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DNA methylation is an essential epigenetic modification for mammalian development and
is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA
methylation has been considered as a permanent repressive epigenetic mark. However,
the application of genome-wide approaches has allowed the analysis of DNA methylation
in different genomic contexts revealing a more dynamic regulation than originally thought,
since active DNA methylation and demethylation occur during cellular differentiation and
tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and
are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This
review outlines the published data regarding DNA methylation changes along the skeletal
muscle program, in both physiological and pathological conditions, to better understand
the epigenetic mechanisms that control myogenesis.
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Introduction

DNA methylation was the first discovered epigenetic modification (Holliday and Pugh, 1975;
Riggs, 1975) being one of the best studied and most mechanistically understood. Chemically, it
refers to the covalent addition of a methyl group (CH3) into the fifth position of the cytosine DNA
nucleotide resulting in the modified base 5mC, frequently considered the fifth nucleotide, and well
conserved among most plant, animal and fungal models (Feng et al., 2010). Cytosine methylation
in mammals is almost restricted to the symmetrical CpG context (cytosine residue followed
by a guanine bound by a phosphate union) (Ramsahoye et al., 2000), a dinucleotide globally
underrepresented in the genome as a consequence of the spontaneous or enzymatic deamination
of 5mC to thymine in the germ line (Bestor and Coxon, 1993). DNA methylation is critical for
mammalian development being traditionally considered an heritable and stable silencing mark
crucial for X-inactivation (Mohandas et al., 1981; Gartler and Riggs, 1983), genetic imprinting
(Reik et al., 1987; Swain et al., 1987), silencing of genomic elements such as transposons to ensure
genomic stability (Walsh et al., 1998; Gaudet et al., 2003), and maintenance of constitutively
repressed centromeric and pericentromeric DNA satellite repeats (Gopalakrishnan et al., 2009). In
addition, DNA methylation has an important role in gene regulation that depends on the genomic
CpG context: promoter methylation is associated with gene silencing (Boyes and Bird, 1992; Hsieh,
1994), gene body methylation has variable effects on gene transcription (Gelfman et al., 2013; Yang
et al., 2014), and intergenic methylation may affect gene expression through enhancer regulation
(Stadler et al., 2011).

DNA methylation follows a bimodal distribution across the genome defined by the inverse
correlation between 5mC and CpG density: CpG-poor DNA, which comprises most of the
genome, shows high levels of 5mC, whereas high CpG-dense regions, termed CpG islands
(Bird, 1986; Gardiner-Garden and Frommer, 1987) located mainly in the promoter regions

Frontiers in Aging Neuroscience | www.frontiersin.org 1 March 2015 | Volume 7 | Article 19

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00019/abstract
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00019/abstract
http://community.frontiersin.org/people/u/203311
http://community.frontiersin.org/people/u/195578
https://creativecommons.org/licenses/by/4.0/
mailto:msuelves@imppc.org
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Carrió and Suelves DNA methylation dynamics during myogenesis

of housekeeping and developmental genes, are largely resistant
to DNA methylation (Takai and Jones, 2002; Illingworth
and Bird, 2009). Notably, the surrounding regions to the
CpG islands, named CpG island shores, are susceptible to
be methylated in a tissue-specific manner correlating with
changes in gene expression (Doi et al., 2009; Ji et al.,
2010).

Strikingly, 20 years old seminal studies demonstrated that
MyoD activation occurred in a demethylation-dependent
manner (Brunk et al., 1996), establishing for the first
time a direct link between DNA methylation and cellular
differentiation. Since then, the importance of DNA methylation
in modulating transcriptional programs during development
and differentiation processes has been strongly supported
by many studies. In the last few years, the development of
large-scale sequencing strategies has made possible to achieve
significant advances in understanding the regulatory role
of DNA methylation at context-specific level and how the
methylome affects cell identity. The aim of the present review is
to discuss the major advances concerning the DNA methylation
dynamics during myogenesis and its implications in muscle
development and disease.

Shaping the Cellular Identity Through DNA
Methylation

During cellular differentiation stem cells lose their plasticity
and narrow their identity into particular differentiated cell
types, which are usually stably maintained by epigenetic
mechanisms. Embryonic stem cells (ESCs) are pluripotent cells
showing very low methylation levels at CpG-rich sequences
(Fouse et al., 2008), which along the differentiation processes
into the three germ layers gain methylation in common but
also specific regions (Meissner et al., 2008; Isagawa et al.,
2011). Although ESCs completely lacking DNA methylation
are viable and competent for self-renewal (Tsumura et al.,
2006), they are partially blocked in the ability to initiate
cellular differentiation (Jackson et al., 2004). Among others,
the expression of mesodermal markers such as Brachyury,
α-globin and βH1-globin are impaired or not maintained
in embryo bodies (EBs) derived from ESCs lacking DNA
methyltransferase activity (Jackson et al., 2004; Schmidt
et al., 2012). Paradoxically, although there is a global gain of
methylation during cellular differentiation, specific loci lose
methylation in a cell-type dependent manner. While the gain of
methylation mediates the silencing of pluripotency--associated
and gamete-specific genes, as well as cell-type specific markers
to avoid the expression of non-appropriate lineages, loss of
methylation occurs in lineage-specific genes to define cellular
identity (Nagae et al., 2011; Calvanese et al., 2012; Nazor
et al., 2012; Figure 1). Interestingly, these demethylated
sequences are not only restricted to promoter regions,
but are also found in distal gene sequences and intronic
regions, which might affect enhancer elements, alternative
promoters and alternative splicing variants in a cell-type
dependent manner (Meissner et al., 2008; Stadler et al.,
2011).

Genome-wide Studies Addressing the Skeletal
Muscle Methylome
Several studies comparing DNA methylation signatures between
cell types and tissues indentified muscle-specific differentially
methylated regions. As mentioned before, CpG islands are
found at over half of all human gene promoters and are
often free of methylation (Ioshikhes and Zhang, 2000; Lander
et al., 2001; Saxonov et al., 2006). The analysis of 17,000 CpG
islands in five human samples (blood, sperm, brain, skeletal
muscle and spleen) showed a common set of methylated
CpG islands in all somatic samples, associated with genes
that are essential for development, neurogenesis, and segment
specification (Illingworth et al., 2008). In addition, this study
identified 178 CpG islands specifically hypermethylated
in muscle tissue, showing the skeletal muscle the highest
percentage of methylated CpG islands (8.3%) (Illingworth
et al., 2008). Sorensen et al. analyzed the methylation level
of 200 lineage-specific differentiation markers in muscle-
progenitor cells (MPCs), adipose stem cells (ASCs) and
bone marrow mesenchymal stem cells (BMMSCs), using
Methyl-DNA Immunoprecipitation (MeDIP) followed by
microarray hybridization. The results showed that despite
most of the lineage-specific promoters did not show changes
in DNA methylation, important lineage-specific markers were
hypermethylated in MPCs, correlating with gene silencing,
such as GATA-2, AQP7 and ACACA (adipogenic lineage),
RUNX2 and THY1 (osteogenic lineage), INS2 and PDX1
(pancreatic development), KRT1A (skin development) and
NEFH (neurogenic lineage) (Sorensen et al., 2010). Later
on, Fernandez et al. analyzed 1,505 CpGs surveying 808
gene promoters in 1,628 human samples including 22
muscle tissues. This study identified 183 muscle-specific
differentially methylated CpGs (dmCpG) on gene promoters
including GLI2, CREBBP, PDGFRA, CD34 and CARD15 genes
(Fernandez et al., 2012). In parallel, using the methylation
array Illumina Infinium 27K DNA Methylation BeadChIP,
47 genes were found specifically hypomethylated in muscle
tissue, including genes encoding for proteins located in
contractile fibers such as Obscurin, Myotilin, and Myh7
(Calvanese et al., 2012). At the same time, a genome-wide DNA
methylation analysis was performed to compare 205 human
pluripotent stem cells and 130 somatic samples, including
skeletal muscle, by using the complete Illumina Infinium
450K DNA Methylation BeadChIP array. The results reveled
782 and 621 unique CpGs exclusively hypomethylated and
hypermethylated, respectively, in skeletal muscle samples, being
the hypomethylated regions functionally enriched in response
to peptide hormone stimulus and wound healing (Nazor et al.,
2012).

All these studies highlighted a specific DNA methylation
signature of skeletal muscle cells compared to other cell-
types, but did not address when this specific pattern was
acquired. A recent study comparing human proliferating
myoblasts (MBs) and differentiated myotubes (MTs), using the
non-promoter-oriented RRBS method, showed no significant
methylation changes during myogenic terminal differentiation
(Tsumagari et al., 2013b). In this study the authors also
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FIGURE 1 | Cell type-specific DNA methylation profiles. Schematic
representation of cell type-specific methylomes. CpG island promoters are
usually protected from DNA methylation and are prone to active transcription.
CpG-poor regions (intergenic) and repetitive elements are typically methylated,

with the exception of enhancers and CpG-poor promoters that can be
differentially methylated in a cell type-specific fashion. Intragenic regions can
also be differentially methylated leading to specific cell-type transcripts. MBPs:
methyl-binding proteins; TFs: transcription factors.

compared non-muscle cell cultures with myoblast/myotube
cultures and found similar numbers of differentially hyper-
and hypo-methylated sites (9,592 and 10,048, respectively).
The regions specifically hypermethylated at MB/MT cells
were strongly associated with genes encoding for transcription
factors, especially homeobox and T-box genes, while muscle
hypomethylation was observed at contractile fiber genes. The
myogenic hypermethylation found in specific subregions of
all four HOX gene clusters pointed out the involvement of
DNA methylation (at 5’ and internal promoters, as well as
at intragenic and intergenic enhancers) in the fine-tune HOX
genes regulation during development (Tsumagari et al., 2013a).
In addition, the comparison of skeletal muscle methylome vs.
other tissues showed that the 94% of differentially methylated
sites were hypomethylated in muscle, and 47% of them
were also hypomethylated in MB/MT cells, suggesting that
DNA demethylation occurs gradually along the myogenic
process (Tsumagari et al., 2013b). Very recently, Miyata et al.
addressed the chronological alterations in DNA methylation
during myogenic differentiation comparing human myoblast
and myotube cultures using the Illumina Infinium 450K
DNA Methylation BeadChIP array. Interestingly, they found
hypermethylation in the binding sites for the transcription
factor ID4 and ZNF238 during the myogenic progression,
contributing to myotube formation (Miyata et al., 2014).
Intriguingly, they also observed a small but global increase
in DNA methylation levels during terminal differentiation
occurring at genes involved in muscle contraction and muscle
system process.

In summary, all these studies comparing methylation profiles
between cell-types show both common and specific features
among all of them. A general consensus about the importance
of muscle-specific demethylation during lineage specification is
prevalent among studies, and remarkable, identity-dependent
methylation changes occur mostly during early cell fate decisions
while fewer DNA modifications take place later during terminal
cellular maturation.

DNA Demethylation-dependent Activation
of Muscle-specific Genes

Seminal works of Helen Blau in the early eighties showed
that the fusion of human non-muscle cells with mouse muscle
cells resulted in heterokaryons expressing human muscle-
specific genes, under conditions in which there was no DNA
replication (Blau et al., 1983, 1985). In addition, these pioneer
experiments showed that HeLa cells treated with 5-azacytidine
prior to fusion also formed heterokaryons, which expressed
muscle-specific genes suggesting that DNA demethylation
could be involved in muscle gene activation (Chiu and Blau,
1985). Importantly, a decade later it was shown that MyoD
activation occurred in a demethylation-dependent manner
(Brunk et al., 1996), and H. Blau’s laboratory demonstrated
active demethylation of human MyoD in fused non-dividing
heterokaryons (Zhang et al., 2007). Several examples in different
cellular models have grounded the hypothesis that lineage-
specific demethylation in tissue-specific progenitors is required
for cellular differentiation, since DNA demethylation generates a
transcriptionally permissive chromatin. We present below some
examples of DNA demethylated myogenic genes.

5-azacytidine Triggers and Enhances Muscle
Differentiation
As previously mentioned, the finding of the MyoD tissue-
specific demethylation was the seminal work that linked for
the first time DNA methylation and cell fate commitment. In
1973, Peter Jones was investigating the effect of 5-azacytidine,
a new chemotherapeutic drug, in mouse embryonic fibroblasts
(10T1/2 cells) when he realized that treated cells turned into a
huge syncytium of multinucleated cells (Constantinides et al.,
1977). After confirming the myogenic phenotype of 10T1/2
treated cells and demonstrating that the tested drug was
a potent inhibitor of DNA methylation (Jones and Taylor,
1980), MyoD was identified as the key gene involved in
muscle reprogramming (Lassar et al., 1986; Davis et al., 1987).
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In addition, the same myoblastic conversion occurred in 10T1/2
fibroblasts transfected with an antisense cDNA against the
maintenance DNAmethyltransferase DNMT1 (Szyf et al., 1992),
suggesting the involvement of DNA methylation in MyoD gene
regulation. Analysis of treated 10T1/2 fibroblasts revealed the
highly methylated state of the CpG island surrounding the
MyoD promoter, however this CpG island was constitutively
free of methylation in mouse analyzed tissues (Jones et al.,
1990) raising the question whether the demethylation of MyoD
promoter was indeed the signal required to initiate the myogenic
program. The answer came when Brunk et al. showed the
specific demethylation of a distal regulatory region located at---
20 Kb of MyoD TSS during somitogenesis (Brunk et al., 1996).
They observed by sodium bisulphite conversion that three CpGs
located in this enhancer region were partially methylated in liver,
heart, and brain mouse tissues (50--60%), and in fibroblast and
neuroblastoma cells (50--80%), while they were almost totally
unmethylated in forelimb or hindlimb muscles (17%) and in
C2C12 myoblast cell line (8%). Moreover, they analyzed the
methylation state during somitogenesis observing that the distal
enhancer was heavily methylated in the presomitic mesoderm
and became almost completely demethylated between somites
6 and 10 as myogenesis progressed. Intriguingly, mutations of
these dmCpG did not cause precocious activation of MyoD
in trangenic mice, which implied that DNA methylation was
not sufficient for gene inactivation. Moreover, the authors
showed that demethylation of MyoD distal enhancer occured
prior to gene activation, although MyoD expression did not
immediately follow enhancer demethylation, suggesting that
active demethylation was required but was not sufficient for
MyoD activation (Brunk et al., 1996). In parallel and intriguingly,
Takagi et al. observed an enhancement in myotube formation
upon overexpression of DNMT1 in myoblast C2C12 cell line
(Takagi et al., 1995). Using methods based in methylation
sensitive enzymes they detected a positive correlation between
MyoD expression and exon 1-2 hypermethylation, which would
be in agreement with the idea that DNA methylation in gene
bodies correlates with gene expression.

Subsequent studies also observed an enhancement of muscle
differentiation in C2C12 MBs treated with 5-azacytidine,
resulting in higher myotube formation with enhanced maturity
(Hupkes et al., 2011). A recent study analyzed the effect of
5-azacytidine treatment on C2C12 cell cycle regulation. The
results showed that inhibition of DNA methylation increased
the expression of checkpoint genes involved in cell cycle
progression, arrested cell cycle, and up-regulated myogenic
transcription factors enhancingmyogenesis, although no analysis
of methylation state of myogenic genes was performed
(Montesano et al., 2013).

Myogenin DNA Demethylation During Myoblast
Differentiation
The correlation between muscle differentiation and DNA
demethylation was further underscored by the finding that
Myogenin promoter became demethylated at the onset of
C2C12 muscle differentiation. Lucarelli et al. reported that the
methylation status of a single CpG site at 340 bp upstream

from the TSS affected Myogenin transcription in mouse tissues
and C2C12 cells. Myogenin expression in differentiated muscle
cells correlated with lack of methylation, while methylated
non-muscle tissue (spleen and brain) and proliferating MBs
showed no gene expression (Lucarelli et al., 2001). In addition,
the same lab showed that proliferating MBs treated with
5′-Aza-2′-deoxycytydine increased Myogenin expression due to
a reduction in DNA methylation, highlighting the regulatory
role of DNA methylation in Myogenin expression (Scarpa
et al., 1996). Later on, Palacios et al. confirmed these
results and addressed Myogenin promoter DNA methylation
dynamics during somitogenesis showing anterior-posterior DNA
demethylation correlatives to Myogenin expression and muscle
development (Palacios et al., 2010). Mechanistically, they showed
that efficient activation of Myogenin promoter required DNA
demethylation following binding of SIX1 and MEF2 proteins
to favor the competition between these two transcription
factors and methylated DNA binding proteins. In this regard,
Oikawa et al. demonstrated that themethyl-CpG-binding protein
CIBZ suppressed myogenic differentiation by direct binding
to the methylated Myogenin promoter, and importantly DNA
demethylation prevented the binding of CIBZ repressor allowing
the binding of MyoD/Pbx/Meis activator complex (Oikawa
et al., 2011). Finally, Strom’s laboratory also reported DNA
demethylation in the Myogenin promoter but at non-CpG
dinucleotides, claiming that demethylation occurs more rapidly
at non-CpG than at CpG dinucleotides (Fuso et al., 2010).
Although most studies restrict non-CpG methylation to ESCs
and brain tissue (Ramsahoye et al., 2000; Lister et al., 2009; Guo
et al., 2014), it has been estimated that 7% of cytosines within
the sequence CCAGG or CCTGG are methylated in human
skeletal muscle (Barres et al., 2009). In the near future it would be
important to address the role of non-CpG methylation in muscle
development.

Other Genes Becoming DNA Demethylated
During Myoblast Cell Differentiation
Recently, other studies have also reported changes in DNA
methylation affecting the activation of muscle-related genes.
This is the case of Desmin gene, which contains a CpG
island covering the TSS and a proximal enhancer extensively
studied at the epigenetic level in MBs, MTs and peripheral
blood, as non-muscle control sample. While the CpG island
is fully unmethylated in all samples, the enhancer shows lack
of methylation exclusively in myogenic cells, both in MBs and
MTs, although unfused MBs exhibit lower level of Desmin
expression (Lindahl Allen et al., 2009). The study of the histone
modifications revealed that MTs showed increase positive
/open chromatin marks (H3K4me3 and H3K4me2) compared
to MBs, suggesting that DNA demethylation may provide a
transcriptionally poised state that would be activated during
differentiation, upon the acquisition of transcription factors and
positive histone marks.

The transcription factor SIX1 is essential for the formation
of multiple organs including the skeletal muscle (Grifone
et al., 2005). Wu et al. reported that SIX1 was exclusively
expressed in porcine adult skeletal muscle and displayed the
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highest expression levels in fast muscles (Wu et al., 2011). The
comparison of DNA methylation levels of SIX1 core promoter
in several tissues revealed that skeletal muscle showed the
lowest levels correlating with the higher gene expression, and
similarly different methylation status were also observed in
different skeletal muscles consistent with the reported variations
in expression levels (Wu et al., 2013).

Expression of α-smooth muscle actin (α-SMA) is a key
indicator of myofibroblast differentiation into fibroblast, and
its accumulation in tissue remodeling and fibrosis leads to a
deleterious excess of extracellular matrix components (Hinz
et al., 2003; Hinz, 2007; Klingberg et al., 2013). α-SMA gene
contains three CpG islands and a differential methylated state
was reported in the second and third islands in α-SMA expressing
myofibroblast vs. non-expressing epithelial cells (Hu et al., 2010).
In addition, inhibition of DNA methyltransferase activity led
to significant induction of α-SMA expression, while ectopic
expression of DNMTs suppressed its expression (Hu et al., 2010).
Interestingly, all these data suggest that the enhancement of DNA
methylation, by DNMT activity, could be a key mechanism for
reducing myofibroblast differentiation.

The Role of TET Proteins in Active Demethylation
in Muscle Differentiation
The recent demonstration that Ten-eleven translocation
family of protein dioxygenases (TET1-3) had the capacity to
convert 5mC into 5-hydroxymethylcytosine (5hmC) raised the
possibility that 5hmC might constitute a distinct epigenetic state
contributing to dynamic changes in DNAmethylation (Tahiliani
et al., 2009; Ito et al., 2010). 5hmC was found in many tissues
and cell types, although with diverse levels of abundance being
enriched in ESCs and certain types of neurons (Kriaucionis
and Heintz, 2009; Ito et al., 2010; Szwagierczak et al., 2010).
Recently, an ultra-sensitive and accurate isotope based HPLC-
MS method was used to precisely determine the levels of h5mC
in different mouse tissues revealing that skeletal muscle showed
an intermediate level estimated between 0.15--0.17% of cytosine
residues (Globisch et al., 2010).

As mentioned above, dynamic changes in DNA methylation
occur during early development (Surani et al., 2007; Hajkova
et al., 2010) and DNA demethylation takes place in a highly
locus-specific fashion upon development (Ma et al., 2009; Wu
and Zhang, 2010). Base-resolution analysis of 5hmC in ESCs
revealed high levels of 5hmC (and reciprocally low levels of
5mC) at regions of low CpG content and near, but not on,
transcription factor binding sites, suggesting that TET proteins
might influence gene expression (Yu et al., 2012). TET1−/−

mice were viable and fertile but about 75% of the homozygous
mutant pups had smaller body size (Dawlaty et al., 2011). Gene
expression array analysis showed 221 significantly deregulated
genes, including developmental skeletal muscle and muscle
contraction genes (Dawlaty et al., 2011). The very recent
generation of TET1/2/3 (TKO) ESCs showed EBs totally depleted
in 5hmC with a concomitant increase in global 5mC levels
(Dawlaty et al., 2014). Moreover, TKO EBs expressed reduced
levels of mesodermal and endodermal markers. Furthermore,
global gene expression and DNA methylation analyses of TKO

EBs revealed promoter hypermethylation and deregulation of
genes implicated in embryonic development and differentiation,
including skeletal muscle development genes being one of
the top ten GO categories (Dawlaty et al., 2014). All these
observations suggest that TET enzymes are critical during ESC
differentiation by regulating promoter methylation levels of a
subset of developmental regulators and lineage commitment
genes, and thus enabling their activation by differentiation-
induced and lineage-specific demethylation.

Very interestingly, it was reported that NOTCH1 receptor
and its ligand DLL1 showed high levels of 5hmC in myogenic
differentially methylated regions in skeletal muscle, cerebellum
and heart (Terragni et al., 2014). Notch signaling is involved in
the regeneration of injured skeletal muscle, brain function and
cardiac disease, and these results suggest that hypomethylation
and/or hydroxymethylation may help to control gene expression
in a tissue and stage-specific manner (Terragni et al., 2014).

It has been widely reported that enhancer activity is
modulated through histone modifications, histone variant
deposition and nucleosome stability. Interestingly, during
neuronal differentiation of P19 cells and adipogenic
differentiation of 3T3-L1 cells DNA hydroxymethylation
was an early event of enhancer activation (Serandour et al.,
2012). Recently, a compendium of regulatory elements driving
muscle differentiation was identified based on chromatin
signatures and MyoD recruitment (Blum et al., 2012). In the
near future, it would be worth to analyze whether the acquisition
of 5hmC in myogenic-specific distal regulatory regions might
activate enhancer elements leading to the expression of muscle-
differentiation genes.

DNA Methylation Changes During the
Skeletal Muscle Aging

Aging is accompanied by a progressive decline in adult tissue-
specific stem cells functions, resulting in less effective tissue
homeostasis and repair. Aging-associated mechanisms are not
yet totally understood, but DNA methylation changes and other
epigenetic mechanisms contribute to aging phenotypes. Early
studies measuring global DNA methylation, using biochemical
methods, showed a progressive depletion of 5-methylcytosine
in senescent normal fibroblast (Wilson and Jones, 1983), and
similar changes were also observed in aging mouse tissues
and human cells (Wilson et al., 1987). Comprehensive DNA
methylation analyses have been facilitated by the application
of genome-wide technologies revealing numerous methylation
alterations, both hyper- and hypomethylation changes, occurring
in several tissues during aging (Grönniger et al., 2010; Maegawa
et al., 2010; Rakyan et al., 2010; Bocker et al., 2011; Hernandez
et al., 2011; Bell et al., 2012; Heyn et al., 2012; Beerman
et al., 2013). Although the functional consequences of this age-
related methylation drift remain unknown, the alterations in
DNA methylation state would create epigenetic mosaic between
aging-stem cells affecting their proliferative and differentiation
capacities (Issa, 2014).

A recent genome-wide study comparing DNA methylation
patterns in postmitotic skeletal muscle taken from healthy young
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(18--27 years of age) and old (68--89 years of age) males showed
a predominant pattern of hypermethylation in the DNA of aging
skeletal muscle (Zykovich et al., 2014). Most of the methylation
changes occurred intragenically, being underrepresented in
promoter regions. Using the Illumina Infinium 450K DNA
Methylation BeadChIP array 2,114 genes were identified with at
least one dmCpG site located intragenically. The Tubulin-folding
cofactor D (TBCD), involved in microtubule functions, was the
highest hypermethylated gene in aged-samples. Gene ontology
analysis of genes with two or more intragenic dmCpG site
showed that the most enriched terms and pathways were ‘‘muscle
cell’’ (P = 0.0004) and ‘‘axon guidance signaling’’ (P = 6.17E--10),
suggesting that the dmCpG sites identified within the aged group
were relevant to muscle tissue functions and neuromuscular
junctions (Zykovich et al., 2014). In fact, one of the major
contributors in sarcopenia is the motor unit loss or denervation,
and these results point out that the process might be affected
by DNA methylation. Notably, NFATC1 gene involved both
in the regulation of signaling at the neuromuscular junction,
and acting as transcriptional regulator of muscle fibers in
direct response to electrical stimulation via calcium/calmodulin
signaling (McCullagh et al., 2004; Rana et al., 2008; Salanova
et al., 2011) was hypermethylated in aged-skeletal muscles.
Interestingly, DNA methylation changes on NFATC1 and other
genes within the axon guidance signaling pathway may alter
transcriptional events leading to the loss of proper reinnervation
at the neuromuscular junction during muscle turnover resulting
in muscle wasting.

Very recently, Jin et al. analyzed genome-wide DNA
methylation changes in skeletal muscle between young and
middle-aged pigs, as a good biomedical model for human
studies, using a methylated DNA immuprecipitation sequencing
approach. Contrarily to the previous study, they found a global
tendency towards loss of DNA methylation in middle-aged
pigs compared to the young group, enriched also in gene-body
regions (Jin et al., 2014). The intersection of genes that presented
DMRs in their promoters and gene body with the 288 genes
potentially involved in the human aging process (according to the
Human Aging Genomic Resources database) revealed 12 known
age-related genes including FoxO3 and FGFR1. FoxO3 is an
essential transcription factor involved in lysosomal proteolysis
in muscle, by activating autophagy and proteosomal pathways
(Mammucari et al., 2007; Zhao et al., 2007). Interestingly, FoxO3
becomes upregulated in aged muscles correlating with lower
gene-body methylation status (Jin et al., 2014). Contrary, FGFR1
shows an opposite function to that of FoxO3, inhibiting the
atrophy of skeletal muscle (Eash et al., 2007), and it is found
downregulated and hypermethylated in gene-body in middle-
aged pigs. These results highlight the participation of DNA
methylation changes enhancing proteolysis and protein catabolic
processes during aging, which suggest an important role of
epigenetic mechanisms in aged-related muscle-atrophy.

A potential issue regarding these two genome-wide skeletal
muscle studies is the use of muscle biopsies that include several
non-muscle cell types, which might confound to some point
muscle-specific methylation signatures. In the future, it will
be necessary to evaluate whether DNA methylation differences

between young and aged/sarcopenic satellite cells may affect
muscle stem cell function. Notably,MyoD hypermethylation was
reported in aged blood and brain samples (Hernandez et al.,
2011; Fernandez et al., 2012) raising the question if it could
be also differentially methylated in aged satellite cells. Finally,
the identification of age-related DNA methylation patterns was
used to build a model of biological aging (Hannum et al.,
2013). Interestingly, some of the differentially methylated probes
distinguishing young from old skeletal muscles were included
in these age-predicting markers (Zykovich et al., 2014). In
this regard, the ability to predict biological age from DNA
methylation markers could be envisioned as a health assessment
to prevent and diagnose aged-related diseases.

DNA Methylation Alterations in
Rhabdomyosarcoma and Muscle Diseases

Epigenetic modifications in concert with genetic mechanisms
regulate transcriptional activity in normal tissue but are often
dysregulated in diseases. Here we discuss recent progress
regarding DNA methylation alterations in muscle-related
pathologies.

Rhabdomyosarcoma Tumorigenesis
Epigenetic aberrations have been well established in cancer: the
genome of cancer cells is globally hypomethylated compared
to normal tissues, but at the same time CpG islands in
regulatory regions of tumor suppressor genes are often
hypermethylated, being both events important for the origin
and progression of many human cancer (Berdasco and Esteller,
2010). Rhabdomyosarcoma (RMS) is the most common soft-
tissue sarcoma of childhood, with skeletal muscle presumed
origin because of its myogenic phenotype. However, unlike
normal MBs RMS cells differentiate poorly both in vivo and
in culture (Keller and Guttridge, 2013). Experiments in the
late eighties showed that the treatment of the RMS cell line
RMZ-RC2 with the demethylating agent 5-azacytidine resulted
in an increased differentiation capacity, suggesting that aberrant
DNA methylation was repressing differentiation genes in this
RMS cell line (Lollini et al., 1989). In addition, the comparison
of DNMTs levels between normal skeletal muscles and RMS
tumors showed significant higher expression of DNMTs in both
alveolar and embryonal RMS subtypes, which have distinct
etiologic and clinical behaviors (Chen et al., 1998). Candidate
gene approaches identified DNA methylation changes in RMS
tumors in MyoD (Chen et al., 1998), p21WAF1 (Chen et al.,
2000), RASSF1 (Harada et al., 2002), PAX3 (Kurmasheva et al.,
2005), plakoglobin (Gastaldi et al., 2006), FGFR1 (Goldstein
et al., 2007), JDP2 (MacQuarrie et al., 2013), BMP2 (Wolf
et al., 2014), and CAV1 (Huertas-Martínez et al., 2014) genes.
Recently, a genome-wide analysis of promoter CpG island
methylation between RMS subtypes and skeletal muscles revealed
RMS-specific hypermethylation in genes associated with tissue
development, differentiation and oncogenesis such as DNAJA4,
HES5, IRX1, BMP8A, GATA4, GATA6, ALX3 and P4HTM,
implicating aberrant DNA methylation in the pathogenesis of
RMS (Mahoney et al., 2012). In addition, cluster analysis showed
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that embryonal and alveolar subtypes had distinct methylation
patterns, with the alveolar subtype being enriched in DNA
hypermethylation of polycomb target genes (Mahoney et al.,
2012). Importantly, the different DNA methylation signatures
between RMS subtypes might aid to define tumor subtype,
clinical prognosis and treatment response of RMS tumors.

The connection between miRNAs, tissue differentiation and
malignant transformation emerged long time ago (Reinhart et al.,
2000; Calin et al., 2002). Although some miRNAs can act as
oncogenes, miRNAs identified as de-regulated in cancer are
more commonly tumor supressors, that are down-regulated by
several mechanisms including epigenetic silencing (Rota et al.,
2011). In the last few years, the list of miRNAs undergoing
promoter hypermethylation has been rapidly expanded in many
human tumors, highlighting the transcriptional repression of
miRNAs by DNA methylation as a common feature in human
cancer (Lopez-Serra and Esteller, 2012). Recent evidences have
shown low expression of miR-206 (Missiaglia et al., 2010), miR-1
and miR-133a (Rao et al., 2010), and miR-203 (Diao et al.,
2014) in RMS cells which have been correlated with higher
proliferation rates, impaired differentiation and poor overall
survival. Notably, it was recently demonstrated that miR-203
was frequently down-regulated in both RMS cell lines and
RMS biopsies by promoter hypermethylation, and importantly,
it can be reactivated by DNA-demethylating agents inhibiting
tumor growth and migration capacity, and promoting terminal
differentiation (Diao et al., 2014). All these data allow envisioning
the use of combined treatment including epigenetic drugs for the
treatment of the aggressive RMS tumors.

Epigenetic Determinants in Other Muscle
Pathologies
Most muscle pathologies are caused by gene mutations; however,
for some recessive myopathies a number of affected individuals
show only monoallelic mutations, pointing out that epigenetic
mechanisms could be affecting the expression of the second
allele. Recessive core myopathies, where the skeletal muscle
Ryanodine receptor gene (RYR1) is mutated (Quane et al.,
1993; Jungbluth et al., 2005), and dysferlinopathies, caused
by mutations in Dysferlin (DYSF) gene (Liu et al., 1998),
show a percentage of patients with only an identified mutated
allele. Importantly, for core myopathies it was shown that the
treatment of cultured patient skeletal-muscle MBs with 5-Aza-
2′-deoxycytidine reactivated the expression of the non-mutated
allele, suggesting the implication of DNA hypermethylation in
the silencing of the gene (Zhou et al., 2006). However, detailed
bisulphite sequencing analysis of all CpG islands located in RYR1
and DYSF genes showed no differences in DNA methylation
levels between healthy and affected individuals (Zhou et al.,
2006; Gallardo et al., 2014). These results raised the question
of which would be the epigenetic mechanism responsible for
the reported RYR1 monoallelic expression. The most plausible
hypothesis according to the authors was a genomic-imprinting
mechanism mediated by differentially methylated imprinting
control regions, since they observed an association with the
sex of the non-transmitting parent, and a tissue-specific nature
of the epigenetic silencing (Zhou et al., 2006). Although other

regulatory mechanisms cannot be definitively excluded, the
results suggesting an altered epigenetic regulation involved in
these muscle pathologies support the use of epigenetic drugs to
reverse or to ameliorate the symptons of the disease.

Juvenile dermatomyositis (DM) is a severe chronic childhood
autoimmune disease showing the affected children muscle
weakness caused by chronic muscle damage (Christen-Zaech
et al., 2008; Feldman et al., 2008). Comparison of genome-
wide DNA methylation profiling, by Illumina Infinium Human
Methylation27K BeadChip array, revealed 27 genes with
significant methylation differences between normal and juvenile
DM diagnosed muscle biopsies (Wang et al., 2012). Although
previous gene expression studies showed alterations in the
expression of genes involved in immune response, vascular
remodeling and endoplasmic reticulum response to acid stress
(Nagaraju et al., 2005; Chen et al., 2008), no significant
methylation alterations in those genes were found in juvenile
DM. However, among the 27 differentially methylated genes
several HOX genes (HOXC11, HOXD3 and HOXD4) and
the developmental transcription factor WT1 were found
hypomethylated in juvenile DM samples, as well as in other
types of idiopathic inflammatory myopathies (IIMs) with muscle
weakness, such as juvenile polymyositis (Wang et al., 2012). The
similar methylation alterations of WT1 and homeobox genes
found in IIMs provided additional evidences that the damaged
muscles in these children had self-renewal capacity, stimulating
the muscle stem cell pool towards muscle repair. Interestingly,
these results suggest that the homeobox and WT1 genes are
epigenetically marked to facilitate the repair process in response
to the muscle damaged occurring during disease pathogenesis.

Effects of Exercise on Skeletal Muscle
DNA Methylation Signature

There is no doubt that physical exercise contributes to improve
human health. Indeed, a large number of studies showed that
exercise alters the expression of genes that affect glucose and lipid
metabolism, mitochondrial function, as well as, transcription
factors, myogenic regulatory factors and myokines (Pilegaard
et al., 2000, 2003; Coffey and Hawley, 2007; Egan et al., 2010).
Although the global effect of exercise on DNA methylation is
still not well known, some studies have address whether DNA
methylation plays a role in exercise-induced gene expression.

Barrès et al. analyzed DNA methylation levels of the vastus
lateralis skeletal muscle from young and healthy men and
women before and after 20 min of acute exercise. Luminometric
methylation assay (LUMA) showed a small but very rapid global
DNA methylation decrease in young muscles (Barrès et al.,
2012). Although factors involved in expression of muscle-specific
genes such as MyoD did not show methylation differences,
several metabolic gene promoters such as PGC-1α, TFAM,
PPARγ, PDK4 and citrate synthase showed lower methylation,
by MeDIP-PCR analysis, correlating with higher expression
levels after exercise. Similarly, promoter methylation of PGC-1α,
PPARγ, and PDK4 was decreased in mouse soleus muscles
45 min after ex vivo contraction correlating with increased
gene expression (Barrès et al., 2012). In parallel, another study
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using MeDIP-ChIP analysis evaluated the effect of 6 months of
moderate aerobic exercise, in persons with and without diabetes
type 2 family histories. The results showed DNA methylation
changes in 134 genes after 6 month long training period,
independently of the familiar history (Nitert et al., 2012). Most
of the genes showed decreased methylation (115 out of 134)
and were involved in retinol metabolism, calcium-signaling
pathway, and starch and sucrose metabolism. Among them, the
transcription factors RUNX1 and MEF2A, both important for
muscle physiology, increased their expression after moderate
exercise correlating negatively with DNA methylation changes
(Nitert et al., 2012).

Altogether, these results suggest that physical exercise may
modify DNA methylation patterns, although future studies will
be needed to deeper understand the involvement of epigenetic
mechanisms in the beneficial effects of regular exercise on human
health.

Conclusions

DNA methylation plays an important role in mammalian
development, as illustrated during skeletal muscle cell fate
commitment and differentiation. During development muscle
stem cells acquire an unique DNA methylation signature
associated with its specialized functions, and specific-myogenic
factors are activated in a demethylation-dependent manner.
DNA methylation patterns are not fixed but dynamic, and
can be modulated by external influences. We have highlighted
the recent data regarding how skeletal muscle methylome
changes in response to physical exercise, aging and in
muscle-related pathologies including cancer (summarized in
Figure 2). The development of whole-genome approaches has
contributed with important advances in understanding the

regulatory role of DNA methylation at context-specific level
and how the methylome affects cell identity. However, many
important questions remain open regarding the demethylation
mechanisms involved in specific-myogenic demethylation, the
function of non-CpG methylation in muscle cells, and the
role of 5-hydroxymethylation modulating proximal and distal
regulatory regions affecting gene expression. In addition, the
intense and recent interest in cellular reprogramming in the
field of regenerative medicine emphasizes the importance of
identifying cell type-specific epigenetic signatures to ensure a
safety reprogramming in stem cell-based therapies (Barrero
et al., 2010). Finally, the recognition of DNA methylation as
a significant contributor to normal muscle physiology and its
alterations in pathological processes, as well as in aging open new
avenues to envision a near future where epigenetic therapies will
be included in the treatment of muscle-related diseases.
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