulty of applying a new radioactive compound for in vivo
imaging studies, our findings provide relevant information of
nAChR distribution at an early motor stage of PD.
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