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The posterior-anterior shift in aging (PASA) is a commonly observed phenomenon in
functional neuroimaging studies of aging, characterized by age-related reductions in
occipital activity alongside increases in frontal activity. In this work we have investigated
the hypothesis as to whether the PASA is also manifested in functional brain network
measures such as degree, clustering coefficient, path length and local efficiency. We
have performed statistical analysis upon functional networks derived from a fMRI dataset
containing data from healthy young, healthy aged, and aged individuals with very mild to
mild Alzheimer’s disease (AD). Analysis of both task based and resting state functional
network properties has indicated that the PASA can also be characterized in terms
of modulation of functional network properties, and that the onset of AD appears to
accentuate this modulation. We also explore the effect of spatial normalization upon the
results of our analysis.
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1. INTRODUCTION
A number of imaging and behavioral studies suggest that older
adults have reduced activity compared to younger adults in occip-
itotemporal regions but increased activity in anterior regions.
Davis et al. (2008) named this phenomenon the Posterior-
Anterior Shift in Aging (PASA) and showed that it reflects the
effects of aging rather than differences in task difficulty, and thus
represents a general phenomenon of brain aging. In the present
work we aim to investigate the PASA phenomenon from the point
of view of graph-theoretical analysis of voxelwise functional brain
networks (Sporns, 2011). In addition we extend the analysis to
assess whether the PASA pattern would be accentuated or altered
with the onset of Alzheimer’s Disease (AD).

Functional MRI is often used to learn about how the attributes
of a particular cohort of individuals affect brain function, and a
wide body of work has been undertaken exploring the potential
for attributes of fMRI data to act as markers for various neu-
rological disorders and diseases (e.g., Achard et al., 2012; Zhao
et al., 2012; Jacobs et al., 2013; Seo et al., 2013). Alzheimer’s
Disease (AD) has received particular attention due to its increas-
ing prevalence amongst a global increase in elderly populations.
AD is an irreversible form of dementia characterized by pro-
gressive deterioration of both intellect and behavior, and has
a substantial social and economic impact upon sufferers, their
families, and society as a whole. AD has been described as the
coming plague of the 21st century (Mandell and Green, 2011).
The discovery of a definitive method for the early diagnosis
of AD is of crucial importance as, by the time any cogni-
tive and behavioral decline becomes clinically observable in a

sufferer, pathological atrophy is already substantial (Killiany,
2011).

The analysis of functional connectivity involves quantifying
the strength of temporal correlations, or functional links, between
different predefined parts of brain tissue (Friston et al., 1993). The
links that are found form a network of interaction which allows
inferences to be made about the higher level structure, or com-
plexity, of patterns of brain connections, something that standard
methods of functional imaging analysis typically do not allow
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Sporns,
2011). Whilst still very much a technique under development,
functional network analysis can provide new insights into neu-
rological function and behavior, and should be seen as a comple-
ment to more traditional approaches for the study of functional
activation and connectivity, such as the General Linear Model
(GLM) and Independent Component Analysis (ICA) (Friston
et al., 1995; Beckmann and Smith, 2004). Graphs, or networks,
are an intuitively appealing data structure for modeling the func-
tional connectivity of the human brain. Nodes in a functional
network represent predefined parts of brain tissue, and edges
between nodes represent temporal correlations of their activity.
The field of graph theory has introduced a range of metrics which,
when calculated upon a network, are intended to provide insight
into the topology or structure of that network. Many recent stud-
ies have applied such metrics to functional networks derived from
brain imaging data, with the aim of discovering more about how
the brain works, and how these metrics may vary across different
groups of people. The results obtained by these studies (e.g., Zhao
et al., 2012; Jacobs et al., 2013; Tijms et al., 2013) demonstrate the
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potential of complex network measures to act as biomarkers for a
range of neurological disorders.

Relatively little research has been undertaken in exploring how
these properties of functional networks change with aging and
AD. Studies which explore changes to complex network measures
such as mean path length and clustering coefficient are incon-
sistent in their findings, with some studies reporting AD-related
increases, others reporting declines, and yet more reporting no
change (Tijms et al., 2013). Furthermore, there are few prior
studies which specifically look at the functional connectivity, or
functional network properties, of aging with respect to a sensori-
motor task and, again, there is little consistency in the findings of
those studies which have explored this area.

In a review of studies concerning resting state functional con-
nectivity in healthy aging, Ferreira and Busatto (2013) concluded
that the most consistently identified age related changes to rest-
ing state connectivity are declines within and between regions of
the default mode network, salience, attention, and motor net-
works, and connectivity increases in the prefrontal and frontal
regions. Taniwaki et al. (2007) observed an age-related decrease
in functional connectivity between the basal ganglia, thalamus,
motor cortices and cerebellum in a hand movement task. Wu
et al. (2007) observed age-related declines in connectivity in pre-
motor and motor regions, in a simple finger tapping task. Agosta
et al. (2010) found amnestic MCI and AD-related declines in
connectivity between the sensorimotor cortices. Yan et al. (2011)
identified age-related reductions in connectivity of the visual cor-
tex during a visual task. Tomasi and Volkow (2012) observed an
age-related increase to degree in the left and right motor cortices.

The default mode network (DMN) has traditionally been
found to exhibit connectivity declines alongside the presence
of AD (e.g., Greicius et al., 2004; Rombouts et al., 2005; Zhou
et al., 2010; Petrella et al., 2011). Stam et al. (2006) and Wang
et al. (2007) observed connectivity increases within the parietal
regions, and Wang et al. (2007), Supekar et al. (2008), and Sanz-
Arigita et al. (2010) detected a connectivity increase in the frontal
and prefrontal regions. Wang et al. (2007) observed widespread
AD-related reductions in functional connectivity associated with
resting state fMRI. Stam et al. (2007) (see also Stam et al., 2009)
found longer path length and reduced clustering coefficient in
resting state EEG and MEG data acquired from individuals suffer-
ing from AD. Supekar et al. (2008) found AD-related increases in
functional connectivity within the prefrontal and frontal regions,
and reductions elsewhere. Similar trends were seen by Sanz-
Arigita et al. (2010), who found AD-related declines in functional
connectivity between the frontal, parietal and occipital regions,
but increases within the frontal region. Wu et al. (2011b) iden-
tified widespread declines in hippocampal connectivity related
to the presence of AD. Liu et al. (2014) observed AD-related
reductions in functional connectivity within posterior regions
and between posterior and anterior regions, and an increase in
connectivity within the medial prefrontal cortex.

The variable nature of these findings leads us to claim that
these properties of functional networks have not convincingly
been shown to be able to reliably distinguish between the brains of
healthy young and aged individuals, and of individuals suffering
from Alzheimer’s Disease. As the PASA phenomenon is a global

pattern of change which has been reliably detected using tradi-
tional activation-based methods of fMRI analysis, it is arguably an
ideal benchmark against which to test this claim. We hypothesize
that the PASA phenomenon should be observable in the proper-
ties of functional networks, and argue that the confirmation of
this hypothesis would provide evidence that functional network
properties can be used to find consistent and reliable changes in
brain architecture, related to aging and the presence of AD.

Functional network analysis, as applied to fMRI data, most
often uses regionally averaged time series as the basis for network
nodes, where each fMRI voxel is labeled according to an anatom-
ical labeling scheme such as the AAL (Tzourio-Mazoyer et al.,
2002) or LPBA40 (Shattuck et al., 2008) atlases (e.g., Supekar
et al., 2008; Wang et al., 2010). An alternative approach is to
represent every voxel as a node in the network, and to define net-
work edges by calculating temporal correlations between the time
series for every pair of voxels (e.g., Eguíluz et al., 2005; Markošová
et al., 2009; Buckner et al., 2009). This voxelwise approach is more
computationally expensive, but allows for more fine grained anal-
ysis of functional network properties (Hayasaka and Laurienti,
2010). This choice is also in agreement with the conclusion of a
recent review on pros and cons of different definitions of nodes,
in which the authors argue that the smallest possible subdivisions
will yield the most unbiased and informative results (Stanley et al.,
2013). Critically, no studies to date have attempted to identify
AD-related changes in the properties of voxelwise functional net-
works derived fMRI data, and thus our work aims to tackle this
gap in knowledge.

While some advances have been made in developing a frame-
work for the analysis of global and regional functional network
properties (e.g., Hosseini et al., 2012), there is no single stan-
dard approach to voxelwise functional network analysis, and a
number of subtle issues arise when functional network analysis
is applied to voxelwise neuroimaging data. In particular, while
spatial normalization is a necessary step in group analyses of neu-
roimaging data, little research has been undertaken to explore its
effects in a functional network analysis. We therefore provide an
initial investigation into its effects.

The present study is based upon fMRI data originally collected
by Buckner et al. (2000) (data set #2-2000-118W, fMRIDC, 2011).
There were three main outcomes of their study. First was the
finding of increased haemodynamic response amplitude in the
visual region, and no difference in the motor region, of young
adults when compared to aged adults, in association with perfor-
mance of a simple visual motor task. Second was the observation
of increased haemodynamic response variance in the aged with
AD group relative to the other groups. Third was the finding that
linear summation of the haemodynamic response, due to stim-
uli presented in rapid succession, is not affected by age or the
presence of AD, as it was clearly seen in all three groups.

The primary aims of our present work are (1): to explore
whether the PASA phenomenon can be observed in the proper-
ties of voxelwise functional networks derived from fMRI data;
(2): to see how, if at all, any observed changes due to the PASA
phenomenon are altered by the onset of clinically assessed AD;
and (3): to assess the effect of spatial normalization order upon a
functional network analysis.
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2. MATERIALS AND METHODS
2.1. THE DATA SET
Structural and functional MRI data were acquired from 41 sub-
jects: 14 young (9 females/5 males, mean age 21.1, SD 2.0), 15
healthy aged subjects (9 females/6 males, mean age 75.1, SD
6.9), and 12 aged subjects (7 females/5 males, mean age 77.1,
SD 5.3) who had been clinically diagnosed with Dementia of the
Alzheimer Type (DAT). These three groups shall be referred to
as young, aged, and aged with AD respectively. The individu-
als in the aged and aged with AD groups were clinically assessed
for the presence of dementia using the Clinical Dementia Rating,
with all individuals in the aged group scoring CDR 0. Of the 12
individuals in the aged with AD group, seven scored CDR 0.5,
corresponding to a diagnosis of probable AD; the remaining five
scored CDR 1, corresponding to a diagnosis of mild AD.

Structural MRI images consisted of 128 × 1.25 mm slices,
with each slice containing 256 × 256 1 mm2 in-plane isotropic
voxels; these images were resampled to 128 × 128 × 75 2 mm3

isotropic voxels. Each functional MRI image consisted of 16
8 mm slices, acquired parallel to the anterior-posterior commis-
sure, with each slice consisting of 64 × 64 3.75 mm2 in-plane
isotropic voxels. Functional image slices were acquired in an inter-
leaved manner, from superior to inferior, with even slices acquired
first (Snyder, 2011, Private Communication). Functional image
acquisition (TR) time was 2.68 s.

The study involved subjects completing a simple visual motor
task within an event based experimental paradigm. Each subject
underwent four fMRI recording sessions; within each session, 128
fMRI images were acquired over a period of 5 min, 43 s. During
a single session, 15 trials were executed, with each trial consisting
of either one or two visual stimuli, a checkerboard pattern flick-
ering at 8 Hz, displayed for 1.5 s. The subjects were instructed to
push a button with their right index finger upon onset of each
stimulus. During a “one-stimulus” trial, the stimulus was trig-
gered at the start of the trial. During a “two-stimulus” trial, the
first stimulus was triggered at the start of the trial, and the sec-
ond stimulus was triggered 5.36 s (2 image acquisitions) after the
first. One- and two-stimulus trials were pseudorandomly inter-
mixed. Each trial had a duration of 21.44 s (8 image acquisitions),
the first trial in each session began 10.72 s after the beginning of
image acquisition (at image #5), and the last trial ended at 5 min,
32 s (at image #124).

Some discrepancies regarding the classification of healthy aged
subjects, and subjects diagnosed with AD, are apparent in the
original study. One subject was listed as having scored CDR 0 in
the assessment for DAT, but was subsequently placed in the aged
with AD group. Another subject scored CDR 0, and was correctly
placed in the aged group, but performed very poorly during the
experiment in both reaction time and misses. For this analysis,
we moved the former subject from the aged with AD group to the
aged group, but left the latter subject in the aged group.

We chose the data from the Buckner et al. (2000) study as the
basis for our own analysis for three reasons. First, the data set
is publicly available due to the efforts of the fMRI Data Center
(Horn and Gazzaniga, 2012). Since its initial publication, and the
publication of the results of the original study, the data set has
subsequently been used in numerous studies, and has generated

a wide range of findings (e.g., Greicius et al., 2004; Tripoliti
et al., 2010; Çiftçi, 2011). Second, this data set contains data from
healthy young and aged individuals, and individuals diagnosed
with probable to mild DAT, allowing us to achieve our aims of
exploring changes due to age and the presence of AD. Finally, the
study made use of a simple sensorimotor task, which allows us to
explore age and AD-related changes in both sensorimotor activ-
ity, and in background activity which persisted throughout the
duration of the experiment.

We accomplished this by splitting our analysis into two parts.
In the first part, we analyzed fMRI data created by taking the
average of every trial for each subject, in a similar manner to the
analysis of Buckner et al. (2000). This analysis focuses upon the
task related connectivity which was present within a single one- or
two-stimulus trial, and is hence referred to as the task based anal-
ysis. The second part of the analysis, instead of focusing on task
related connectivity, focuses upon functional connectivity which
persisted throughout the duration of the experiment, thus reflect-
ing background, or resting state connectivity. This part is hence
referred to as the resting state analysis, and was made possible by
concatenating the data acquired for each session into a single long
fMRI volume. Justification for the validity of this approach is pro-
vided by Greicius et al. (2004) who used the same technique upon
the very same data set to identify AD-related changes in default
mode network activity.

The work of Dale and Buckner (1997) showed that the haemo-
dynamic responses to multiple events occurring rapidly in suc-
cession summate in a linear manner. We therefore reasoned that,
for the purposes of our task based analysis, there was no need
to discriminate between one- and two-stimulus trial types. To
further validate this approach, we performed a GLM activation
analysis upon the task based fMRI volumes for every subject,
and then combined the parameter estimates for each subject to
estimate the extent of task related activity in each group. These
results were compared with the results in the original study by
Buckner et al. (2000), and are presented separately (McCarthy,
2014, Appendix A).

2.2. PROCESSING
Before any preprocessing, the first four and last four images from
every volume were discarded. Visual inspection of each volume
uncovered three suspect data sets, all from the aged group. The
data for two subjects contained aliasing effects, which were man-
ually corrected. The data for one other subject were discarded,
due to the presence of significant noise throughout every session.
Thus, the number of individuals in the aged group was reduced
to 14 (9 females/5 males, mean age 74.9, SD 6.9).

Every fMRI volume was corrected for slice timing differences,
and a high-pass temporal filter applied with a pass frequency of
(1/42.88 ≈ 0.02 Hz) (van den Heuvel and Hulshoff Pol, 2010).
Motion correction was applied using FSL (Jenkinson et al., 2002).
Non-brain matter (e.g., skull tissue) was removed from the struc-
tural MRI images, which were corrected for bias field inhomo-
geneities, and each MRI voxel classified as white matter, gray
matter, or cerebrospinal fluid (Shattuck et al., 2001; Shattuck
and Leahy, 2002). MRI and fMRI images were then registered
to the 2 mm3) MNI152 T1 standard brain template (Andersson
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et al., 2007). No spatial smoothing was applied to the fMRI data,
to avoid the introduction of artificial correlations between adja-
cent voxels (van den Heuvel et al., 2008; Hayasaka and Laurienti,
2010).

From the four session fMRI volumes for each subject, two
fMRI volumes were created for analysis: a task based volume, and
a resting state volume. The task based volume was created by cal-
culating the average time series from all 60 trials across the four
sessions. This resulted in a volume of 21.44 s duration (8 image
acquisitions). The resting state volume was created by concatenat-
ing each of the four sessions into a single long volume of 21 min,
26.4 s duration (480 image acquisitions). A binary mask image,
derived from the MRI tissue classification image, was used to
mask all fMRI voxels that had not been classified as white matter
or gray matter.

In order to explore the effects of spatial normalization upon
functional network analysis, copies of both the task based and
resting state volumes were transformed from the subject’s native
space into MNI152, or standard space. These standard space vol-
umes were then resampled and interpolated back to the original
native space resolution of 64× 64× 16 voxels. Functional network
analysis was then performed on all four analysis volumes: the task
based volumes in both fMRI and standard space, and the resting
state volumes in both spaces.

A correlation matrix was created for each analysis volume, by
calculating the Pearson correlation coefficient between all pairs
of included voxels. Three unweighted and undirected networks
were created from each of the task based and resting state corre-
lation matrices, according to two-tailed (uncorrected) statistical
significance thresholds of α = [1 × 10−2,1×10−3,1×10−5] for
task based networks, and α = [1 × 10−25,1×10−38,1×10−58] for
resting state networks. These significance thresholds respectively
correspond to r ≈[0.82, 0.90, 0.96] and r ≈[0.45, 0.54, 0.63], and
were empirically selected to ensure that the resulting networks
were of a density suitable for analysis. Only positive correla-
tions meeting or exceeding each threshold were included in the
resulting networks.

Finally, disconnected nodes and small isolated components
were removed from each network. This step was performed to
prevent biasing of voxelwise network measures. For each network,
any disconnected nodes were removed. Then, if the remaining
network consisted of one major component which constituted
at least 75% of the total network size, all other minor compo-
nents were removed. For more fragmented networks consisting of
multiple components, with no single major component, only the
disconnected nodes were removed. These fragmented networks
were excluded from statistical analysis of some network measures,
in order to avoid bias due to disconnectivity.

Network measures calculated at every node in each network
included degree, clustering coefficient and path length (Watts
and Strogatz, 1998), and local efficiency (Latora and Marchiori,
2001). The degree of a node is the number of edges incident
upon that node or, more simply put, the number of neighbors of
that node. The clustering coefficient is the ratio of the number of
edges which are present between a node’s neighbors to the num-
ber of possible edges. In other words, the clustering coefficient
of a node is the density of the subgraph formed by the node’s

immediate neighbors, and the edges which exist between them.
The characteristic path length (or simply the mean path length)
of a node is the average shortest path length from that node to all
other nodes in a graph; the shortest path between two nodes is the
minimum number of edges which must be traversed in order to
join the nodes. Finally, the local efficiency of a node is the inverse
of the mean path length of the subgraph formed by the neigh-
bors of that node. Disconnected networks were excluded from
the analysis of clustering coefficient and path length. Each node
in a network represents a voxel located in the space of the under-
lying fMRI data (in either fMRI or standard space). Therefore,
three dimensional images of these complex network measures
were created, and formed the basis for the statistical analysis.

2.3. STATISTICAL ANALYSIS
Properties of all functional networks were compared across each
of the young, aged, and aged with AD groups, in order to find
differences related to age and the presence of AD. Statistical
analysis was performed against the null hypothesis of no differ-
ence, in any functional network properties, between each pair
of groups. Where a disconnected network was excluded from
analysis of a specific network measure, the degrees of freedom
used in statistical calculation were adjusted accordingly. For each
subject, voxelwise network measure images were normalized to
Z scores in order to account for the effects of varying network
size and density across subjects (Buckner et al., 2009; Sepulcre
et al., 2010; Fransson et al., 2011). fMRI space images were trans-
formed to MNI152 space, and masked using each subject’s binary
mask image (also transformed to MNI152 space using nearest
neighbor interpolation) before voxelwise analysis proceeded. This
transformation step was not necessary for standard space images.

Voxelwise network measure images were compared between
each pair of groups using nonparametric cluster size threshold-
ing (Hayasaka and Nichols, 2003; Winkler et al., 2014). Student’s
t-test was used to create an image of t-values upon the network
measure images from each pair of groups. This t image was sub-
jected to cluster size thresholding using a t threshold of 3.0. Then,
t images were generated from 10,000 random permutations of
group labels, and a maximal cluster size distribution created. The
thresholded clusters in the observed t image were declared as
significant if their size was in the top 95th percentile of the max-
imal cluster size distribution (i.e., a cluster level significance of
α = 0.05). Use of the maximal cluster size distribution ensured
control of the Familywise Error Rate (FWER). For a voxel to be
included in a statistical test between two groups, a value had to
be present at that voxel for at least 90% of all subjects from both
groups. In other words, if more than 10% of subjects were missing
a value at a particular voxel, that voxel was excluded from analysis.

In order to overcome the problem of missing voxels, either due
to their representing disconnected nodes in the underlying func-
tional network, due to subject specific atrophy, or to poor spatial
overlap, values at missing voxels were imputed using a process
adapted from the work of Vaden Jr et al. (2012), and referred
to as mean replacement by random neighbor selection. This impu-
tation process was applied before the statistical test described
above. For a missing value in a subject’s network measure image, a
replacement value was generated by randomly selecting the values
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of up to 5 voxels from the images of all other subjects in the
same group, located within a sphere of radius 10 mm, centered
at the missing voxel. The mean of these sampled voxels was used
as the replacement value. Imputation only proceeded if 90% of
the randomly sampled voxels were present (i.e., the sampled vox-
els were not also missing values). After imputation, any missing
voxels which could not be imputed were simply left as “missing”.
This process was only applied to standard space network measure
images, as it was deemed unnecessary for fMRI space images due
to the spatial smoothing inherent in the image transformation
process.

After statistical analysis had been performed on both fMRI
and standard space functional networks, the level of correspon-
dence between results from the two spaces was qualitatively
assessed using two techniques. First, the Pearson correlation coef-
ficient was calculated between fMRI and standard space statistical
t images. Then we adapted Dice’s Similarity Coefficient (Dice,
1945; Zou et al., 2004) to measure the extent of spatial over-
lap between significant voxels found in fMRI and standard space
images. This adaptation is described separately (McCarthy, 2014,
Appendix C).

3. RESULTS
Results of the statistical analysis are summarized in Figure 1.
Widespread differences, consistent across fMRI and standard
space, were observed between the young group and the two aged
groups in both task based and resting state networks. Differences
related to the presence of AD were less widespread, with consis-
tent differences between the aged and aged with AD groups only
observed in resting state network measures. In order to identify
the most consistent results across fMRI and standard space, and

across correlation thresholds, we first identified voxels in which
a significant group difference was found over at least two cor-
relation thresholds. Then we used the LPBA40 anatomical atlas
(Shattuck et al., 2008) to identify regions which contained signif-
icant group difference in the same direction, in both fMRI and
standard space.

3.1. AGE-RELATED CHANGES TO TASK BASED NETWORKS
Differences which arose between the young and aged groups are
depicted in Figure 2. A clear pattern of reduced degree is present
in the aged group when compared to the young group, centered
around the lingual and inferior occipital gyri of both hemi-
spheres. The aged group also exhibits a tendency toward increased
bilateral degree in the pre- and post-central gyri. Both of these
differences are present across all correlation thresholds.

Results for path length demonstrate the lowest level of consis-
tency across fMRI and standard space functional networks. The
most consistent age-related difference observed for path length is
a bilateral reduction in the pre- and post-central gyri.

Age-related differences in clustering coefficient closely resem-
ble those seen in degree, with age-related declines in bilateral
posterior regions, predominantly in the lingual gyri, cerebellum
and cuneus. However, unlike the results for degree, the strength
of these differences weakens as the correlation thresholded is
increased, and the consistency of significant results across thresh-
old and across fMRI and standard space is relatively low. Finally,
age-related declines in local efficiency are present bilaterally in the
lingual and occipital regions. In contrast to the results for degree
and clustering coefficient, consistency between fMRI and stan-
dard space results for local efficiency increase as the correlation
threshold is raised.

FIGURE 1 | These tables provides a summary of the statistical analysis

upon voxelwise network measures between each pair of groups, in the

task based and resting state networks. The height of the red and blue bars
are proportional to the number of significant voxels found in fMRI and
standard space networks respectively, ranging from 0 to a maximum of 3085

voxels (resting state local efficiency, young ↔ aged with AD, threshold 0.45).
The background shading at each test in the top table is proportional to the
spatial correspondence of significant voxels, and in the bottom table to the
Pearson correlation coefficient calculated between fMRI and standard space t
images.
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FIGURE 2 | t-values showing differences between the young and aged

groups in fMRI and standard space task based networks. Data for
degree, path length and clustering coefficient are shown for correlation
threshold 0.82, and data for local efficiency shown for correlation
threshold 0.96. Voxels found to be significantly different for at least two
correlation thresholds are highlighted with a yellow border. Anterior is

toward the top of the page, and subject left is to the left. Images and
data are in MNI152 coordinate space. All data are overlaid upon the
corresponding slice from the MNI152 template, resampled to the data
resolution of 64 × 64 × 16 voxels. The values listed along the bottom
specify the distance, in millimeters, of the displayed axial slices from the
MNI152 origin, located at the anterior commissure.

These trends are clearer when the results are viewed in a
regional manner, as shown in Figure 5. There is a clear pattern of
age-related reductions in degree, clustering coefficient and local
efficiency in posterior regions of the brain when the young and
aged groups are compared. This is accompanied by age-related
increases across the same network measures in more anterior
regions.

3.2. AGE-RELATED CHANGES TO RESTING STATE NETWORKS
Age-related differences observed in resting state networks are
shown in Figures 3, 6. In a similar manner to the task based net-
works, an age-related decline in degree is present bilaterally in
posterior regions, primarily the occipital lobe, lingual gyrus and
cuneus. An age-related increase in degree is also present in the

cerebellum, and in the left hippocampal and parahippocampal
regions.

Results for resting state path length again demonstrate poor
consistency across fMRI and standard space, with t images
even demonstrating a tendency toward negative correlatedness
(recall Figure 1). Age-related differences in path length, which
are consistent across spaces and correlation thresholds, are cen-
tered around an age-related reduction in the left superior tem-
poral gyrus and the caudate, and age-related increases in the
cerebellum.

In a similar manner to the task based networks, age-related
changes to resting state clustering coefficient are similar to
those for resting state degree. The strongest difference in clus-
tering coefficient between the young and aged groups is an
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FIGURE 3 | t-values showing differences between the young and aged groups in fMRI and standard space resting state networks. Data for all network
measures are shown for correlation threshold 0.45.

age-related reduction in the occipital region, cuneus and lin-
gual gyri of both hemispheres. Similar patterns are present
for local efficiency, with the aged group exhibiting reduced
local efficiency in the same regions, alongside increased local
efficiency in the superior frontal gyrus. Once again, these
results are highlighted when viewed regionally, as depicted in
Figure 6.

3.3. AD-RELATED CHANGES TO RESTING STATE NETWORKS
AD-related differences observed in resting state networks are
shown in Figures 4, 6. Consistency between the results for fMRI
and standard space networks is quite poor overall, however some
differences do stand out. The aged with AD group demonstrates
increased degree, in comparison to the aged group, in the left
angular gyrus, and bilaterally in the superior parietal gyrus.
Results for path length are again highly inconsistent, with the only
result that occurred in both fMRI and standard space networks

an AD-related increase in path length in the left middle temporal
gyrus.

Finally, the aged with AD group demonstrates increased clus-
tering coefficient in the superior frontal gyrus of both hemi-
spheres, and reduced local efficiency in the brainstem, when
compared to the aged group.

4. DISCUSSION
Our aims in this analysis were to explore whether the PASA phe-
nomenon could be observed in the properties of voxelwise func-
tional networks; to see whether these observations were changed
in any way by the presence of AD; and to assess the effect of
spatial normalization order upon the results of a functional net-
work analysis. Clear and consistent differences were present when
the young and aged groups were compared, with the strongest
differences being age-related declines in degree, clustering coef-
ficient and local efficiency in posterior regions coupled with
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FIGURE 4 | t-values showing differences between the aged and aged with AD groups in fMRI and standard space resting state networks. Data for all
network measures are shown for correlation threshold 0.45.

increases in more anterior regions, in both task based and rest-
ing state networks. On the whole, these differences were amplified
by the presence of AD, as is evident in the regional analysis
(Figures 5, 6). However, despite a number of trends in the results,
there were few findings which consistently differentiated between
healthy aging and cases of mild AD.

4.1. AGE AND AD-RELATED CHANGES TO FUNCTIONAL NETWORK
PROPERTIES

4.1.1. Manifestation of PASA in functional network properties
The process of aging appears to have a substantial effect upon vox-
elwise functional network properties, with widespread differences
observed between the young and aged groups in both task based
and resting state networks. However, the effect of mild or very
mild Alzheimer’s disease on these same networks is more sub-
tle, with weaker differences observed primarily in the resting state
networks. A clear pattern of declining task related functional con-
nectivity (as measured by node degree) in the aged group, when
compared to the young group, is evident in posterior regions,
most notably the occipital and lingual gyri. The reverse trend is
present in more anterior regions, centered around the pre- and
post-central gyri of both hemispheres. These differences appear
to be enhanced in the aged with AD group. Age-related changes
to the other network measures in task based networks closely
resembled those for degree, leading us to suspect that they were
primarily driven by differences in node degree.

Age-related differences in the resting state networks resembled
the changes that were observed in the task based networks, with
age-related reductions to degree in posterior regions centered
around the lingual gyri, cuneus, and occipital lobe. Alongside
these declines in degree were declines in both clustering coeffi-
cient and local efficiency, in the same regions. Degree increases
in the aged group, when compared to the young group, were
present in the cerebellum, and the left parahippocampal and

hippocampal regions, in addition to an increase in local efficiency
in the superior frontal gyri. The observed age-related declines in
posterior connectivity, and associated changes to the other com-
plex network measures, are in agreement with the majority of
studies exploring the effects of aging upon resting state func-
tional connectivity and network properties (Ferreira and Busatto,
2013). The hippocampal and cerebellar degree increases observed
in our results are more surprising, as these regions are generally
associated with age-related connectivity declines. One study con-
sistent with our findings is that of Tomasi and Volkow (2012),
who also observed age-related degree increases in the hippocam-
pal and cerebellar regions. These findings are also in agreement
with more general observations of age-related overactivation in
anterior regions, and underactivation throughout the rest of the
brain (Rajah and D’Esposito, 2005; Rugg and Morcom, 2005).

The above findings imply that the properties of functional net-
works are strongly influenced by the PASA phenomenon. In both
task based and resting state networks there are more voxels with
reduced local efficiency, degree and clustering coefficient in pos-
terior parts of the brain, primarily in the occipital gyri, of the
aged group when compared to the young group. The aged group
also exhibits an increase in the same network measures in ante-
rior regions. These very same patterns are enhanced when the
young and aged with AD groups are compared, lending evidence
to the idea that the PASA phenomenon may also be present in
early-stage AD. This is supported by numerous activation studies
which have reported frontal over-activation in individuals diag-
nosed with AD (Flashman et al., 2003; Pihlajamäki and Sperling,
2011).

4.1.2. AD-related changes to functional network properties
To our knowledge, this is the first study to explore AD-related
changes to the properties of voxelwise functional networks
derived from fMRI data. While the differences, in task based
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FIGURE 5 | Summary of regional group differences in task based

networks. The images display the total proportion of voxels for each region,
normalized by region size, in which a significant difference in the respective
network measure was observed between each pair of groups, in both fMRI
and standard space, across all correlation thresholds. The region labels are
based upon a reduced version of the LPBA40 anatomical atlas (Mazziotta
et al., 2001; McCarthy et al., 2013). Blue triangles pointing upwards reflect

the proportion of voxels in which a significant increase in the respective
network measure (e.g., degree) was observed in the first group, relative to
the second group (e.g., the young group, for the young versus aged test).
Similarly, red triangles pointing downwards reflect the proportion of voxels in
which a significant decrease was observed in the first group relative to the
second group. The triangles are scaled separately within each row, so their
sizes are comparable across group pairs for each network measure.

networks, observed between the young and aged groups appeared
to be enhanced in the aged with AD group, this did not man-
ifest as consistent significant differences between the aged and
aged with AD groups. Some trends were however apparent in

resting state networks, with AD-related degree increases in the
left angular gyrus and superior parietal gyri, clustering coeffi-
cient increases in the superior frontal gyri, and local efficiency
decline in the brainstem. With the exception of the angular gyri,
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FIGURE 6 | Summary of regional group differences in resting state networks.

these trends are consistent with the findings of other studies.
The angular gyri are considered to be involved in the default
mode network (DMN), which has traditionally been found to
exhibit connectivity declines alongside the presence of AD (e.g.,
Greicius et al., 2004; Rombouts et al., 2005; Zhou et al., 2010;
Petrella et al., 2011). However, these declines are usually centered

around the posterior cingulate cortex (PCC) and the hippocam-
pal formations, with the angular gyri receiving little attention.
Furthermore, a recent study by Damoiseaux et al. (2012) sug-
gests that AD-related changes in DMN activity are not uni-
form, with connectivity increases and declines throughout dif-
ferent regions of the DMN. No studies to date have reported
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AD-related changes to functional network properties in the
brainstem.

The regional summaries shown in Figure 6 indicate AD-
related decreases in degree and increases in path length, through-
out posterior brain regions. This is indicative of a disruption in
functional connectivity in the brains of individuals suffering from
AD, and is consistent with the majority of previous studies which
have explored the functional connectivity and functional network
properties of AD. Furthermore, despite few significant differences
being uncovered in the statistical analysis, Figures 5, 6 do reveal
some trends which suggest that the PASA phenomenon may be
accentuated by the presence of AD. In particular, the differences
which are present between the young and aged groups appear to
be stronger when the young and aged with AD groups are com-
pared. These trends also appear to be present when the aged and
aged with AD groups are compared; however a statistical analysis
with larger sample sizes, and hence more statistical power, would
be required to determine if these trends reflect real differences
related to the presence of AD.

4.2. METHODOLOGICAL ISSUES
4.2.1. Complex network properties
In this study, we have explored the manifestation of the PASA phe-
nomenon in the functional network properties of healthy young
and aged individuals, and individuals diagnosed with AD. This
avenue of research is ultimately based upon the hypothesis that
the topology of functional networks reflects, albeit in a com-
plex and nonlinear way, the underlying physical and functional
relationships in the brain. Given that the PASA has been consis-
tently observed in activation-based studies, our own detection of
the PASA phenomenon in the functional network properties cov-
ered in our analysis lends support to this hypothesis. Qualitative
inspection of our results identified some general relationships
that exist between these network properties. For instance, we
identified strong consistencies in the results between degree and
path length, and also between clustering coefficient and local effi-
ciency. Figure 7 shows that there are strong relationships present

between both pairs of measures in the underlying network data.
These relationships lead us to conclude that, for the purposes of
group comparison, path length is likely no more than a proxy for
degree, offering little new information. The same may be said for
local efficiency, with respect to clustering coefficient.

4.2.2. Spatial normalization order
There is no correct answer to the question of when spatial nor-
malization should be applied during analysis of fMRI data. While
the effects of spatial smoothing have been extensively studied
(e.g., Hopfinger et al., 2000; Triantafyllou et al., 2006; Mikl et al.,
2008; Carp, 2012), there are precious few studies that explore the
effects of spatial normalization upon the results of fMRI analy-
ses. Carp (2012) tested a large range of analytical fMRI processing
pipelines in an activation analysis of a motor response inhibi-
tion task, including the application of spatial normalization both
before and after GLM model estimation, but did not find a large
effect of normalization order in the results. However, the findings
of Wu et al. (2011a) suggest otherwise - they evaluated the order
in which spatial normalization is applied to a seed based corre-
lation analysis of resting state fMRI data, where the seed regions
were identified using a prior activation analysis of a motor task.
In that study, the authors did observe a large effect, of the spatial
normalization order, upon the analysis results.

The results presented in this study demonstrate that the point
at which spatial normalization is applied does have a substan-
tial effect upon functional network analyses. The most noticeable
effect is to network density, as depicted in Figure 8: in gen-
eral, standard space networks have substantially higher density
than the corresponding fMRI space networks. We speculate that
this effect is due to artificial spatial and temporal correlations
introduced to the fMRI time series, by the spatial warping and
smoothing which is inherent in the spatial normalization process.

Another issue related to spatial normalization was the pres-
ence of disconnected nodes in fMRI space networks, which had
an effect upon other network measures. Specifically, this issue
was responsible for the negative correlation between t-values

FIGURE 7 | Relationships between degree and path length (left), and

between clustering coefficient and local efficiency (right) for the

nodes from every functional network in the study (joint histograms

with 5000 bins, based upon data from a total of 275 networks/

3489756 nodes; 5 networks in the study contained more than one

component, thus were excluded from these plots). Data are shown
before Z -normalization was applied. For the purposes of comparison, the
dashed red lines show the same relationships for Erdős-Rényi (ER)

random graphs (Erdős and Rényi, 1960). In an ER graph of size n, the
mean path length, l, may be derived from the mean network degree, k,
according to l = ln [n]− 0.5772

ln [k] + 1
2 (Fronczak et al., 2004). For the left plot

a value of n = 7769, the mean number of nodes across all networks,
was used. Furthermore, in an ER graph, mean local efficiency, e, may be
derived from mean clustering coefficient, c, according to the equation
e = wc + x

1 + (c/y )z for constants w ≈ 0.5, x ≈ 0.5, y ≈ 0.07, and z ≈ −3.9
(McCarthy, 2014).
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FIGURE 8 | Density for every network in the analysis, with density for

fMRI space networks plotted against density for the corresponding

standard space networks. The dashed red line shows the relationship
x = y for the purposes of comparison.

calculated upon fMRI and standard space resting state path
length, as depicted in Figure 1. Once again, the smoothing pro-
cess caused by spatial normalization complicates this situation,
by smoothing the values of connected voxels into disconnected
regions, with the effect that regions which were disconnected (i.e.,
missing) in fMRI space images, when transformed to standard
space, were replaced with values at or near to 0. The discon-
nectivity problem did not affect standard space analysis because
voxels representing disconnected nodes were either imputed or
excluded from analysis. Furthermore, as described above (see
Figure 8), standard space networks had higher density than their
fMRI space counterparts. In the resting state networks, this trans-
lated to much lower levels of disconnectivity in standard space
networks.

5. CONCLUSION
In this study, we performed a large scale voxelwise analysis of task
based and resting state functional networks, with the aim of deter-
mining whether the PASA phenomenon, commonly observed in
activation studies of aging, would be observable in the proper-
ties of functional networks. Our results strongly suggest this to
be the case and, furthermore, suggest that the presence of mild
AD amplifies the effect that PASA has upon functional network
properties. These findings suggest that properties of functional
networks have the potential to be used as biomarkers for the
identification of neurological disorders such as AD. Finally, our
results demonstrate that the point at which spatial normalization
is applied in a functional network analysis has a substantial effect
upon the results of such an analysis.
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