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Ullrich congenital muscular dystrophy and Bethlem myopathy are caused by mutations in
collagen VI (ColVI) genes, which encode an extracellular matrix protein; yet, mitochondria
play a major role in disease pathogenesis through a short circuit caused by inappropriate
opening of the permeability transition pore, a high-conductance channel, which causes a
shortage in ATP production. We find that melanocytes do not produce ColVI yet they bind it
at the cell surface, suggesting that this protein may play a trophic role and that its absence
may cause lesions similar to those seen in skeletal muscle. We show that mitochondria
in melanocytes of Ullrich congenital muscular dystrophy and Bethlem myopathy patients
display increased size, reduced matrix density, and disrupted cristae, findings that suggest
a functional impairment. In keeping with this hypothesis, mitochondria (i) underwent anom-
alous depolarization after inhibition of the F-ATP synthase with oligomycin, and (ii) displayed
decreased respiratory reserve capacity. The non-immunosuppressive cyclophilin inhibitor
NIM811 prevented mitochondrial depolarization in response to oligomycin in melanocytes
from both Ullrich congenital muscular dystrophy and Bethlem myopathy patients, and
partially restored the respiratory reserve of melanocytes from one Bethlem myopathy
patient.These results match our recent findings on melanocytes from patients affected by
Duchenne muscular dystrophy (Pellegrini et al., 2013), and suggest that skin biopsies may
represent a minimally invasive tool to investigate mitochondrial dysfunction and to evaluate
drug efficacy in ColVI-related myopathies and possibly in other muscle wasting conditions
like aging sarcopenia.

Keywords: collagen VI, muscular dystrophy, mitochondria, melanocytes, permeability transition, cyclophilin
inhibitors

INTRODUCTION
Collagen VI (ColVI) is an extracellular matrix (ECM) protein
that forms a complex microfibrillar network; it is present in sev-
eral organs including skeletal muscle, where it is localized just
outside the basement membrane (Kuo et al., 1997). ColVI is con-
stituted by three chains (α1,α2, and α3) encoded by different genes
(COL6A1, COL6A2, and COL6A3, respectively). Three additional
ColVI chains have recently been identified (α4, α5, α6), which are
similar to α3 but display a more restricted tissue distribution (Gara

Abbreviations: BM, Bethlem myopathy; ColVI, collagen VI; Cs, cyclosporin; DEJ,
dermal–epidermal junction; ECM, extracellular matrix; FCCP, carbonylcyanide-p-
trifluoromethoxyphenyl hydrazone; OCR, oxygen consumption rate; PTP, mito-
chondrial permeability transition pore; TMRM, tetramethylrhodamine methyl
ester; UCMD, Ullrich congenital muscular dystrophy.

et al., 2008). Deficiency of ColVI due to mutations in COL6A1,
COL6A2, or COL6A3 gives rise to three main muscle disorders,
Ullrich congenital muscular dystrophy (UCMD, MIM #254090)
(Ullrich, 1930; Camacho Vanegas et al., 2001), Bethlem myopa-
thy (BM, MIM #158810) (Bethlem and Wijngaarden, 1976), and
myosclerosis myopathy (MIM #255600) (Merlini et al., 2008b).
UCMD is a severe disorder characterized by congenital muscle
weakness with axial and proximal joint contractures and coex-
isting distal joint hypermobility (Bertini and Pepe, 2002). BM
is characterized by slowly progressive axial and proximal muscle
weakness with finger flexion contractures (Merlini et al., 1994).
Myosclerosis myopathy is a recessive disorder characterized by
progressive contractures affecting all joints (Merlini et al., 2008b).
However, it should be noted that the clinical features of ColVI
muscular dystrophy can be extremely heterogenous, ranging from
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mild to severe myopathy with progressive muscular dystrophy
(Jöbsis et al., 1999). Consistent with the idea that these disorders
represent a clinical continuum, about 70 different mutations of the
COL6 genes have so far been described in ColVI myopathies (Pepe
et al., 2002; Lampe and Bushby, 2005). Patients affected by ColVI
muscular dystrophies frequently display skin alterations. Patients
with the UCMD phenotype usually present follicular hyperkerato-
sis over the extensor surfaces of upper and lower limbs, soft velvety
skin on the palms and soles, and tendency to develop keloids or
“cigarette paper” scars, skin features that may be present also in
BM patients (Lampe and Bushby, 2005). Although the mechanism
linking ColVI deficiency to skin lesions has not been established,
it has recently been shown that melanocytes affect fibroblast pro-
liferation and collagen production, contributing to the generation
of hypertrophic scars and keloids (Gao et al., 2013).

Collagen VI myopathies share a common pathogenesis linked
to deregulation of the mitochondrial permeability transition pore
(PTP), an inner membrane high-conductance channel that forms
from dimers of the mitochondrial F-ATP synthase under con-
ditions of Ca2+ overload and oxidative stress (Bernardi, 2013;
Giorgio et al., 2013) and is desensitized by cyclosporin (Cs) A.
Oxidative stress is specifically involved in the pathogenesis of
myopathy in the Col6a1−/− mouse model (Menazza et al., 2010;
Sorato et al., 2014); and the resulting myofiber damage is ampli-
fied by impaired clearance of defective mitochondria (Grumati
et al., 2010). PTP-dependent mitochondrial dysfunction appears
to be involved also in other forms of muscular dystrophy, including
those caused by lack of δ-sarcoglycan and laminin-2 (Millay et al.,
2008), as well as of dystrophin (Millay et al., 2008; Reutenauer
et al., 2008; Wissing et al., 2010; Pellegrini et al., 2013). These
studies generated pharmacological strategies aimed at rescuing
the mitochondrial defect through desensitization of the PTP, and
encouraging results have been obtained with the use of CsA and its
non-immunosuppressive analogs Debio025 and NIM811 in ani-
mal models and in a pilot trial in patients (Irwin et al., 2003;
Angelin et al., 2007; Merlini et al., 2008a; Tiepolo et al., 2009;
Telfer et al., 2010; Zulian et al., 2014).

Translation of the pharmacological strategies tested in animal
models to muscular dystrophy patients is particularly complex,
and often requires invasive procedures. Cell cultures derived from
muscle biopsies can be used for genetic and mechanistic stud-
ies, but in the case of ColVI myopathies the disease phenotype
is lost after a few passages, a likely result of in vitro selection of
apoptosis-resistant cells (Sabatelli et al., 2012b). Melanocytes are
the pigment-producing cells of the skin, localized to the basal layer
of human epidermis. They are polarized cells performing specific
functions at the basolateral and apical membranes, which explains
the differential composition of the membrane at these sites (Pinon
and Wehrle-Haller, 2011). At the basal layer, melanocytes attach to
the dermal–epidermal junction (DEJ), a specialized structure with
a fundamental role in maintaining attachment of the epidermis to
the dermis and providing skin resistance against shearing forces
(Santiago-Walker et al., 2009). Melanocytes do express muscle-
specific proteins including the mDP427 dystrophin isoform at the
interface with the DEJ (Pellegrini et al., 2013). We have recently
demonstrated that melanocytes possess properties similar to those
of myoblasts from Duchenne muscular dystrophy patients, and

represent a promising cellular model to monitor the response
of dystrophinopathies to pharmacological treatments (Pellegrini
et al., 2013). Here, we have explored whether mitochondrial dys-
function can be detected in melanocytes from UCMD and BM
patients, and whether these cells are a potential alternative to the
use of muscle-derived cells in the study and therapy of ColVI
myopathies.

MATERIALS AND METHODS
PATIENTS
Skin biopsies from two healthy subjects and four ColVI muscular
dystrophy patients (two UCMD and two BM) were collected. All
patients were previously diagnosed by genetic, and/or histochem-
ical and biochemical analysis. UCMD patient 1 (UCMD1) carried
a COL6A2 homozygous mutation in exon 28 [UCMD-5 patient
in Tagliavini et al. (2014)]; UCMD patient 2 (UCMD2) displayed
typical UCMD features, severe deficiency of ColVI in muscle biop-
sies and defective ColVI secretion in cultured skin fibroblasts; BM
patients 1 (BM1) and 2 (BM2) carried heterozygous mutations
in COL6A1 and COL6A3, respectively [patients BM-5 and BM-6,
respectively, in Tagliavini et al. (2014)]. All participants provided
written informed consent, and approval was obtained from the
Ethics Committee of the Rizzoli Orthopaedic Institute (Bologna,
Italy).

CELL CULTURES
Skin fragments were cut into small pieces and the epidermis
was separated from the dermis after overnight incubation in
0.5% dispase II (Roche) at 4°C. Melanocytes were maintained in
M254 culture medium (GIBCO) supplemented with phorbol-12-
myristate 13-acetate, transferrin, hydrocortisone, insulin, bovine
pituitary extract,basic fibroblast growth factor, and fetal calf serum
(HMGS supplement, GIBCO). Melanocyte-fibroblast co-cultures
were obtained by plating fibroblasts onto coverslips in DMEM
growth medium until they reached 70% confluence; after 1 day
melanocytes were seeded onto the fibroblast cultures and grown
in M254 medium supplemented with 0.25 mM l-ascorbic acid
(Sigma). ColVI-enriched, conditioned medium was obtained by
treating confluent skin fibroblast cultures from healthy donors
with DMEM medium supplemented with 0.25 mM l-ascorbic
acid. After 24 h, the medium was collected,centrifuged at low speed
to remove cell debris and diluted 1:1 with M254 medium. Nor-
mal melanocytes plated onto coverslips were grown with ColVI-
enriched medium for 24 h before immunohistochemical analy-
sis with anti-ColVI antibody (Millipore). To assess the effect of
cyclophilin inhibitors on mitochondrial morphology, melanocytes
from patients and healthy subjects were treated with 0.8 µM
NIM811 diluted in M254 medium for 2 h at 37°C before processing
for immunofluorescence and transmission electron microscopy.

IMMUNOFLUORESCENCE ANALYSIS
Cultured melanocytes were fixed with methanol at −20°C for
7 min, washed with phosphate-buffered saline, and incubated
with antibodies against NG2 (Millipore), integrin β1 (Millipore),
pMEL-17 (Monosan), ColVI (Millipore), or Tom20 (Santa Cruz).
All antibodies were revealed with secondary anti-rabbit or anti-
mouse TRITC or FITC-conjugated antibodies (DAKO). Samples

Frontiers in Aging Neuroscience www.frontiersin.org November 2014 | Volume 6 | Article 324 | 2

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zulian et al. Melanocyte mitochondria in muscular dystrophy

were mounted with an anti-fading reagent (Molecular Probes)
and analyzed with a A1-R confocal laser microscope (Nikon)
equipped with a Nikon Plan Apo TIRF 100×, 1.45 NA objec-
tive, and with 405 and 561 nm laser lines to elicit DAPI (blue)
and TRITC (red) fluorescence signals. Z -stacks were collected at
optical resolution of 120 nm/pixel with pinhole diameter set to
1 Airy unit and z-step size to 150 nm. All image analyses were
performed using NIS-Elements software (Nikon). For mitochon-
drial morphometric analysis, maximum intensity projections were
generated. Analysis was limited to regions of interest at the periph-
ery of cells, where individual mitochondria are readily resolved.
Images were thresholded and converted to binary images. Image
segmentation was performed on the binary mask, and number
and length of discrete features was measured. The statistical sig-
nificance of the differences between the experimental points was
evaluated by Student’s t -test.

TRANSMISSION ELECTRON MICROSCOPY
Skin biopsy fragments and melanocytes grown onto uncoated
well plates were fixed with 2.5% glutaraldehyde in 0.1 M cacody-
late buffer for 2 h and post-fixed with 1% osmium tetroxide.
After dehydration, samples were detached with propylene oxide,
embedded in Epon812 epoxy resin, and observed with a Philips
EM400 electron microscope operated at 100 kV after cutting ultra-
thin sections. For rotary shadowing electron microscopy analysis,
melanocyte-fibroblast co-cultures were incubated with anti-ColVI
antibody diluted 1:25 in culture medium at 37°C for 2 h. After
several washes with culture medium, samples were incubated with
anti-mouse IgG 5 nm gold-conjugated antibody diluted 1:20 in
culture medium for 1 h at 37°C. Negative controls were performed
in the absence of primary antibody. After immunolabeling cells
were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer and
1% osmium tetroxide, dehydrated in ethanol and critical point-
dried. Thereafter, the slides were rotary-shadowed with platinum
at 45°C and coated with carbon at 90°C in a Balzers BAF 400D
Freeze Fracture as previously described (Zhang et al., 2002).

MITOCHONDRIAL MEMBRANE POTENTIAL
Mitochondrial membrane potential was measured based on the
accumulation of tetramethylrhodamine methyl ester (TMRM,
Molecular Probes) (Angelin et al., 2007). Primary cultures of
melanocytes obtained as described above from healthy donors,
UCMD, and BM patients were seeded onto 24-mm-diameter
round glass coverslips and grown for 2 days in M254 culture
medium with HMGS supplement (GIBCO). The medium was
then replaced with serum-free M254 medium supplemented
with 10 nM TMRM for 30 min, and cellular fluorescence images
were acquired with an Olympus IX71/IX51 inverted microscope,
equipped with a xenon light source (75 W) for epifluorescence
illumination and with a 12-bit digital cooled CCD camera (Micro-
max, Princeton Instruments). Data were acquired and analyzed
using Cell R Software (Olympus). For detection of fluorescence,
568± 25 nm band-pass excitation and 585 nm long-pass emission
filter settings were used. Images were collected with exposure
time of 100 ms using a 40×, 1.3 NA oil immersion objective
(Nikon). The extent of cell and hence mitochondrial loading with
potentiometric probes is affected by the activity of the plasma
membrane multidrug resistance pump. In order to normalize the

loading conditions, in all experiments with TMRM the medium
was supplemented with 1.6 µM CsH, which inhibits the mul-
tidrug resistance pump but not the PTP (Bernardi et al., 1999).
At the end of each experiment, mitochondria were fully depo-
larized by the addition of 4 µM of the protonophore carbonyl
cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP). Clusters
of several mitochondria were identified as regions of interest, and
fields not containing cells were taken as background. Sequential
digital images were acquired every 5 min and the average fluores-
cence intensity of all relevant regions was recorded and stored for
subsequent analysis.

OXYGEN CONSUMPTION RATE
Oxygen consumption rate (OCR) was measured with the XF24
Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA,
USA). Melanocytes were seeded in XF24 cell culture microplates
at 6× 104 cells/well for patient UCMD1 and 13× 104 cells/well
for patients UCMD2 and BM1 (the same cell densities were used
for the matched cultures from healthy donors) in 0.2 ml of M254
culture medium with HMGS supplement and incubated at 37°C
in 5% CO2 for 24 h. Experiments were carried out on confluent
monolayers. Assay were initiated by replacing the growth medium
in each well with 0.67 ml of serum-free M254 prewarmed at 37°C.
Cells were incubated at 37°C for 30 min to allow temperature
and pH equilibration. A titration with FCCP was performed for
each cell type in order to determine the optimal FCCP concentra-
tion (i.e., the concentration that stimulates respiration maximally),
which was found to be 1 µM for cells from healthy donors, 0.8 µM
for patient UCMD1, 0.4–0.6 µM for patient UCMD2, and 0.4 µM
for patient BM1. After an OCR baseline was established, 70 µl of
a solution containing oligomycin, FCCP, rotenone, or antimycin
A were sequentially added to each well to reach final concentra-
tions of 1 µg/ml oligomycin, FCCP as stated above, and 1 µM for
rotenone and antimycin A. Data are expressed as pmol of O2 per
minute per 6× 104 (UCMD1) or 13× 104 (UCMD2, BM1) cells.
At the end of each experiment, the medium was removed from
each well and the total protein content per well was quantified.
Cells were lysed at 4°C in a buffer composed of 140 mM NaCl,
20 mM Tris-HCl pH 7.4, 5 mM EDTA, 10% glycerol, 1% Triton
X-100 (0.1 ml/well) in the presence of phosphatase and protease
inhibitors (Sigma). Lysates were then cleared by centrifugation at
13,000× g for 30 min at 4°C, and proteins were quantified using
a BCA Protein Assay Kit (Thermo Scientific-Pierce).

RESULTS
MELANOCYTES BIND COLLAGEN VI MICROFILAMENTS
To define their interactions with ColVI, we studied pure cultures
of melanocytes from healthy donors in the presence of ascorbic
acid, which allows hydroxylation of proline and lysine residues and
secretion of ColVI in vitro (Colombatti and Bonaldo, 1987). ColVI
could not be detected in the ECM or inside the cells (Figure 1A,
left panel), indicating that melanocytes do not synthesize and
secrete this protein. However, when melanocytes were treated
with a ColVI-enriched medium obtained from skin fibroblasts
(Figure 1A, middle panel) or co-cultured with ColVI-producing
skin fibroblasts (Figure 1A, right panel) a clear association of
ColVI with the cell surface was detected. Rotary shadowing
immunoelectron microscopic analysis with anti-ColVI antibody
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FIGURE 1 | Immunofluorescence analysis and EM rotary shadowing of
melanocyte cultures. (A) Double labeling for ColVI (green) and p-MEL17
(red) on melanocyte cultures under basal conditions (melano), after treatment
with ColVI-enriched medium conditioned by skin fibroblasts (melano+ cm),
and of melanocytes co-cultured with skin fibroblasts (melano+fibro); scale
bar, 10 µm. (B) Rotary shadowing electron microscopy analysis of
melanocytes co-cultured with fibroblasts. Melanocytes (M, upper left panel)

display the typical bipolar shape compared to the flat morphology of
fibroblasts (F). Typical ColVI “beaded” microfilaments, identified by 5 nm
colloidal gold particles, are visible both at the melanocytes cell surface (top
right panel) and in the ECM (bottom panels). Microfilaments formed parallel
rows when attached to the cell surface (upper right panel, which is a
magnification of the boxed area in the upper left panel), and web-like
structures when deposited in the ECM (lower panels). Scale bar, 400 nm.

confirmed the presence of ColVI microfilaments onto the cell
membrane of melanocytes (M), which can easily be distinguished
from fibroblasts (F) because of their elongated, bipolar shape
(Figure 1B, upper left panel). Microfilaments displayed the typical
“beaded” pattern with a periodicity of 100 nm, and formed paral-
lel rows when attached to the melanocyte cell surface (Figure 1B,
upper right panel), while they formed web-like structures when
deposited in the ECM (Figure 1B, lower panels).

MELANOCYTES FROM UCMD AND BM DISPLAY ALTERATIONS OF THE
MITOCHONDRIAL NETWORK
Skin biopsies of healthy donors and of UCMD patients were stud-
ied by ultrastructural analysis. Mitochondrial changes, including

increased size, reduced matrix density, and disrupted cristae
consistent with swelling, were frequently found in patients
(Figure 2A, arrows in middle and right panels), while mito-
chondria in melanocytes of healthy controls had the expected
features (Figure 2A, left panel). Occurrence of mitochondrial
alterations was also detected in melanocyte cultures obtained
from both UCMD and BM patients. The mitochondrial reticu-
lum, as monitored by immunofluorescence analysis of the outer
membrane protein Tom20, appeared fragmented along the cyto-
plasmic extensions as indicated by the presence of a punctate label-
ing pattern (Figure 2B). Ultrastructural analysis showed changes
similar to those detected in skin, with mitochondria of irregular
size and focal swelling (Figure 2C, arrows).
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FIGURE 2 | Morphological analysis of skin biopsies and melanocyte
cultures. (A) Ultrastructural analysis of melanocytes in epon-embedded skin
biopsies from healthy donor (CTRL) and patients UCMD1 and UCMD2
showing altered mitochondria (arrows) in patient melanocytes; scale bar,
1 µm. (B) Confocal imaging of melanocyte cultures from patients UCMD1,
UCMD2, BM1, and BM2 and from healthy donor (CTRL) labeled with an

anti-Tom20 antibody. Patient melanocytes display a fragmented and
discontinuous mitochondrial network compared to the long and branched
pattern of the cells from healthy donor; scale bar, 20 µm. (C) Ultrastructural
analysis of melanocyte cultures from a healthy donor and patients, showing
the presence of enlarged mitochondria with a few cristae (arrows) in all
patients; scale bar, 500 nm.
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FIGURE 3 | Effect of oligomycin on mitochondrial membrane potential
in melanocytes. Melanocytes from one healthy donor (A,B), from patient
UCMD2 (C,D) and from patient BM1 (E,F) were loaded with TMRM and
studied by epifluorescence microscopy as described (Pellegrini et al., 2013).
Where indicated (arrows), 6 µM oligomycin (O) and 4 µM FCCP (F) were
added. In the experiments of (B,D,F), cells had been treated with 0.8 µM
NIM811 for 30 min before beginning the recordings. Each line reports
mitochondrial fluorescence of one individual cell.

MITOCHONDRIA OF UCMD AND BM MELANOCYTES DISPLAY A LATENT
DYSFUNCTION
We studied mitochondrial function in primary cultures of
melanocytes obtained from one healthy donor and from patients
UCMD2 and BM1. Irrespective of the presence of NIM811,
addition of oligomycin to melanocytes from healthy donor was
followed by an initial fluorescence increase (i.e., the expected
hyperpolarization), which was readily followed by depolarization
(i.e., probe release with decreased mitochondrial fluorescence)
upon addition of the protonophore FCCP (Figures 3A,B). At
variance from melanocytes from healthy donor, upon addition
of oligomycin melanocytes from patients UCMD2 (Figure 3C)
and BM1 (Figure 3E) underwent rapid mitochondrial depolariza-
tion after the initial hyperpolarization. Consistent with a key role
of the PTP in onset of depolarization, the response to oligomycin
was normalized by the cyclophilin inhibitor NIM811, a CsA analog
devoid of immunosuppressive activity that desensitizes the PTP
without inhibiting calcineurin (Zulian et al., 2014) (Figures 3D,F).
Treatment with NIM811 normalized mitochondrial morphology
of UCMD1, UCMD2, and BM1, improving the mitochondr-
ial reticulum extension as indicated by increased mitochondrial
length (Figures 4A,B). Ultrastructural analysis confirmed that
treatment with NIM811 restored mitochondrial matrix density
and cristae organization in patient melanocytes (Figure 4C),
without affecting mitochondria of melanocytes from the healthy
patient (Figures 4B,C). It should be noted that NIM811 inhibits
all CyP isoforms, and that an isoform-selective inhibitor is only
available for CyPA (Daum et al., 2009); yet, since mitochondria
lack other Cs-binding proteins (Nicolli et al., 1996), we con-
clude that the mitochondrial effects of NIM811 are mediated by
inhibition of CyPD. Taken together, these results demonstrate that
UCMD and BM melanocytes display the same PTP-dependent
latent mitochondrial dysfunction previously identified in primary
muscle-derived cell cultures from Col6a1−/− mice (Irwin et al.,
2003),UCMD and BM patients (Angelin et al., 2007),and zebrafish
with ColVI myopathy (Telfer et al., 2010; Zulian et al., 2014).

MITOCHONDRIAL RESPIRATORY RESERVE CAPACITY IS DECREASED IN
MELANOCYTE CULTURES FROM UCMD AND BM PATIENTS
We measured the OCR of primary cultures of melanocytes from
UCMD and BM patients with the sensitive Seahorse technology
(Wu et al., 2007). Basal respiration largely reflects mitochon-
drial oxygen consumption, which in aerobic, non-transformed
cells fulfills the needs for ATP synthesis; addition of oligomycin
inhibits the F-ATP synthase, and therefore, “removes” the fraction
of respiration linked to ATP synthesis. Inspection of the response
of melanocytes from healthy donors (Figures 5A–C, closed cir-
cles) reveals that a large fraction of the basal OCR is linked to
ATP synthesis, as shown by the inhibitory effect of oligomycin
(residual oxygen consumption is non-mitochondrial, see below).
Melanocytes could be stimulated well above the basal respiratory
level by addition of the protonophore FCCP, which stimulates
respiration maximally, demonstrating that they have a large respi-
ratory reserve (the difference between OCR after the addition of
FCCP and basal OCR). Addition of rotenone (selective inhibitor
of respiratory complex I) almost completely inhibited the OCR,
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FIGURE 4 | Effect of NIM811 on mitochondrial morphology.
(A) Melanocytes from a healthy donor, and from UCMD1, UCMD2, and BM1
patients were treated with 0.8 µM NIM811 for 2 h and labeled with
anti-Tom20 antibody. Scale bar, 5 µm. (B) Mitochondrial length (µm) was

quantified and is reported as mean±SEM; t -test; *P < 0.05;
(C) Ultrastructural analysis of melanocytes from a healthy donor (CTRL) and
patient UCMD1 (representative of all patients), after treatment with NIM811
(UCMD1+NIM811). Scale bar, 300 nm.

no further decrease being seen with the addition of antimycin A
(selective inhibitor of complex III). Finally, NIM811 had no effect
in the response of melanocytes from healthy donors to oligomycin,
FCCP, rotenone, and antimycin A (Figures 5B,C closed trian-
gles). Melanocytes from patients UCMD1, UCMD2, and BM1 dis-
played a marked decrease of the respiratory reserve, which became
apparent after the addition of FCCP (open circles in Figures 5A–
C, respectively). In patient BM1, maximal respiration was partially
restored by NIM811 but the effect was not statistically significant
(Figure 5C). Thus, assessing whether the lower respiratory activity
of melanocytes from patients depends on PTP opening will require
further work. We also tested the effect of FCCP on basal respi-
ration (i.e., in the absence of oligomycin) with identical results
(data not shown). The statistical analysis of these experiments is
presented in Figures 5A’–C’. Resting ATP levels were not altered
in melanocytes from ColVI patients (results not shown), as also
observed in myoblast cultures (Angelin et al., 2008). These find-
ings, which match the maintenance of a normal mitochondrial

membrane potential under resting conditions, are consistent with
a latent rather than overt mitochondrial dysfunction in cultured
melanocytes from the patients.

DISCUSSION
Epidermal melanocytes interact with the underlying ECM of
derma via the DEJ, a specialized adhesion structure consisting
of ECM components that include ColVI (Sabatelli et al., 2011).
Adhesion of melanocytes to the DEJ involves components com-
mon to the muscle cell sarcolemma. Like muscle cells, melanocytes
express mDp427 dystrophin (Pellegrini et al., 2013), which bridges
the cytoskeleton and the ECM through α, β dystroglycan (Herzog
et al., 2004) and the α2 chain of laminin (Sewry et al., 1996).
In addition, the DEJ basement membrane is enriched in ColVI,
which includes the α5 and α6 chains (Sabatelli et al., 2011) as also
recently shown for the endomysium of human muscle (Sabatelli
et al., 2012a). ColVI microfilament organization is influenced by
the interactions of ColVI with its binding partners (Wiberg et al.,
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FIGURE 5 | Oxygen consumption rate of melanocytes. OCR of
melanocytes from a healthy donor (closed circles in all panels), of patients
(open circles in all panels) UCMD1 (A), UCMD2 (B), and BM1 (C) was
measured in 24-well Seahorse plates [60,000 cells/well for (A) and 130,000
cells/well for (B,C)]. Where indicated (arrows) 1 µg/ml oligomycin (O), FCCP
as detailed in Section “Materials and Methods” (F), 1 µM rotenone (R), and
1 µM antimycin A (AA) were added. In (B,C), triangles report respiration of

melanocytes from healthy donor (closed symbols) or UCMD2 and BM1
patients (open symbols) treated with 0.8 µM NIM811 1 h before beginning
the recording. Data in each panel are mean of at least four independent
determinations in triplicate±SEM. (A’–C’) OCR before (Basal) and after the
sequential addition of oligomycin (Oligo), FCCP, rotenone, and antimycin A.
Data were analyzed with ANOVA. *P < 0.05; **P < 0.005; n.s., not
significant.

2002). Our findings demonstrate that, like myoblasts (Zou et al.,
2008; Sabatelli et al., 2012b), melanocytes do not produce ColVI,
yet they bind the protein at the cell surface (Kawahara et al., 2008).
Melanocytes do express NG2 proteoglycan (results not shown),
which acts as a ColVI receptor (Campoli et al., 2010) together
with integrins (Pfaff et al., 1993; Zambruno et al., 1993). The
pattern of melanocyte surface labeling with ColVI microfibrils
is consistent with receptor-mediated interactions. Interestingly,
lack of ColVI affects melanocyte mitochondria in the same way
as it affects mitochondria in skeletal muscle, suggesting that this
ECM protein exerts a trophic role in the skin as well, con-
sistent with the lesions detected in UCMD and BM patients
(Lampe and Bushby, 2005). Indeed, UCMD and BM melanocytes
display the same PTP-dependent latent mitochondrial dysfunction
previously identified in primary muscle-derived cell cultures from
Col6a1−/− mice (Irwin et al., 2003), UCMD and BM patients
(Angelin et al., 2007), and zebrafish with ColVI myopathy (Zulian
et al., 2014) that manifests itself as an oligomycin-induced depolar-
ization. We have interpreted oligomycin-induced depolarization
as a secondary event following mitochondrial Ca2+ overload; this
would be a consequence of decreased activity of ATP-dependent
Ca2+ pumps, resulting in cytosolic Ca2+ overload because of

decreased Ca2+ extrusion at the plasma membrane and decreased
Ca2+ uptake from the endo-sarcoplasmic reticulum (Angelin et al.,
2008).

The reason why maximal respiration is decreased in
melanocytes from ColVI muscular dystrophy patients is not
easy to dissect in intact cells, but prominent possibilities are
increased cytochrome c release through both PTP-dependent and -
independent mechanisms (Clerc et al., 2012), and PTP-dependent
pyridine nucleotide depletion (Vinogradov et al., 1972; Di Lisa
et al., 2001). Short openings of the PTP that cannot be detected
by TMRM redistribution do take place in isolated mitochondria
(Hüser et al., 1998; Hüser and Blatter, 1999) and have also been
documented in situ (Petronilli et al., 1999). The PTP open time
can be increased by Ca2+ overload synergistically with arachi-
donic acid produced by activation of cPLA2 (Petronilli et al., 2001;
Scorrano et al., 2001; Penzo et al., 2004) leading to cytochrome
c release (Petronilli et al., 2001), depletion of matrix pyridine
nucleotides (Di Lisa et al., 2001), and respiratory inhibition (Vino-
gradov et al., 1972). Since we found ultrastructural and functional
alterations of mitochondria compatible with increased PTP open-
ing in melanocytes from UCMD and BM patients, we suspect
that PTP opening is responsible for decreased maximal respiratory
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capacity as well. Some support for this interpretation comes from
the partial restoration of respiration in patient BM1 after treat-
ment with the cyclophilin inhibitor NIM811, which desensitizes
the PTP.

The present results show that skin melanocytes from UCMD
and BM patients faithfully reproduce the mitochondrial dysfunc-
tion and ultrastructural alterations that characterize myoblasts
and myofibers from the same patients (Merlini and Bernardi,
2008). These findings may also help to understand the patho-
genesis of the skin lesions in patients affected by ColVI muscu-
lar dystrophies, and closely match recent results on melanocytes
derived from a patient affected by Duchenne muscular dystro-
phy (Pellegrini et al., 2013). Taken together, our results suggest
that melanocytes can become a useful tool to study and monitor
other muscle diseases as well, and that skin biopsies may repre-
sent a convenient and minimally invasive alternative procedure to
monitor muscle genetic diseases and to assess potential therapies
ex vivo.
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