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Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia.
Researchers have long been focused on the cortical pathology of AD, since the most
important pathologic features are the senile plaques found in the cortex, and the
neurofibrillary tangles and neuronal loss that begin in the entorhinal cortex and the
hippocampus. In addition to these gray matter (GM) structures, histopathological studies
indicate that the white matter (WM) is also a good target for both the early diagnosis of
AD and for monitoring disease progression. The fornix is a WM bundle that constitutes
a core element of the limbic circuits, and is one of the most important anatomical
structures related to memory. Functional and anatomical features of the fornix have
naturally captured researchers’ attention as possible diagnostic and prognostic markers
of AD. Indeed, neurodegeneration of the fornix has been histologically observed in AD,
and growing evidence indicates that the alterations seen in the fornix are potentially a
good marker to predict future conversion from mild cognitive impairment (MCI) to AD, and
even from cognitively normal individuals to AD. The degree of alteration is correlated with
the degree of memory impairment, indicating the potential for the use of the fornix as a
functional marker. Moreover, there have been attempts to stimulate the fornix using deep
brain stimulation (DBS) to augment cognitive function in AD, and ongoing research has
suggested positive effects of DBS on brain glucose metabolism in AD patients. On the
other hand, disease specificity for fornix degeneration, methodologies to evaluate fornix
degeneration, and the clinical significance of the fornix DBS, especially for the long-term
impact on the quality of life, are mostly unknown and need to be elucidated.
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INTRODUCTION
Alzheimer’s disease (AD) research has targeted beta-amyloid
and tau pathologies as diagnostic or progression markers.
White matter (WM) shows less pathologic evidence of beta-
amyloid or tau protein; nonetheless, alterations are seen in
WM as well. Among WM bundles reportedly abnormal in AD,
the fornix is especially interesting because robust and con-
sistent alterations have been demonstrated. These could pre-
dict future gray matter (GM) atrophy and conversion from
mild cognitive impairment (MCI) to AD, and even from
cognitively normalcy to AD. Moreover, there are ongoing
efforts to impact the biologic processes of AD by stimulating
the fornix using deep brain stimulation (DBS). This review
focuses on the fornix as a potential alternative diagnostic
and prognostic marker, as well as a potential therapeutic tar-
get in AD.

WM ALTERATIONS SEEN IN AD
Histopathological studies have revealed various types of WM
alterations in AD. Symmetrical WM changes compatible with
incomplete infarction, independent of the GM changes, have been
reported. These WM changes are partly explained by co-existing

small vessel disease (Brun and Englund, 1986; Englund et al.,
1988). WM changes are also related to cerebral amyloid angiopa-
thy of AD, supporting a vascular contribution to the WM alter-
ations (Haglund and Englund, 2002). Chronic hypoxia caused
by vascular alterations might induce oxidative stress that could
damage axonal membranes and myelin, and the reactivity of
oligodendroglia to such damage (Back et al., 2011). However,
in preclinical AD, WM alterations are independent of vascular
alterations (de la Monte, 1989). In addition, degeneration of
the WM was more obvious than that of the GM in early stages
(de la Monte, 1989), suggesting that WM alteration precedes
GM pathology. Indeed, the earliest disease-related anatomical
changes have been observed in the axons and dendrites of AD
animal model (Gunawardena and Goldstein, 2001; Pigino et al.,
2003; Stokin et al., 2005; Chevalier-Larsen and Holzbaur, 2006).
Therefore, mechanisms that cause the early pathological changes,
aside from vascular alterations, might exist. According to the
updated amyloid cascade hypothesis (Hardy and Selkoe, 2002),
one of the high upstream events is production of soluble beta-
amyloid oligomers, been discovered to be toxic to WM structure
and function (Lue et al., 1999; Xu et al., 2001; Lee et al., 2004).
This could be a major cause of the primary WM alterations in
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AD (Roher et al., 2002; Chalmers et al., 2005) at least in early
stages.

In addition to widespread WM alterations, structure-specific
WM alterations have been observed, especially in limbic struc-
tures (Damoiseaux et al., 2009; Acosta-Cabronero et al., 2010;
Smith et al., 2010; Liu et al., 2011). This might at least partly
be explained by aberrant axonal transport due to misregulation
of tau seen in early disease stage (Alonso et al., 1994; Ebneth
et al., 1998; Dawson et al., 2010), with resultant tau aggregation
that is closely related to neurodegeneration (Braak and Braak,
1995). Since the neurodegeneration of AD usually propagates
systematically from the transentorhinal area to limbic structures,
to neocortex at the most advanced stage, associated Wallerian-like
degeneration (Bossy-Wetzel et al., 2004; Coleman, 2005) likely
follows the same order, which might explain structure-specific
WM alterations in AD (Bramblett et al., 1992).

Congruent with histopathological findings, WM alteration has
been observed in vivo using various imaging modalities. Among
these, diffusion tensor imaging (DTI) is one of the most effective
modalities for the investigation of the WM anatomy since DTI
has the ability to visualize WM fibers, based on directionality,
and has the capability to provide detailed information about
microscopic organization of the fibers. A meta-analysis of DTI
studies indicated that WM alterations in AD are widespread
throughout the brain (Sexton et al., 2011), particularly in limbic
fibers, direct connections to the medial temporal lobe and the
most vulnerable WM structures (Rose et al., 2000; Kantarci et al.,
2001; Medina et al., 2006; Ringman et al., 2007; Stahl et al., 2007;
Zhang et al., 2007; Zhou et al., 2008; Damoiseaux et al., 2009;
Mielke et al., 2009; Salat et al., 2010). WM damage quantified
by DTI has been correlated with atrophy in anatomically con-
nected GM areas in AD patients, but the correlation was not
robust in patients with amnestic MCI (Agosta et al., 2011). These
findings support the histopathological observation that primary
WM alterations may precede both GM degeneration, as well as
secondary degenerative processes of the WM after neuronal loss.
Based on the evidence about WM pathology in AD, Sachdev
et al. proposed incorporating WM alterations into the model (Jack
et al., 2010) of the pathophysiological cascade in AD (Sachdev
et al., 2013).

WHY IS THE FORNIX IMPORTANT?
The fornices are WM bundles that originate from the bilateral
hippocampi, merge at the midline of the brain, again divide into
the left and right side, then into precommissural and postcommis-
sural fibers, terminating at the septal nuclei, nucleus accumbens
(precommissural fornix), and hypothalamus (postcommissural
fornix). The fornix constitutes a core element of the limbic
circuit that is vulnerable in AD, and one of the most important
anatomical structures related to episodic memory, impairment
of which is an initial symptom of AD (Hopper and Vogel, 1976;
Mehraein and Rothemund, 1976). The fornix is also related to
the cholinergic dysfunction characteristic of AD (Milner and
Amaral, 1984; Wenk et al., 1987; Ransmayr et al., 1989; Sara,
1989; Schegg et al., 1989; Bunce et al., 2003; Colom et al., 2010).
These functional and anatomical features have naturally captured
researcher attention seeking diagnostic and prognostic markers of

AD. Indeed, alterations of the fornix, such as demyelination or
axonal loss, were reported as early as in 1976 (Hopper and Vogel,
1976) and have been consistently identified in AD (Ringman et al.,
2007; Teipel et al., 2007; Mielke et al., 2009; Acosta-Cabronero
et al., 2010; Salat et al., 2010; Liu et al., 2011; Douaud et al., 2013).

The other important anatomical feature of the fornix, com-
pared to other WM areas, is its location. The body of the fornix
is readily identifiable in the mid-sagittal plane of a brain MRI,
without other WM structures adjacent to it. For research using
brain MRI, this feature is particularly important. The thickness of
the fornix can be easily measured on structural MRI, using T1-
and T2-weighted images. Generally, identification of the bound-
aries of WM structures on structural MRI is not easy because the
boundaries between adjacent WM structures are often invisible:
the fornix is one of several exceptions. DTI is a good choice with
which to identify the boundaries of WM bundles. Although a
drawback of DTI is susceptibility to B0 distortion, especially for
areas close to air cavities (e.g., nasal and oral cavities, frontal,
ethmoid, sphenoid, and maxillary sinuses, and mastoid antrum),
the fornix is less affected because there is a sufficient distance
from the fornix to these air cavities. The anatomical location is
also attractive from a neurosurgical point of view, since the fornix
is surgically accessible for implanting electrodes for DBS (see
Section Treatment), while other limbic structures are not easily
accessible.

IMAGING STUDY OF THE FORNIX IN AD
REGION-OF-INTEREST STUDIES
Atrophy of the fornix measured using T1-weighted MRI has
often been reported in AD (Callen et al., 2001; Copenhaver
et al., 2006), although the onset of this atrophy has been a
subject of debate. Fletcher et al. (2013) reported that atrophy
of the fornix is a strong predictor of conversion from normal
cognition to MCI or AD, suggesting that atrophy is present in
the fornix at an early disease stage, before clinical manifestations.
Abnormalities in the fornix have also been identified using DTI.
A reduction of fractional anisotropy (FA) and an increase in
diffusivity in the fornix is a robust and consistent finding in
AD as demonstrated with manual ROI- analysis (Ringman et al.,
2007; Mielke et al., 2009; Oishi et al., 2012), and the extent of
the changes in DTI-derived parameters have been correlated with
cognitive decline (Mielke et al., 2009; Oishi et al., 2012). Notably,
FA reduction was already present in an asymptomatic gene car-
rier of familial AD who went on to develop AD in the future
(Ringman et al., 2007). Longitudinal observation of cognitively
normal elderly or individuals with amnestic MCI indicated that
reduced fornix FA predicts conversion from normal cognition to
amnestic MCI and from amnestic MCI to AD (Oishi et al., 2012).
Moreover, lower fornix FA predicted later cognitive decline and
hippocampal atrophy (Mielke et al., 2012). These studies suggest
that volume loss and FA reduction of the fornix is one of the
earliest anatomical changes in AD that happens before clinical
manifestations.

WHOLE-BRAIN STUDIES
While region-of-interest analysis is a good choice when there
are specific hypotheses (e.g., the fornix is affected in AD), the
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drawback is the hypothesis dependency. To evaluate the spatial
specificity of these findings, whole-brain analysis is a good choice.
Voxel-based analysis is one of the most widely used approaches
for whole-brain analysis, and has been used to evaluate regional
abnormalities in WM volume (Li et al., 2008; Balthazar et al.,
2009; Guo et al., 2010; Serra et al., 2010; Yoon et al., 2011) or
in DTI-derived parameters, such as anisotropy and diffusivity
(Head et al., 2004; Medina et al., 2006; Xie et al., 2006; Teipel
et al., 2007; Zhang et al., 2009). Although cross-sectional group
comparisons have identified widespread WM abnormalities in
AD, the above studies failed to identify reduced volume or FA
in the fornix, except for a study that used multivariate analysis
(Teipel et al., 2007). The main explanation is probably inaccuracy
in image normalization: the accuracy of automated non-linear
registration used in these studies was limited for thin structures
like the fornix, in which only a few pixels of misregistration
cause significant loss of sensitivity to detect differences between
groups (Oishi et al., 2009). A common approach to solve this
problem is to apply Tract-Based Spatial Statistics (TBSS; Smith
et al., 2006), in which WM tracts are “skeletonized” to summa-
rize the anatomy of WM structures, from which statistics are
calculated. Since the scalar values perpendicular to the skeleton
are projected onto the skeleton, the effect of WM misregis-
tration is largely ameliorated. Most of the whole brain TBSS
studies applied to AD have, indeed, identified an FA reduction
in the fornix, as well as in other limbic fibers, even in early-
symptomatic patients or in individuals at high risk for developing
AD (Damoiseaux et al., 2009; Honea et al., 2009; Stricker et al.,
2009; Zarei et al., 2009; Acosta-Cabronero et al., 2010; Bosch
et al., 2010; Smith et al., 2010; Liu et al., 2011; Douaud et al.,
2013).

Application of large deformation diffeomorphic metric map-
ping (LDDMM) to DTI is another way to increase the sensitivity
of whole-brain analysis, by which registration accuracy of the WM
bundles could be increased. By using LDDMM, significant vol-
ume loss, FA reduction, and increases in mean diffusivity (MD)
and radial diffusivity were detected in the fornix of individuals
with AD (Oishi et al., 2011a,b). Figure 1 is an example of such
an analysis, designed to find brain areas with AD-specific WM
alterations. This analysis indicates significant FA reduction in the
fornix, the splenium of the corpus callosum, as well as in several
small areas in superficial WM in the frontal lobes. To further
increase sensitivity, multivariate models (Ashburner and Kloppel,
2011), such as principal component analysis (PCA; Teipel et al.,
2007), or to apply voxel-grouping methods, such as atlas-based
analysis (ABA; Oishi et al., 2009), were applied: all of these
detected abnormalities in the fornix in AD. These whole-brain
studies using sophisticated approaches consistently indicate the
fornix as the “hotspot”, in which the earliest anatomical changes
begin (“Fornix First” (Landhuis, 2013)), and where the most
robust changes are seen in AD.

PITFALLS AND ISSUES IN FORNIX IMAGE ANALYSIS
Misregistration
As mentioned previously, TBSS is currently a standard method
by which to ameliorate WM tract misregistration. However, in
patients with ventricular enlargement, like AD, the fornix is

strongly deformed by the elevated and stretched corpus callosum,
which results in uncorrectable misregistration, even with TBSS
(Hattori et al., 2012). Therefore, careful interpretation is needed
for AD studies. An inverse-projection of TBSS results onto orig-
inal images is a simple method with which to identify invalid
results caused by misregistration.

One solution to reduce the impact of erroneous mapping
of voxels, and the consequent mis-parcellation of target struc-
tures, is to adopt multi-atlas approaches. Rather than using a
single atlas for anatomical labeling, this approach uses multiple
atlases to compute the likelihoods of labels, which are then fused
to create an anatomical parcellation map for each image. This
approach, which accounts for variations in brain anatomy, has
been adapted to parcellate WM structures in DTI (Tang et al.,
2014) with high accuracy even for individuals with ventricular
enlargement. Applicability of the multi-atlas label fusion method
to accurately define the fornix is a promising approach, which
needs to be developed in the future with automated image analysis
of AD.

Contamination of signal from cerebrospinal fluid
The fornix is prone to partial volume effects caused by contam-
ination of signal from the cerebrospinal fluid (CSF), since it is a
thin bundle that runs through the lateral ventricles that are filled
with CSF. The effect is especially seen in individuals with AD
because of atrophy, and thus, increased CSF signal in each voxel
(Pfefferbaum and Sullivan, 2003; Metzler-Baddeley et al., 2012;
Berlot et al., 2014). The greater diffusivity in CSF relative to the
WM structures leads to false elevation of diffusivity values and
a false reduction in FA values (Alexander et al., 2001; Vos et al.,
2011). Therefore, reduced FA or increased diffusivity identified in
the DTI studies of AD probably reflects pathological alterations of
the fornix itself plus the partial volume effects caused by atrophy.
Although this dual effect (atrophy + microstructural change) on
the DTI parameters might make DTI a sensitive tool with which
to detect early anatomical changes related to AD, it complicates
inferences about the underlying anatomical changes. There have
been several attempts to ameliorate the effects of CSF contam-
ination in order to draw inferences about the microstructural
changes in the WM structures, such as CSF-suppressed diffusion
imaging (Kwong et al., 1991), or the free water elimination and
mapping method that is applicable at the post-acquisition stage
(Pasternak et al., 2009), both of which could detect alteration
of the fornix in AD (Kantarci et al., 2010; Fletcher et al., 2014).
Investigations of underlying changes in WM structures seem to
suggest a good indication for the use these advanced methods
(Metzler-Baddeley et al., 2012).

Cause of fornix degeneration and DTI parameters of choice
Since the contribution of each factor (see WM alterations seen
in AD) to the degeneration of the fornix might vary depending
on the degree of disease progression, longitudinal observation of
the histopathology, from the preclinical to the advanced stages,
is especially important. Use of the AD model in animals is
an option for such longitudinal observation. A reduced size of
the fornix is seen in the PDAPP mice (Gonzalez-Lima et al.,
2001) and transgenic APP/PS1 mice (Delatour et al., 2006), and
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FIGURE 1 | Voxel-based group comparison between 19 AD and 22
cognitively normal age-matched control participants (NC), indicating the
fornix as the hotspot. Areas with signal or volume alterations in AD
compared to NC are shown as colored maps, overlaid on an averaged FA map
(A–E), an averaged T2 map (F), and an averaged GM segmentation map (G).
(A) Areas with reduced FA. (B) Areas with increased MD. (C) Areas with
increased λq. (D) Areas with increased λ⊥. (E) Areas with an increased and
decreased Jacobian, which was calculated from a transformation matrix
obtained from the normalization of DTI. (F) Area with increased T2. (G) Areas
with increased and decreased Jacobian, which were calculated from a

transformation matrix obtained from the normalization of a GM segmentation
map. Pink arrows with numbers indicate: 1 = the fornix; 2 = the cingulum;
3 = the posterior cingulate gyrus white matter; 4 = splenium of the corpus
callosum; 5 = genu of the corpus callosum; 6 = the prefrontal white matter;
7 = the orbitofrontal white matter; the temporal white matter; 9 = the parietal
white matter; 10 = the periventricular area; 11 = the thalamus; 12 = the
hippocampus; 13 = the entorhinal area; 14 = the parietal cortex; 15 = the area
between the caudate head and the gyrus rectus; 16 = the lateral ventricle.
White arrows show the misregistration seen in the left posterior horn of the
lateral ventricle (From Oishi et al., 2011a; with permission).

immunohistochemistry shows the presence of increasing amyloi-
dosis and related microgliosis and astrogliosis (Maheswaran et al.,
2009). However, longitudinal changes in the size of the fornix
differ depending on the type of AD model mice. Since type and
variations in gene mutation are relevant to the pathophysiology of

AD model animals, and considerable differences are seen between
human AD and AD model animals, human in vivo neuroimag-
ing studies are important to understand the pathophysiological
underpinnings. For early AD, diffusion measures (MD and axial
and radial diffusivities) could detect the widespread pathology
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FIGURE 2 | Example of the fornix sign. The axial (left), coronal (middle), and
sagittal (right) slices of the color-scaled FA map are shown with the magnified
view of the fornix (yellow rectangle). (A) A cognitively normal 81-year-old
woman without the fornix sign. The core part of the fornix appears yellow to
red (FA 0.5–0.8). (B) A cognitively normal 80-year-old man with the fornix sign.
The fornix appears green (FA < 0.5). He converted to amnestic MCI (aMCI)

1 year after the scan. (C) An 80-year-old man with aMCI without the fornix
sign. He was stable during 3 years observation period after the scan. (D) A
79-year-old man with aMCI with the fornix sign. He converted to AD 1 year
after the scan. (E) A 74-year-old man with aMCI without the fornix sign. He
converted to dementia with Lewy bodies 3 years after the scan. (F) An
81-year-old woman with AD with the fornix sign. FA, fractional anisotropy.

Frontiers in Aging Neuroscience www.frontiersin.org September 2014 | Volume 6 | Article 241 | 5

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Oishi and Lyketsos Alzheimer’s disease and the fornix

of AD more sensitively than FA (Acosta-Cabronero et al., 2010;
Oishi et al., 2011a). However, for the fornix, there seems to
be a tendency that a decrease in FA is more sensitive than an
increase in diffusivity measures. Whether there is a difference in
pathophysiology between the fornix and other WM areas remains
to be elucidated.

CLINICAL APPLICATIONS OF THE FINDINGS SEEN IN THE
FORNIX
DIAGNOSIS AND PREDICTION
There are several hurdles when applying research findings to clin-
ical practice. Research studies are based on selected participants
with strict inclusion and exclusion criteria, and usually age- and
gender-matched participants are recruited as controls. However,
routine image-based diagnosis is almost exclusively performed by
qualitative visual inspection, which is applied to each individual
for clinical decision-making. Although numerous publications
link AD to degeneration in the fornix, volume or the diffusivity
are not quantified in daily practice because of the time-consuming
nature of this process, and the inconsistent quantification meth-
ods used in research. The fornix sign, a discoloration of the fornix
observed on color-coded FA maps of AD (Oishi et al., 2012), is
one attempt to define qualitative image signs applicable to clinical
images (Figure 2). Although sensitivity was limited, specificity
was high. The positive likelihood ratio differentiating AD from
controls and hence the ability to predict conversion of cognitively
normal individuals to amnestic MCI, or from amnestic MCI to
AD, was strong. However, further efforts are needed to identify
appropriate scan parameters, cut-off values for the diagnosis and
prediction, as well as to investigate degeneration in the fornix seen
in other types of dementia.

Given that individuals with different types of memory com-
plaints visit clinics, and physicians need to identify the etiology
of the memory complaint for medical decision-making, the value
of imaging signs that can separate AD from individuals with
normal cognition are limited. Rather, clinically relevant imag-
ing signs must provide clues that can be used to separate AD
from other diseases that cause memory impairment. Indeed, the
fornix might be affected by tumors, infections, inflammations
(Yamamoto et al., 1990), metabolic abnormalities, vascular dis-
eases (Molino et al., 2014), malformations, trauma, and hydro-
cephalus (Hattori et al., 2012) (for review, Thomas et al., 2011).
Psychiatric diseases, such as schizophrenia and bipolar affective
disorder (Oertel-Knöchel et al., 2014), or medical conditions,
such as heart failure (Wu et al., 2007), also cause damage in
the fornix. Less is known about the involvement of the fornix
in other neurodegenerative dementias, such as frontotempo-
ral dementia (FTD), dementia with Lewy bodies (DLB), and
corticobasal degeneration (CBD). A study indicated substantial
FA reduction in the fornix of the behavioral variant FTD that
correlated with memory decline (Hornberger et al., 2012), and
other studies have indicated that the fornix is affected in Pick’s
disease, FTD with tau mutation, or TAR-DNA-binding protein-
43 type C pathology, but not for FTD caused by a progran-
ulin mutation or with fused-in-sarcoma protein accumulation
(Rohrer et al., 2011; Hornberger et al., 2012). Changes in the
fornix were not detected by group comparison between DLB

and control groups (Kantarci et al., 2010), or between CBD
and control groups (Rohrer et al., 2011), but other research
has reported reduced FA in the fornix of some DLB patients,
especially for those with hippocampal atrophy (Firbank et al.,
2011). The appropriate clinical use of imaging modalities for
the evaluation of the fornix is, therefore, an important future
direction.

TREATMENT
Inspired by neuroimaging evidence about early impairment of
the limbic circuit seen in AD, and an unexpected augmentation
of recollection during the hypothalamic/fornix DBS performed
on a patient with obesity (Hamani et al., 2008), DBS of the
fornix has been proposed as a novel therapy for AD to improve
the neuronal circuitry involved in memory (Laxton et al., 2010).
Based on the hypothesis that an important aspect of AD is that
it is a system-level disorder affecting several integrated pathways
related to memory and cognition (Lyketsos et al., 2012), and
supported by rodent studies indicating that DBS improved mem-
ory and produced hippocampal neurogenesis (Toda et al., 2008;
Hamani et al., 2011), a clinical trial evaluating the effect of DBS
targeting the fornix is ongoing. Electrodes are placed adjacent
to the fornix for high frequency electronic stimulation, with the
hope of an immediate effect (direct effects of stimulating the
fornix) and a disease-modifying effect (neurogenesis). Although
its number of participants was small, the earlier Phase 1 trial
suggested improved glucose metabolism in the posterior cortical
areas, especially in cognitively improved participants after fornix
DBS (Laxton et al., 2010; Smith et al., 2012). The assessment of
long-term impact on cognitive function, activities of daily living,
quality of life, and mortality is an important future direction.
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