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Muscle regeneration in the adult occurs in response to damage at expenses of a
population of adult stem cells, the satellite cells. Upon injury, either physical or genetic,
signals released within the satellite cell niche lead to the commitment, expansion
and differentiation of the pool of muscle progenitors to repair damaged muscle. To
achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to
coordinately activate and repress specific subset of genes. Although the epigenetics
of muscle regeneration has been extensively discussed, less emphasis has been put
on how extra-cellular cues are translated into the specific chromatin reorganization
necessary for progression through the myogenic program. In this review we will focus
on how satellite cells sense the regenerative microenvironment in physiological and
pathological circumstances, paying particular attention to the mechanism through
which the external stimuli are transduced to the nucleus to modulate chromatin
structure and gene expression. We will discuss the pathways involved and how
alterations in this chromatin signaling may contribute to satellite cells dysfunction
during aging and disease.
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Muscle Regeneration

Adult muscle is a very stable tissue, with very few fibers being replaced during the normal
life of the organism. However, it has a remarkable capacity to regenerate in response to tissue
damage. Upon injury, either physical or genetic, changes in the injured microenvironment (i.e.,
necrosis of damaged fibers, recruitment of the inflammatory infiltrate and release of cytokines
and growth factors) lead to the activation, expansion and differentiation of a population of
muscle-resident stem cells called satellite cells (Chargé and Rudnicki, 2004). Satellite cells
were originally named after their anatomical position beneath the basal lamina of muscle
fibers and are characterized by the expression of the transcription factor Pax7 (Mauro, 1961;
Cornelison and Wold, 1997; Seale et al.,, 2000; Chargé and Rudnicki, 2004). Upon activation,
satellite cells start to proliferate and up-regulate the early Muscle Regulatory Factors (MRFs)
Myf5 and MyoD. After several rounds of cell divisions cells down-regulate Pax7 and induce
the expression of the late MRFs (Myogenin and MRF4) and of the cell cycle inhibitor p21.
The differentiation program then culminates with the expression of structural and contractile
proteins and the fusion of differentiating muscle cells to repair the damaged fibers. Not all
activated satellite cells complete the differentiation program and after asymmetric division
a small subset of Pax7-positive/MyoD-negative progenitors exit the cell cycle and re- enter
quiescence to replenish the satellite cell pool (Chargé and Rudnicki, 2004; Wang et al., 2014).
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To achieve their goal satellite cells need to undergo a
complex remodeling of chromatin that temporally activates and
represses discrete transcriptional programs. Such remodeling
is determined by changes in the composition of the satellite
cell niche that are transmitted to the nucleus through several
cytoplasmic cascades. Here we will discuss how such cascades
signal to the chromatin of satellite cells to define the
transcriptional response that allows them to proceed through the
myogenic program.

At the molecular level, the signaling pathways and
transcription factors orchestrating muscle regeneration have
been extensively studied. Briefly, myogenesis is controlled
by the sequential action of lineage determination markers
(i.e., Pax3/Pax7) and early and late MRFs, that act together with
Mef2 and Six proteins to recruit chromatin modifying complexes
and regulate muscle gene expression. Reprogramming of
satellite cells nucleus entails the coordinated activation and
repression of discrete subset of genes to progress through
the myogenic program. For instance, committed myoblats
keep myogenic identity but repress late muscle genes while
continuing to proliferate. Finally, cells switch-off lineage-
determination genes and genes necessary for cell cycle
progression and activate late muscle-differentiation markers
(reviewed in Palacios and Puri, 2006; Guasconi and Puri,
2009; Segalés et al., 2014). Recently, the introduction of
high throughput genome-wide studies has been fundamental
to provide a deeper insight into the transcriptional and
epigenetic programs that modulates myogenesis. By combining
ChIP-seq to gene expression analysis, the group of Tapscott
showed that MyoD binds to thousands of non-canonical
sites both in myoblasts and myotubes, which coincides with
local histone hyperacetylation but not necessarily with gene
activation. Upon induction of differentiation MyoD-binding
to a preferred E-box motif (CAGGTG) located within an
accessible chromatin context leads to muscle-specific gene
expression (Cao et al., 2010; Fong et al., 2012). Therefore,
both genetic (the specific E-box sequence) and epigenetic
(local chromatin structure) determinants are fundamental
for the activation of the correct differentiation program.
Recently, Asp et al. provided an exhaustive analysis of
the differentiation-associated epigenetic changes in muscle
cells (Asp et al, 2011) and identified novel muscle-specific
enhancers associated to MyoD binding (Blum et al, 2012;
Blum and Dpynlacht, 2013). To add complexity to this
scenario, the lab of Sartorelli showed that some muscle-
specific enhancers are actually transcribed in what have
been called enhancer RNAs (eRNAs), which function as
novel epigenetic regulators of gene expression (Mousavi
et al, 2013). It is therefore becoming increasingly clear that
modulating the epigenome is an essential mechanism that
allows muscle cells to proceed through the differentiation
program.

Before getting in depth into the mechanisms by which
signaling molecules act to modulate the epigenome of satellite
cells, it is important to highlight some of the key aspect of
epigenetics and its role in regulating gene expression during
cellular differentiation.

Epigenetics: From the DNA Sequence to
Differential Gene Expression

Historically introduced by Conrad Waddington in 1942, the
term epigenetics was coined to explain why specialized cells
in a multi-cellular organism exert different functions despite
having the same genetic material. This is accomplished by the
addition of epigenetic modifications, covalent modifications of
the DNA and associated proteins that determine the activation
and repression of discrete transcriptional programs during
development, cellular differentiation and disease (reviewed in
Bernstein et al., 2007; Bergman and Cedar, 2013).

The first layer of epigenetic regulation is the covalent
modification of DNA. Mammalian genomes are globally
methylated (Eckhardt et al., 2006; Bergman and Cedar, 2013). In
eukaryotes, the majority of DNA methylation occurs on cytosines
that precede a guanine nucleotide (CpGs). CpG dinucleotides
are not evenly distributed through the genome. Ninety eight
percent of the dinucleotides are located in regions of low-
CpG density, are usually methylated through the genome and
may be demethylated in a tissue-specific fashion (Bergman
and Cedar, 2013). The remaining two percent of CpGs cluster
in regions termed CpG islands (Bird et al., 1985; Gardiner-
Garden and Frommer, 1987), stretches of 500-1000 base
pairs of DNA that have a higher CpG density than the rest
of the genome and are usually kept free of methylation in
all tissues (Bergman and Cedar, 2013). Unmethylated CpG
islands are associated to DNA sequences more accessible
to transcription factor binding, resulting in enhancement of
gene expression (Tazi and Bird, 1990; Ramirez-Carrozzi et al,,
2009; Choi, 2010). On the contrary, when CpG islands are
methylated gene expression under their control is silenced. This
is achieved through the binding of Methyl-CpG-binding proteins
(MBD; Nan et al.,, 1993; Hendrich and Bird, 1998; Hendrich
et al., 2001), which recognize 5-methyl cytosine (5mC) and
recruit repressor complexes leading to changes in chromatin
structure (Nan et al, 1998; Ng et al, 1999; Wade, 2005).
Aberrations in the DNA methylation pattern are a common
feature of many cancers and have been also observed in
aging tissues (Feinberg and Tycko, 2004; Bergman and Cedar,
2013).

DNA methylation is catalyzed by DNA methyltransferases
(Dnmts). Of them, Dnmtl is responsible for maintaining
methylation after DNA replication whereas Dnmt3a and
Dnmt3b catalyze de novo DNA methylation (Goll and Bestor,
2005). It has been recently demonstrated that DNA methylation
is reversible thanks to the action of the family of ten-eleven
translocation methylcytosine dioxygenases (Tet). Tet proteins
modify 5mC to generate 5-hydroxymethyl-cytosine (5hmGC;
Kohli and Zhang, 2013; Piccolo and Fisher, 2014). 5hmC can be
then subjected to subsequent chemical modifications producing
different intermediates that are recognized and cleaved off
by TDG (thymine DNA glycosylase) and replaced with an
unmethylated cytosine (He et al., 2011). The conversion of 5mC
to 5hmC impairs the binding of the repressive methyl-binding
protein such as MeCP2 and plays an important role in regulating
gene expression (Valinluck et al., 2004).
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The DNA methylation pattern influences and is also
influenced by histone modifications, the second layer of
epigenetic modifications. In eukaryotic cells the DNA is packed
together with histones and other proteins to fit into the limited
space of the nucleus, in a structure called chromatin. The
basic unit of the chromatin is the nucleosome that is made
up of 147 base pairs of DNA wrapped around an octamer
of histone proteins called “core”, which contains two copies
of each histone, (H2A, H2B, H3, H4) (Luger et al, 1997).
Each histone has an N-terminal tail that protrudes from the
nucleosome core and is target of different types of covalent
modifications such as acetylation, methylation, o-glycosilation
and ubiquitylation. Post-translational modifications of histones
tails (and bodies) regulate chromatin structure and accessibility
(Bannister and Kouzarides, 2011; Tessarz and Kouzarides, 2014).
Acetylation of several lysine residues is usually associated with
gene activation and is catalyzed by histone acetyltransferases
(HATs) such as p300 and PCAF, while it is erased by
histone deacetylases (HDACs; Kouzarides, 1999). Differently
from histone acetylation, methylation occurs on both lysines and
arginines and can either activate and repress gene expression (Ng
et al., 2009). Amongst the histone methyltransferases (HMTs),
particular interest has been put on the enzymes responsible for
H3K27 and H3K9 di- and tri-methylation as these modifications
are considered key regulators of gene repression. The first lysine
methyltransferase identified was Suv39h1 (KMT1A) that targets
H3K9. H3K9 me2/3 mark is recognized by HP1 proteins, which
recruit Suv39hl to the chromatin to spread the repressive mark
(Lachner et al., 2001; Bannister and Kouzarides, 2011). Ezh2, the
catalytic subunit of the Polycomb Repressive Complex 2 (PRC2),
tri-methylates K27 on H3 to keep genes in a repressed state
(Margueron and Reinberg, 2011; Riising et al., 2014). H3K27me3
creates a docking site for PRC1, which ubiquitylates H2A, leading
to Dnmt recruitment and to a more compact chromatin structure
(Sparmann and van Lohuizen, 2006). However, this view has
been challenged recently and two studies have shown PRCI1-
mediated H2AK119ub is sufficient to trigger PRC2 recruitment
(Blackledge et al., 2014; Cooper et al., 2014). Histone methylation
is reversible and histone demethylases for most of the modified
residues have been described (Klose and Zhang, 2007; Ng et al.,
2009).

Based on the different combinations of modifications,
chromatin can either activate (i.e., H3K4me3, H3K9Ac) or
repress (H3K9me2/3, H3K27me3) gene expression. Further, in
some cases it can prime associated genes for future regulation
(Schneider et al., 2004; Azuara et al., 2006; Bannister and
Kouzarides, 2011; Margueron and Reinberg, 2011). For example,
in undifferentiated embryonic stem (ES) cells, developmental
regulatory genes contain bivalent domains that are characterized
by the co-existence of opposing modification in terms of
activation (H3K4me3) and repression (H3K27me3). This allows
keeping “marked” genes poised in a silenced state for being
rapidly activated or repressed upon differentiation process
(Azuara et al., 2006; Voigt et al., 2013).

DNA and histone modifications are therefore essential
components of an epigenetic program that ultimately modulates
chromatin accessibility to transcription factors and chromatin

remodelers and needs to be tightly regulated. For instance, it
has been previously shown that hyperacetylated chromatin is
preferentially remodeled by chromatin remodeling complexes,
whereas hypoacetylation leads to a more compact structure.
Chromatin remodeling is accomplished by different families
of proteins that use the energy derived from ATP to disrupt
or modify nucleosome positioning (Saha et al., 2006). The
best-studied chromatin remodelers are the SWI/SNF and ISWI
complexes (Deuring et al., 2000; Martens and Winston, 2002).
Both families contain a conserved ATPase subunit and a set of
additional, conserved core members. SWI/SNF ATPases Brgl
and Brm contain one or multiple bromo-domains that bind
acetylated histone tails (Winston and Allis, 1999; Kasten et al.,
2004) while ISWT has two domains (SANT and SLIDE) that allow
the recognition of the histone tails and the DNA linker (Griine
et al., 2003). In addition, SWI/SNF and ISWI complexes contain
structural subunits that contribute to differential gene-specific
targeting.

In summary, the high dynamicity and plasticity of the
chromatin, which can go from permissive to refractory structures
and vice-versa, is an important pre-requisite for the proper
control of gene transcription. Here we will discuss how
chromatin function is modulated during muscle regeneration in
response to external cues to activate and repress discrete subset
of genes.

When Signaling Cascades get into the
Nucleus

Satellite cells receive a myriad of signals from the regenerative
microenvironment that guide the cells through the multi-step
process leading to activation of a quiescent stem cells pool,
expansion of the activated muscle progenitors and induction
of the terminal differentiation program to induce regeneration
of damaged muscles. Necrotic cues released from the damaged
fibers, cytokines secreted by the inflammatory infiltrate, growth
factors, free radicals, soluble proteins and changes in the extra-
cellular matrix composition alter the satellite cell niche and need
to be interpreted (Guasconi and Puri, 2009).

The precise composition of the extra-cellular environment
is therefore fundamental to determine the gene expression
profile that will guide the step-wise progression from quiescent
satellite cells into multinucleated myofibers. Such information
is transmitted to the cell nucleus through several cytoplasmic
cascades that ultimately target components of the myogenic
transcriptosome and chromatin modifying enzymes to regulate
gene expression. Here we will review our current knowledge
on how extra-cellular signals are transmitted to the chromatin
of muscle cells to coordinately regulate the gene expression
program needed for muscle regeneration. We will discuss
the pathways and key signaling molecules involved as well
as the downstream effectors and the changes in chromatin
structure and function necessary to activate or repress discrete
gene expression programs. The exquisite coordination of
such programs may be subject to alterations by both cell-
extrinsic changes (changes in the microenvironment) and cell-
autonomous modifications (i.e., changes in the metabolome or
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in the epigenome). Understanding how this chromatin signaling
modulates cell fate will assist us in the rational design of
pharmacological therapies to improve satellite cell function in
physiological (i.e., aging) or pathological (i.e., muscular diseases)
conditions.

Calcium-Dependent Chromatin Signaling

The importance of chromatin signaling in the control of muscle
gene expression was first highlighted by work from Olson’s
laboratory. In their pioneer work McKinsey et al. showed how
calcium calmodulin kinase (CamK) activity is necessary to release
class I HDACs from Mef2 transcription factors at the onset of
muscle differentiation (McKinsey et al., 2000). Mef2 belong to
the MCM1-Agamous-Deficiens-Serum response factor (MADS)
box domain family of transcriptional regulators that cooperate
with the MRFs (Myf5, MyoD, Myogenin and Mrf4) to activate
muscle gene transcription (Puri and Sartorelli, 2000; Potthoff
and Olson, 2007). In proliferating myoblasts Mef2 binds to and
recruits class II HDACs (HDAC4 and 5) to the chromatin of
muscle genes, acting as a transcriptional repressor (Lu et al.,
2000). Upon induction of differentiation, activation of CamK in
response, at least in part, to Insulin Growth Factor I (IGF-1),
leads to phosphorylation of HDACS5 on two serine residues, S259
and S498. Phosphorylation of these residues induces the binding
of the chaperon protein 14-3-3 with consequent activation of the
nuclear export signal and export to the cytoplasm (McKinsey
et al,, 2001). Further, Ca** -sensitive HDAC4, which, in spite
of its name lacks of known endogenous deacetylase activity, has
been shown to regulate satellite cell function through promoting
activation of Pax7-positive cells, although the leading mechanism
remains largely unknown (Choi et al., 2014b).

High intracellular Ca*" concentration also increases
the activity of calcineurin serine/threonine phosphatase,
which in turns dephosphorylates NFAT (Nuclear Factor of
Activated T cells) transcription factors (Friday et al., 2000).
Dephosphorylation unmasks a nuclear localization signal and
induces NFATs nuclear translocation and gene activation
(Hogan et al., 2003). Several NFAT isoforms are present in
muscle cells (Hoey et al., 1995; Parsons et al., 2003; Calabria
et al,, 2009) and knock out studies have suggested different
temporal expression patterns and function of the different
isoforms (Horsley et al,, 2001; Kegley et al, 2001; Horsley
and Pavlath, 2002). Further, in vitro studies have dissected the
contribution of calcineurin/NFATs in satellite cells and activated
myoblasts, showing that NFATSs regulate the myogenic program
at least at two different steps: first, NFATc isoforms regulates
Myf5 expression in reserve cells (Friday and Pavlath, 2001),
then NFATc3 cooperates with MyoD to regulate Myogenin
gene expression in early differentiating myoblasts (Armand
et al., 2008). Finally, calcineurin is also involved in fiber-type
specification at the later steps of differentiation in an NFATc3
independent process (Delling et al., 2000).

Growth Factor Activated Signaling Pathways

While CamK activity is necessary to release class I HDACs from
Mef2, binding of class I HDAC to MyoD in proliferating,
undifferentiated myoblasts is controlled by cell cycle

dependent changes in the phosphorylation status of pRb.
Dephosphorylation of Rb upon differentiation sequesters class
I HDAC:s and allows MyoD-dependent transcription (Mal et al.,
2001; Puri et al,, 2001). Further, we previously showed that
another family of protein kinases, namely Aktl/2, is required
to recruit HATs such as p300 and CBP to the chromatin of
muscle genes (Serra et al., 2007). Aktl, which is activated by
IGF-1 in muscle cells, phosphorylates the C-terminal of p300 on
two serines, S1734 and S1834. Phosphorylated p300 is recruited
to the chromatin to ultimately lead to the hyperacetylation of
histones H3 and H4 at target genes. Moreover, Aktl/2 signaling
is involved in the disengagement of chromatin repressors
such as Polycomb proteins upon differentiation of muscle
cells (Serra et al, 2007). This is consistent with the finding
that Aktl directly phosphorylates Ezh2, the catalytic subunit
of PRC2 on S21 in cancer cells, an event that modulates
binding to histone H3 (Cha et al., 2005). p300 and PCAF are
important not only for histone acetylation but also for the
post-translational modification of tissue specific factors such as
MyoD and Mef2 (Sartorelli et al., 1999; Dilworth et al., 2004;
Ma et al.,, 2005; Serra et al.,, 2007). Acetylation of MyoD on
residues K99, K102 and K104 is essential for recruitment to a
discrete subset of genes at defined stages of the muscle program
(Di Padova et al., 2007) and for proper myogenesis both in
vitro and in vivo (Sartorelli et al,, 1999; Duquet et al., 2006;
Di Padova et al., 2007). Acetylation of Mef2, in turn, increases
DNA binding and transcriptional activity (Ma et al., 2005).
MyoD and Mef2 transcription factors can be also modulated
by lysine methylation. In particular, it was shown that G9a
methyltransferase not only increases H3K9me2 at MyoD-target
genes to repress muscle gene expression (Ling et al., 2012b;
Wang et al., 2013), but also directly interacts with MyoD and
Mef2 to methylate them in K104 and K267 respectively, reducing
their transcriptional activity (Ling et al, 2012a; Choi et al,
2014a).

In addition to IGF-1 several other growth factors have
been show to signal to the chromatin in regenerating muscles.
Amongst them, Hepatocyte Growth Factor (HGF) and members
of the Transforming Growth Factor § (TGFf) superfamily are
fundamental in the regulation of satellite cells function.

TGEFBs are potent repressors of myogenesis (Burks and Cohn,
2011). Of them, Myostatin (GDF8) is a well-known negative
regulator of muscle differentiation that signals through binding
to Activin type II receptors. Binding to type II receptors
induces heterodimerization with type I receptors (Alk4/5)
(Rebbapragada et al., 2003). Activated receptor phosphorylates
Smad2/3, inducing binding to Smad4 and nuclear translocation
(Moustakas, 2002). In muscle cells it has been shown that
phosphorylated Smad3 binds to and interferes with MyoD and
Mef2 transcriptional activity (Langley et al., 2002; Liu et al.,
2004). On the contrary, Smad7, an antagonist of the canonical
TGFB/Smad signaling, promotes myogenesis through MyoD
binding and activation (Zhu et al., 2004; Kollias et al., 2006).
Myostatin function can be blocked by the action of Follistatin,
which can be induced in muscle cells by treatment with HDAC
inhibitors (HDACis; Iezzi et al., 2004). Follistatin is involved
in myoblast fusion in vitro and contributes to the beneficial
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effect of HDACI treatment in vivo in a mouse model of muscle
regeneration (lezzi et al., 2004; Minetti et al., 2006). Further,
it was recently shown that the EGF-CFC family of proteins
(Shen and Schier, 2000) also antagonizes Myostatin function
during muscle regeneration. In particular, Cripto, the founder
member of the family, is re-expressed in activated satellite cells
and positively regulates myogenesis, interfering with Myostatin-
mediated Smad2 phosphorylation (Guardiola et al., 2012).

HGEF is a heparin binding protein located in the extra-cellular
matrix of muscle fibers. Upon injury or mechanical stretch, HGF
is released from its anchor in muscle fibers by serum proteases
and binds to the surface receptor c-Met, present in satellite
cells (Tatsumi et al.,, 1998, 2002; Miyazawa, 2010). HGF has
been shown to regulate satellite cell proliferation and function
(Tatsumi et al., 1998; Yamada et al., 2010). Further it was recently
shown that high concentrations of HGF are necessary for the
re-entry of satellite cells into quiescence through a mechanism
involving Myostatin up-regulation (Yamada et al.,, 2010). Both
HGF and the inflammatory cytoquine IL-6 induce the activity of
the oxidative stress sensor Nrf2 in myoblasts. Nrf2 is involved
in satellite cell proliferation and repression of the myogenic
program through direct down-regulation of Mpyogenin gene
(Al-Sawaf et al.,, 2014). On the other hand, signaling through
HGF/c-Met activates the mammalian target of rapamycin
(mTOR) pathway in satellite cells via the PI3K/Akt cascade.
mTOR is a main sensor of the metabolic status of the cell,
modulating the cell response to variations in nutrient availability.
Although extensive work has been done on the upstream
regulators of the pathway, the downstream effectors are less
known (for a detailed review on mTOR signaling, see Laplante
and Sabatini, 2012). The best-characterized responses are the
regulation of protein synthesis through phosphoryation of
translational regulators such as eIF4E binding protein or S6
kinase and the regulation of lipid metabolism (Laplante and
Sabatini, 2012). Although little endogenous mTOR is found
in the nucleus, the pathway has been associated with the
modulation of gene expression in skeletal muscle through the
transcription factors PGCla and YY1 (Cunningham et al,
2007; Blattler et al., 2012). A recent study showed mTOR
activation upon limb-muscle injury switches quiescent satellite
cells in the contro-lateral limb into what it has been called a
quiescent “alert” state or Galert. Such state allows satellite cells
to quicker activate in response to injury. Consistent with a role
of the mTOR pathway in regulating the metabolic status of
the cell, amongst the transcriptional changes associated to the
“alert” response there is an enrichment in transcripts associated
to metabolism and mitochondrial activity. The alert state is
reversible and the morphological and transcriptional changes
turn to those of normal quiescent satellite cells when mTOR
signaling ceases. It will be interesting to dissect the molecular
pathways and epigenetic changes associated to this reversible
quiescence (Rodgers et al., 2014).

Inflammatory Signals

The inflammatory infiltrate recruited to the site of lesion is
the main source of secreted cytokines such as interleukina-1,
interleukina-6 or Tumor Necrosis Factor (TNF) that activate

muscle resident cells (Stoick-Cooper et al., 2007). In satellite
cells, several signaling cascades respond to cellular stressors by
converting inflammatory cues into the epigenetic information
that controls gene expression (Lluis et al., 2006; Lassar, 2009).
In some circumstances a single signal transducer may control
multiple steps of gene regulation. One of the best studied
examples of multi-layered control of gene expression by a
signaling cascade is provided by the family of Mitogen Activated
Protein Kinases (MAPK) a, B, y and 8 (Cuenda and Cohen,
1999; Zetser et al., 1999; Wu et al., 2000). p38 is activated
in response to either inflammatory cytokines such a TNF or
amphoterin/HMGBI, cell-to-cell contact and growth factors
such as TGFB in satellite cells (reviewed in Guasconi and Puri,
2009). Previous studies have shown how p38 kinases o and
p contribute to the assembly of the myogenic transcriptosome
on the chromatin of muscle loci, leading to the consequent
activation of gene expression. p38a and B promote Mef2
transcriptional activation (Zetser et al, 1999), MyoD-E47
heterodimerization (Lluis et al., 2005) and recruitment of
SWI/SNF chromatin remodeling complex (Simone et al,
2004; Serra et al., 2007; Forcales et al., 2012) and Ash2L-
containing mixed-lineage leukemia (MLL) methyltransferase
complex (Rampalli et al., 2007) to the chromatin of muscle genes.
By contrast, activation of p38y in satellite cells represses MyoD
transcriptional activity by direct phosphorylation, which leads
to the association with the H3K9 methyltransferase Suv39hl
(KMT1A) (Gillespie et al, 2009). Further, we have recently
shown that p38a signaling to PRC2 represses the determination
gene Pax7 in satellite cells undergoing terminal differentiation,
an event that is necessary for cell cycle exit (Palacios et al., 2010;
Mozzetta et al., 2011). Activation of p38a/p downstream kinase
Mskl1 has been shown to regulate a chromatin switch between
Ezh2-containing and Ezhl-containing PRC2 complexes at the
onset of differentiation via phosphorylation of S28 on histone
H3 (Stojic et al., 2011). Interestingly, Ezh1-containing complexes
have been associated to polll recruitment and transcriptional
activation in differentiating myoblasts, challenging the common
view of PRC2 complexes as chromatin repressors (Mousavi et al.,
2012).

Thus, p38 signaling can either activate or repress gene
expression in satellite cells, depending on the activation status
of specific p38 isoforms, or chromatin recruitment with
specific modifying complexes. Furthermore, evidence supports
the notion that chromatin-associated p38 kinases can control
gene transcription by directly targeting components of the
transcription machinery (Chow and Davis, 2006; Pokholok et al.,
2006; de Nadal and Posas, 2010), suggesting a general role of p38
signaling in the control of genome redistribution of chromatin-
modifying complexes in response to extrinsic signals.

Underlying a further layer of complexity, the same cytokine
may modulate different intra-cellular cascades that ultimately
converge to the chromatin of muscle precursors. For instance,
in addition to inducing p38a/p activation, TNF also regulates
NF-kB activation in muscle cells. Work from the Guttridge
lab showed that the TNF/NF-kB pathway repressed Notch
expression both in satellite cells and C2C12 myoblasts through a
mechanism involving Ezh2 and Dnmt3b (Acharyya et al., 2010).
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Amongst the signaling pathways activated in response
to inflammatory cues in muscle, the Jun Activated Kinase
(JAK)/STAT pathway responds to cytokines such as IL-6 or
leukemia initiating factor (LIF). The pathway is activated upon
binding of IL-6 to the IL-6R-gp130 receptor which leads to JAK
activation and phosphorylation of Stat proteins on tyrosines
residues. Phosphorylated Stats are able to heterodimerize and
translocate into the nucleus (Stark and Darnell, 2012; Munoz-
Canoves et al,, 2013). In muscle satellite cells, nuclear Stat3
binds the regulatory regions of target genes, including MyoD,
to regulate their expression. Consistent with a role in regulating
myogenic progression (Sun et al, 2007; Wang et al., 2008),
genetic depletion or pharmacological inactivation of JAK2
and/or Stat3 expanded a population of Pax7-positive, MyoD-
negative cells and improved muscle regeneration (Price et al.,
2014; Tierney et al., 2014).

Developmental Programs Re-Activated in Adult
Stem Cells

Several signaling pathways essential for embryonic myogenesis
have been shown to be re-activated during regeneration in
the adult and to play a fundamental role in the activation,
commitment and differentiation of satellite cells. Here we will
discuss the contribution of Notch, Wnt, Sonic Hedgehog (Shh)
and Bone Morphogenetic Proteins (BMPs) pathways to adult
muscle regeneration.

The Notch signaling pathway plays a fundamental role in the
establishment of cell fate decisions in several tissues. In muscle
it has been shown to be essential both during embryogenesis
and in the adult. Activation of the Notch signaling starts with
the expression of Notch ligand delta-like (DIl) in differentiating
cells. DIl binds and activates the membrane receptor Notch in
satellite cells, leading to the cleavage of the cytoplamic portion
of the protein and nuclear translocation of the intracellular
domain (NICD; Schroeter et al., 1998). NICD is a potent
transcriptional activator that binds the regulatory regions of
target genes together with Rbpj, the main downstream effector
of the pathway (Kopan and Ilagan, 2009). It is currently widely
accepted that the Notch pathway, which is activated upon
injury in quiescent satellite cells, is required for maintaining
the homeostasis of the satellite cells compartment and is
involved in regulating proliferation and self-renewal, keeping
myoblast in an undifferentiated state (Conboy and Rando,
2002; Wen et al., 2012). By using conditional knock out mice
two different labs showed that Rbpj-depleted satellite cells
prematurely differentiate while they fail to undergo replication,
leading to premature exhaustion of the satellite cell compartment
(Bjornson et al., 2012; Mourikis et al, 2012a,b). Genome-
wide analysis demonstrated dynamic Rbpj chromatin binding
in response to Notch activation in muscle cells, together with
NICD and the acetyltransferase p300. A detailed analysis of
the chromatin signature at Rbpj-bound regions, showed that
different chromatin modifications are present at constitutive
vs. inducible genes and confirmed the major role of Rbpj as
a transcriptional activator (Castel et al., 2013). Notch signaling
is switched off through ubiquitin-mediated degradation of the

protein, which is directed by the cellular adaptor Numb. Numb
factors comprise a family of four cytoplasmic proteins that
mark Notch for proteome-mediated degradation through the E3
ubiquitin ligase Itch (McGill and McGlade, 2003). Numb has
been implied in the replenishing of the satellite cell compartment
by meditating asymmetric division of activated satellite cells
(Shinin et al., 2006). Further, Numb-depletion has been shown to
impair proliferation and differentiation of satellite cells through
up-regulation of the cell cycle inhibitor p21 and Myostatin
(George et al., 2013).

Work from Rando’s lab showed that a temporal switch
between Notch and Wnt signaling is necessary for adult
myogenesis (Brack et al, 2008). Wnt proteins comprise a
family of 19 glycoproteins that play a fundamental role
during embryonic myogenesis and adult homeostasis (for a
detailed review on the contribution of Wnt signaling to
myogenesis, see von Maltzahn et al., 2012). Secreted Wnts bind
to Frizzed (Fzd) receptors, located in the plasma membrane
of target cells (Sethi and Vidal-Puig, 2010). When bound
to the receptor, Wnt elicits a variety of cellular responses
through the activation of several intra-cellular cascades. The
best known of such cascades, the canonical Wnt pathway, starts
the activation of heterotrimeric G proteins and Dishevelled
(Dsh) and the recruitment of Axin to the Fzd co-receptor
Low Density Protein receptor (LPR)-related protein. This
recruitment inactivates the Pcatenin degradation complex,
consisting of Axin, APC and glycogen synthase kinase 3 beta
(GSK-3p). Before Wnt stimulation Bcatenin levels are regulated
through GSK-3p mediated phosphorylation, which targets the
protein to proteasome-mediated degradation. Upon binding
of Wnt ligands, stabilized Pcatenin accumulates and is able
to translocate into the nucleus, where it binds members of
the TCF and LEF families of transcription factors. Nuclear
Pcatenin acts as a transcriptional co-activator (Katoh, 2007;
Nusse, 2008). The canonical Wnt pathway may co-exist with
other Bcatenin-independent signaling, such as the activation of
phospholipase C (PLC), CamKII or protein kinase C (PKC) (all
of which lead to an increase in the intracellular Ca?t levels)
the phosphatidil-inositol 3 kinase (PI3K)/Akt/mTOR axis, the
Protein Kinase A (PKA)/CREB pathway (Chen et al., 2005)
and the planar-cell polarity (PCP) pathway (Kiihl, 2004; Le
Grand et al, 2009; von Maltzahn et al., 2011). The latest
is involved in the remodeling of the cytoskeleton, acting
through Fzd, Vangl, Dsh and Prickle (Montcouquiol et al,
2003; Vladar et al,, 2009) Although it has not been formally
proved, it was suggested the PCP pathway could modulate
Carml (Prmt4)-dependent methylation of Pax7 in activated
satellite cells (Kawabe et al., 2012). Carml is an arginine
methyltransferase important for Pax7-mediated activation of
Myf5 in asymmetrically dividing cells through recruitment of
MII1/2 methyltransferase (McKinnell et al., 2008; Kawabe et al.,
2012). It also regulates muscle-specific microRNAs, SWI/SNE-
mediated chromatin remodeling and Mef2 transcriptional
activity (Chen et al., 2002; Dacwag et al., 2009; Mallappa et al,,
2011).

The role of the Wnt proteins in adult muscle regeneration
is complex as illustrated by the amount of family members
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whose expression is modulated during regeneration (Polesskaya
et al,, 2003; Brack et al., 2008). In regenerating muscle Wnts are
released by the myofibers (Polesskaya et al., 2003) whereas the
Fzd receptor is activated only in satellite cells (Brack et al., 2008).
Numerous studies have helped to clarify the multi-step control
of myogenesis through sequential activation of different Wnt
ligands and pathways. First, Wnt7-activation of the PCP pathway
stimulates symmetric expansion of satellite cells (Le Grand
et al,, 2009). Then, activation of the canonical Wnt/Bcatenin
pathway was proposed to be required for the differentiation
of progenitor cells (Polesskaya et al., 2003; Rochat et al., 2004;
van der Velden et al, 2006; Brack et al., 2008). Consistently,
genetic depletion of Bcl9, the mammalian homologue of the
Wnt co-regulator in drosophila legless, in Pax7-positive cells
abrogates nuclear localization of Bcatenin and impairs injury-
mediated muscle regeneration (Brack et al., 2009). However, a
recent study has challenged this idea, showing that although the
Wnt pathway is activated during regeneration, this activation is
transient and it is the subsequent Wnt inactivation, rather than
activation, that is necessary for proper regeneration (Murphy
et al, 2014). Finally, it has been shown that, upon injury,
Wnt signaling is also able to induce Pax7 expression in a
subpopulation of muscle-resident CD45+ stem cells through a
canonical Pcatenin pathway (Polesskaya et al., 2003). However,
the contribution of this population of CD45+ cells to normal
adult myogenesis is controversial and it is probably limited to
pathological conditions such as muscular dystrophies, acting
as a compensatory mechanism to the continuous waves of
degeneration ad regeneration that lead to the exhaustion of the
satellite cells compartment.

BMPs are members of the TGFP super-family. As with
the canonical TGFp pathway binding of BMPs to type I and
II receptors induces phosphorylation of Smad 1, 5 and 8.
Phosphorylated Smad1/5/8 interact with Smad4 to form an
heterodimer that translocates to the nucleus and binds the
chromatin of target genes (Canalis et al., 2003). Upon muscle
injury, type IA BMP receptor is activated in satellite cells, and
Smad proteins are phosphorylated. Activation of the pathway
induces satellite cells proliferation while blocking differentiation
(Ono et al.,, 2011). At the onset of differentiation, the increase
of BMP antagonists such as Noggins or Chordin antagonizes
BMP signaling to allow satellite cells differentiation (Friedrichs
et al, 2011; Ono et al., 2011). Further, it was previously shown
that Notch signaling is necessary for BMP-induced block of
differentiation, highlighting the functional interplay amongst the
two pathways (Dahlqvist et al., 2003).

Hedgehog (hh) is an evolutionary conserved pathway
essential for tissue morphogenesis during development. The
pathway is activated upon interaction of the extra-cellular ligands
Shh, Thh and Dhh with the transmembrane receptor Patchedl
(Ptchl), which leads to the activation of smoothened (Smo)
and translocation to the nucleus of Gli transcription factors
(Jiang and Hui, 2008). Of the developmental programs that are
reactivated upon muscle injury the role of Shh as a regulator
of stem cell function in adult muscle has been by far the less
studied. It was recently shown that the primary cilia activate
Shh at the initial stages of muscle differentiation and is essential

for proper differentiation (Fu et al., 2014). Shh activation
induces proliferation of ex vivo cultured mouse satellite cells
while inhibiting terminal differentiation. In addition, upon
induction of differentiation, Shh regulates caspase-3 activation
and apoptosis (Koleva et al., 2005). On the contrary, a different
study using primary cultures of chicken myoblasts points out to
a role of the signaling pathway both in myoblasts proliferation
and differentiation through the MAPK/ERK and Akt1 pathways
(Elia et al., 2007). Recently it was shown Shh is reactivated during
muscle injury in vivo and pharmacological inactivation of the
pathway reduces the number of myogenic progenitors at the
site of lesion and impairs regeneration (Straface et al., 2009).
Despite the fact little is known on how Shh modulates chromatin
structure in adult muscle cells, it was previously shown that Gli2,
together with Zicl and Pax3, activates Myf5 epaxial enhancer
during somitogenesis (Himeda et al., 2013). Consistent with a
role in regulating master regulatory factors, works on developing
limbs have mapped genome-wide Gli3 binding by ChIP-seq,
showing Shh-responsive genes are associated to gene categories
such as development and morphogenesis and are enriched in
transcriptional regulators (Vokes et al., 2008; Shi et al., 2014).
Further, a recent study has shown that Shh induces an epigenetic
switch consisting on disengagement of PRC2 and recruitment of
the H3K27me3 demethylase Jmjd3 at target loci in responsive
fibroblasts, leading to gene activation (Shi et al., 2014). If similar
mechanisms are active also in satellite cells still needs to be
elucidated.

Redox Status

Upon injury, inflammatory cytokines can alter the physiological
redox status of skeletal muscle stem cells, a fundamental
prerequisite for muscle regeneration. Important players in redox
status determination are Nitric Oxide (NO), Reactive Oxygen
Species (ROS) and the NADT/NADH ratio.

NO is a free radical synthesized from the amino acid
L-arginine by three different isoforms of NO synthase (NOS;
Nathan and Xie, 1994). In skeletal muscle NO is produced
constitutively by neuronal type NO isoform (nNOS; Nakane
et al., 1993; Silvagno et al., 1996) that controls its physiological
production to hinder a potential toxicity. NO has been described
as an epigenetic molecule (Colussi et al., 2008; Nott et al., 2008)
capable of inducing global epigenetic modification in Duchenne
muscular dystrophy (DMD; Colussi et al., 2009). In DMD, the
absence of dystrophin causes delocalization of the dystrophin-
associated complex (DAPC) from the cytoskeleton of muscle
fibers membrane, leading to structural destabilization of the
sarcolemma (Matsumura et al., 1994; Ervasti and Sonnemann,
2008). DAPC displacement determines the dissociation of its
interactor, the sarcolemma neuronal NO synthase (nNOS) from
the same site, causing an alteration in NO production (Brenman
et al,, 1995). In healthy muscle, NO deposits S-nytrosilation
on HDAC2, which is released from the chromatin, an
event that activates a specific pattern of gene expression,
including the activation of several microRNAs. Conversely, in
dystrophic muscles a decrease of nNOS activity reduces HDAC2
S-nytrosilation, increasing chromatin binding and determining
the repression of target genes and microRNAs. Amongst these,
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miR-1 repression up-regulates G6PD levels, which sensitizes
muscle cells to physiological production of free radicals. This
contributes to high oxidative stress levels observed in DMD
(Cacchiarelli et al., 2010). When dystrophin is rescued by exon
skipping, the recovery of correct nNOS localization on the
membrane induces chromatin disengagement of HDCA2 and
re-expression of its target genes, contributing to late muscle
differentiation (Cazzella et al., 2012).

Differently from NOS, ROS production occurs at different
locations in muscle fiber including the sarcoplasmic reticulum,
transverse tubules, sarcolemma and the cytosol but the main
sites are the mithocondria (Barja, 1999). Changes in redox status
of muscle fibers modify kinases and phosphatases activities
causing alterations in gene expression (Chiarugi and Cirri,
2003; Torres and Forman, 2003). For example p38 MAPK
and JNK are activated not only in response to inflammatory
cytoquines but also in response to ROS production (Cuschieri
and Maier, 2005) Increases in ROS concentration induces a
strong depletion of the glutathione (GSH) pool that leads
to NF-kB activation and reduction of MpyoD expression,
impairing myogenesis (Guttridge et al., 1999; Ardite et al,
2004). NF-kB is known for its negative regulation of skeletal
muscle differentiation (Buck and Chojkier, 1996; Langen et al.,
2001) even though in response to ROS alteration is also
able to promote the activity of inducible NOS whose role in
muscle differentiation is controversial (Kaliman et al., 1999;
Piao et al., 2005). Another protein, p66Shc, an isoform of Src
homology 2 domain containing transforming protein 1 (Shc),
is phosphorylated in response to elevated ROS levels, negatively
contributing to myogenesis. p66Shc KO mice show higher
regenerative capacity and differentiation of skeletal muscle stem
cells compared to wt mice. Probably, active p66Shc produces
superoxide anions, which deplete available NO by forming
peroxynitrite, which is not generated in KO mice (Zaccagnini
et al., 2007). Moreover at high ROS concentration, the ratio of
NADT/NADH is shifted in favor of NAD™, which promotes the
activity of a family of NADT-dependent HDACs, the sirtuins.
Sirtl (the mammalian homologue of yeast Sirtuin2 (Sir2))—
mediates MyoD deacetylation and inhibition of transcription
(Fulco et al., 2003). Sirtl senses variations in NADT/NADH
ratio during skeletal muscle cell differentiation (MacDonald and
Marshall, 2000). In undifferentiated cells, where this ratio is
high, MyoD is kept inactive by Sirtl mediated hypoacetylation
whereas when such ratio decreases, skeletal muscle cells start
to differentiate. Recently Abdel-Khalek et al. ascribed to Sirt3,
a mitochondrial NAD™ dependent deacetylase, a role in the
regulation of myoblast differentiation (Abdel Khalek et al., 2014).
Differently from Sirtl that is highly expressed in proliferating
myoblasts, Sirt3 expression starts to increase when C2C12 cells
arrive at confluence and its levels are kept elevated during
differentiation. Interestingly, Sirt3-depleted cells show a block
of differentiation, high levels of ROS, a decrease in manganese
superoxide dismutase (MnSOD) activity and an inhibition of
Sirtl expression (Abdel Khalek et al, 2014). It would be
interesting to clarify the mechanism by which Sirt3 regulates
Myogenin and MyoD expression and why Sirtl is not up-
regulated upon Sirt3 depletion.

All together, these data demonstrate that the maintenance
of cellular redox homeostasis, as a result of a crosstalk among
different free radicals, represents another layer for regulating
muscle differentiation through chromatin signaling.

Mechano-Transduction

Due to their particular anatomical position, muscle stem cells
are strongly exposed to physical and mechanical cues such as
contraction and/or changes in the extra-cellular matrix stiffness
(Dupont et al,, 2011; Gilbert et al., 2011). Cells convert these
mechano-stimuli into biochemical and nuclear signals through
the Yap and Taz mediators (Dupont et al., 2011) that usually
control cell growth and differentiation. Yap and Taz are the
nuclear transducers of the Hippo pathway (Pan, 2010).

The Hippo pathway is a signal transduction pathway involved
in development, cell function, regeneration and organ size in
many tissues and is altered in several human diseases including
muscular dystrophy and cancer (Tremblay and Camargo, 2012;
Yu and Guan, 2013; Tremblay et al., 2014; Wackerhage et al.,
2014). The central Hippo cascade comprises upstream elements
such as the STE20-like protein kinases 1 and 2 (Mst1 and Mst2)
and the large tumor suppressor kinases 1 and 2 (Latsl and
Lats2). Phosphorylation and subsequent activation of Lats1/2 by
Mst1/2 induces Yap/Taz phosphorylation (Huang et al., 2005)
Phosphorylation of the best-characterized phospho-sites on Yap
(S127) and on its analogous Taz (S89) determines their retention
and inactivation in the cytosol by 14-3-3 proteins (Basu et al,,
2003; Wackerhage et al., 2014). In response to different stimuli
such as G-protein coupled Receptor (GPCR) signaling (Yu et al.,
2012), mechano-stimuli (Dupont et al., 2011) and apico-basal
polarity (Huang et al., 2005) Yap and Taz are dephosporylated
and translocate to the nucleus where they are recruited to
the chromatin through binding to several transcription factors
(Hong and Guan, 2012).

In muscle cells Taz and Yap associate with TEAD
transcription factors (TEA domain), which bind to MCAT
elements (muscle C, A and T; 5-CATTCC-3') located in
the promoter or enhancer regions of key genes that regulate
commitment (MyoD, Myf5, Mrf4), proliferation (Cyclin DI)
and differentiation (Myogenin) of satellite cells. Both Yap and
Taz are expressed in skeletal muscle (Jeong et al., 2010; Watt
et al,, 2010). The group of Wackerhage was the first to assess the
expression of Yap in skeletal muscle cells. In particular they have
shown that in myoblasts, unphoshorylated Yap is localized in the
nucleus where positively controls the expression of proliferation
genes. Conversely, as C2C12 undergo differentiation, Yap (S127)
phosphorylation increases and the protein translocates from the
nucleus to the cytosol where it is kept inactive (Watt et al., 2010).
Moreover Yap stimulates proliferation of activated satellite cells
and prevents their differentiation by controlling expression
of genes associated with cell cycle, ribosome biogenesis and
modulation of myogenic differentiation (Judson et al., 2012).
In contrast to what observed for Yap, ectopic expression of
Taz promotes myogenic differentiation through a cooperative
interaction with MyoD that increases its binding to DNA
(Jeong et al., 2010). Taz has been shown to interact also with
Pax3 during development (Murakami et al., 2006). Jeong et al.
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demonstrated Taz levels increase after muscle injury in mice
suggesting it is also involved in muscle regeneration (Jeong et al.,
2010). Under differentiation conditions, translocation of Taz to
the nucleus is required for enhancing the expression of genes
such as Myogenin, Mhc and Mck. This process can be stimulated
by selenoproteinW which induces Taz nuclear translocation by
interrupting its binding with 14-3-3 protein and consequently
increasing myogenic differentiation (Jeon et al., 2014). Recently,
compounds that promote myogenesis through Taz activation in
C2C12 cells have been characterized and shown to induce an
increase in Taz expression, interaction with MyoD and MyoD
recruitment to the chromatin during the initial phase of the
muscle differentiation program (Park et al., 2014). Collectively
these data point out to Yap and Taz as novel components of
the muscle transcriptosome and suggest they could be potential
therapeutic targets in muscular dystrophies. Their opposite
effects on proliferation and differentiation suggest that fine-
tuned modulation of Taz and Yap activity might be a good
strategy for increasing muscle regeneration and amelioration of
diseased phenotypes.

Altogether, the data discussed here suggest that signaling to
the chromatin in response to the regenerative microenvironment
plays a crucial role during muscle regeneration. They are
summarized in Figure 1.

Age-Dependent Decline of Satellite Cell
Function

Aging is associated to a loss of the homeostatic and regenerative
potential in all tissues and organs. In muscle, it is reflected on a
loss of muscle mass and strength (sarcopenia) and to an impaired
regeneration potential associated to a dysfunction of the satellite
cell compartment (Brack and Rando, 2007).

Both cell-intrinsic changes and changes within the
regenerative microenvironment are associated with the stem cell
loss of function that occur with age. For instance, replicative
damage, proteomic changes (ie., accumulation of damaged
macromolecules) and changes in the epigenome and the
proteome have been shown to affect stem cell function in old
tissues (Liu and Rando, 2011; Garcia-Prat et al., 2013; Sinha et al.,
2014). Amongst the cell-intrinsic changes, modification of the
epigenetic profile, including changes in the DNA methylation
patterns and post-translational histone modifications are
particularly interesting, as they are potentially reversible. Recent
work has shown a progressive increase in DNA methylation
in aging muscle (Day et al., 2013; Jin et al, 2014; Ong and
Holbrook, 2014; Zykovich et al., 2014). Interestingly, key studies
in tumor and aged cells indicate that de novo DNA methylation
in the adult is usually restrained to a subset of CpG islands,
most of which are PRC2 target regions (Schlesinger et al., 2007;
Bergman and Cedar, 2013). Consistent with this, satellite cells
isolated from old mice show altered levels and distribution of
H3K27me3 (Liu et al,, 2013). The functional interplay between
PRC2 and the DNA methylation machinery in aged satellite cells
likely contributes to the impaired regeneration potential of old
muscles and could represent novel pharmacological target to
improve muscle function in aged individuals.

On the other hand, elegant parabiotic studies showed that
changes in the regenerative environment of old muscles regulate
satellite cell function (Conboy et al., 2005; Brack et al., 2007;
Sinha et al., 2014). For instance, attenuated Notch signaling leads
to reduced satellite cells proliferation and impaired regeneration
in aged muscle. Muscle regeneration can be recovered by
ectopic activation of Notch or by exposing old animals to a
young environment (Conboy et al., 2005). On the contrary, a
progressive increase in Wnt signaling with age alters muscle
stem cell fate (Brack et al., 2007; Doi et al., 2014), inducing a
myo-to-fibrogenic conversion of muscle progenitors that leads
to increased fibrosis in vivo (Brack et al., 2007). As in the case
of impaired Notch signaling, the fibro-adipogenic conversion
observed in old muscles is reversible and can be reduced
by exposing mice to conditioned serum from young animals.
Conversely, in vivo activation of the pathway in young mice by
injection of Wnt3A increases fibrotic deposition (Brack et al.,
2007). Finally, it was recently shown that the TGFf member
Growth Differentiation Factor 11 (GDF11) also reverses the
age-related changes in satellite cells dysfunction (Sinha et al.,
2014).

The contribution of an old inflammatory infiltrate to
the impaired regenerative response of aged muscles can be
further predicted by the elevated levels of cytokines such as
IL-1, IL-6 and TNF observed in old muscles (Phillips and
Leeuwenburgh, 2005; Dirks and Leeuwenburgh, 2006). In a
recent study Trendelenburg et al. showed that elevated levels of
IL-1 and TNF block differentiation of human myoblasts through
activation of a signaling pathway involving TGFf activated
kinase (TAK1)/p38/NF-kB and leading to increased expression
of ActivinA (Trendelenburg et al., 2012). Increased levels of TNF,
together with alterations in the pathway of FGFRI, also lead
to aberrant activation of the p38a/p cascade in satellite cells
derived from old muscles. Two recent studies have highlighted
the importance of p38a/p in maintaining satellite cells function
and homeostasis during their lifespan, showing that increased
p38a/P activity leads to a cell-autonomous defect in satellite cells
self-renewal and activates a senescence program. This p38a/f-
dependent decline in satellite cells function with age cannot
be overcome by exposure to a young microenvironment but
instead is partially reversed when satellite cells are treated with
the p38a/P inhibitor SB203580 (Bernet et al., 2014; Cosgrove
et al., 2014). Although in these experiments p38a/p blockade
was performed ex vivo prior to satellite cell transplantation,
pharmacological manipulation of the p38a/f signaling has
been achieved also in vivo through the use of antibodies
against TNF receptor (Palacios et al., 2010). Acute treatment
with neutralizing TNF antibodies expands a population of
Pax7+, differentiation-competent satellite cells in young animals
(Palacios et al., 2010), whereas long-term treatment with
the same antibodies have been shown to have a beneficial
effect on muscle regeneration (Radley et al, 2008; Huang
et al, 2009). If such beneficial effects are also obtained in
old mice needs to be investigated. Altogether these studies
highlight the potential impact of pharmacological approaches
in recovering satellite cell function in diseased and aged
muscles.
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chromatin effectors that regulate the transition from activated satellite cells to multinucleated myotubes in response to regeneration cues.

“ P

ON/OFF

In wvivo pharmacological manipulation of a discrete
chromatin signaling has in fact been the strategy adopted
by the groups of Rudnicki and Sacco to stimulate the
function of old satellite cells. In this case, interfering with
an altered IL6/JAK/Stat3 signaling through the wuse of

JAK/STAT inhibitors increases the regeneration potential
of old and dystrophic muscles (Price et al, 2014; Tierney
et al, 2014), revealing its potential for pro-regenerative
therapy to counteract the impaired regeneration observed
with age.
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Even if it is becoming increasingly clear that satellite cells
malfunction is highly modulated by age-related changes in the
surrounding microenvironment, a gap of knowledge persists
on how alterations in the old regenerative environment and
cell-intrinsic changes (i.e., changes in the metabolism or in
the epigenetic profile) converge to modulate the function
of aged satellite cells. The relative contribution of aberrant
environmental cues and cell-intrinsic changes to aged satellite
cells function can now be partially explained by work in
Muiioz-Céanoves lab. By distinguishing old (20-24 months)
from geriatric (over 28 months) mice, Sousa-Victor et al.
have dissected the transcriptional changes associated to the
aging process, that ultimately depends on Polycomb-mediated
silencing of the pl6/INK4 locus (Sousa-Victor et al., 2014).
These data provide a partial explanation of why pre-senescent
satellite cells are responsive to a young environment whereas
full gero-conversion is an irreversible, cell autonomous, process.
Future studies aimed to investigate in detail the signals and
molecular mechanisms driving to this point of no return
will be fundamental for the development of novel therapeutic
approaches to delay muscle miss-function with age.

Remarkably, in a recent article from this special issue of
Frontiers in Aging Neurosciences, Formicola et al. demonstrate
that, contrary to what happens in limb muscles, the extra-ocular
muscles (EOM) stem cell niche is resistant to age and disease
(Formicola et al., 2014), probably thanks to the contribution
of a population of muscle-resident cells called PICs (PW1
interstitial cells) (Mitchell et al., 2010; Pannérec et al., 2013).
If this resistance to aging is due to a direct contribution
of PICs to muscle regeneration or to indirect modulation of
satellite cells function still needs to be investigated. It will
also be interesting to understand what makes EOM PICs and
maybe other EOM muscle-resident cell populations such FAPs
(Fibroadipogenic precursors) more resistant to age-dependent
cell-intrinsic changes. FAPs are multi-potent mesenchymal cells
located in the interstitium of muscle fibers (Joe et al., 2010;
Uezumi et al., 2010). During muscle regeneration they support
the myogenic potential of muscle stem cells (Uezumi et al,
2010; Mozzetta et al., 2013) through the release of paracrine
factors such as Follistatin, the functional antagonist of Myostatin
(Mozzetta et al., 2013). In DMD at late stages of the disease,
the continuous waves of degeneration and regeneration leads
to the conversion of FAPS into fibro-adipocytes, responsible of
the fat and fibrotic deposition that characterize DMD muscles
(Joe et al.,, 2010; Uezumi et al., 2010; Mozzetta et al., 2013). It
has been recently shown that treatment with HDACi increases
the regeneration potential and prevents the fibro-adipogenic
degeneration of young, but not old, dystrophic muscles (Minetti
et al., 2006; Consalvi et al., 2013; Mozzetta et al, 2013).

References

Abdel Khalek, W., Cortade, F., Ollendorff, V., Lapasset, L., Tintignac, L., Chabi,
B., et al. (2014). SIRT3, a mitochondrial NAD+-Dependent Deacetylase, is
involved in the regulation of myoblast differentiation. PLoS One 9:e114388.
doi: 10.1371/journal.pone.0114388

HDACis in young mice act in part by regulating the fate of
FAPS towards the myogenic lineage, through a mechanism
involving a microRNA-dependent control of SWI/SNF subunit
composition (Saccone et al., 2014). On the contrary, FAPs
from old dystrophic muscles are resistant to HDACi-induced
chromatin remodeling at muscle loci and fail to activate the
pro-myogenic phenotype (Saccone et al., 2014). Therefore,
age-dependent cell-intrinsic changes in other muscle-resident
populations can also alter the regeneration potential of the
satellite cell pool.

Conclusions and Perspectives

Muscle regeneration is a multi-step process that entails the
coordinated activation and repression of discrete transcriptional
programs. In this review we aimed to highlight the key role of
signaling pathways in transmitting the extra-cellular information
to the chromatin of satellite cells to regulate gene expression. The
temporal pattern of activation in response to extra-cellular cues,
the interplay amongst the pathways and the activation and/or
repression of downstream effectors are fundamental for the fine-
tuned control of muscle regeneration. Deciphering the muscle-
specific chromatin signaling is particularly important for the
rational design of novel pharmacological approaches aimed to
improve satellite cells function in old and diseased muscles. Being
pharmacologically manipulable and potentially reversible, both
signaling cascades and the epigenome are attractive targets for
the design of novel therapeutic interventions.

Finally, numerous studies have revealed a striking similarity
between adult and embryonic myogenesis, regarding the
pathways and the mechanisms affecting muscle stem cell
function (see Buckingham and Rigby, 2014). Here we have
focused on how adult muscle stem (satellite) cells activate the
differentiation program in response to regeneration stimuli.
Despite less studied, we speculate similar mechanisms are also
active during embryonic myogenesis and participate to the
successful completion of the myogenic program in response to
developmental cues.

Acknowledgments

Research in DP’s laboratory is supported by the Italian Ministry
of Health, the French Association Against Myopathies, the Italian
Association for Cancer Research (AIRC) and the Worldwide
Cancer Research (former AICR-UK). We are grateful to Dr.
Mozzetta for critically reading the manuscript and all members
of the lab for stimulating discussions during the preparation of
this review. We apologize to colleagues whose work was not cited
due to space constrictions.

Acharyya, S., Sharma, S. M., Cheng, A. S., Ladner, K. J., He, W., Kline, W,
et al. (2010). TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and
DNA methylation mediated repression: implications in duchenne muscular
dystrophy. PLoS One 5:¢12479. doi: 10.1371/journal.pone.0012479

Al-Sawaf, O., Fragoulis, A., Rosen, C., Keimes, N., Liehn, E. A., Holzle, F,,
et al. (2014). Nrf2 augments skeletal muscle regeneration after ischaemia-
reperfusion injury. J. Pathol. 234, 538-547. doi: 10.1002/path.4418

Frontiers in Aging Neuroscience | www.frontiersin.org

11 April 2015 | Volume 7 | Article 36


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Brancaccio and Palacios

Epigenetics and signaling in muscle

Ardite, E., Barbera, J. A., Roca, J., and Fernandez-Checa, J. C. (2004). Glutathione
depletion impairs myogenic differentiation of murine skeletal muscle C2C12
cells through sustained NF-kappaB activation. Am. J. Pathol. 165, 719-728.
doi: 10.1016/s0002-9440(10)63335-4

Armand, A. S., Bourajjaj, M., Martinez-Martinez, S., el Azzouzi, H., da Costa
Martins, P. A., Hatzis, P., et al. (2008). Cooperative synergy between NFAT
and MyoD regulates myogenin expression and myogenesis. J. Biol. Chem. 283,
29004-29010. doi: 10.1074/jbc.M801297200

Asp, P., Blum, R,, Vethantham, V., Parisi, F., Micsinai, M., Cheng, J., et al.
(2011). Genome-wide remodeling of the epigenetic landscape during myogenic
differentiation. Proc. Natl. Acad. Sci. U S A 108, E149-E158. doi: 10.1073/pnas.
1102223108

Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M,,
et al. (2006). Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8,
532-538. doi: 10.1038/ncb1403

Bannister, A. J., and Kouzarides, T. (2011). Regulation of chromatin by histone
modifications. Cell Res. 21, 381-395. doi: 10.1038/cr.2011.22

Barja, G. (1999). Mitochondrial oxygen radical generation and leak: sites of
production in states 4 and 3, organ specificity and relation to aging and
longevity. ]. Bioenerg. Biomembr. 31, 347-366. doi: 10.1023/A:10054279
19188

Basu, S., Totty, N. F.,, Irwin, M. S., Sudol, M., and Downward, J. (2003). Akt
phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-
-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11-23. doi: 10.
1016/51097-2765(02)00776-1

Bergman, Y., and Cedar, H. (2013). DNA methylation dynamics in health and
disease. Nat. Struct. Mol. Biol. 20, 274-281. doi: 10.1038/nsmb.2518

Bernet, J. D., Doles, J. D., Hall, J. K., Kelly Tanaka, K., Carter, T. A., and Olwin,
B. B. (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell
self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265-271. doi: 10.
1038/nm.3465

Bernstein, B. E., Meissner, A., and Lander, E. S. (2007). The mammalian
epigenome. Cell 128, 669-681. doi: 10.1016/j.cell.2007.01.033

Bird, A., Taggart, M., Frommer, M., Miller, O. J., and Macleod, D. (1985). A
fraction of the mouse genome that is derived from islands of nonmethylated,
CpG-rich DNA. Cell 40, 91-99. doi: 10.1016/0092-8674(85)90312-5

Bjornson, C. R., Cheung, T. H., Liu, L., Tripathi, P. V., Steeper, K. M., and Rando,
T. A. (2012). Notch signaling is necessary to maintain quiescence in adult
muscle stem cells. Stem Cells 30, 232-242. doi: 10.1002/stem.773

Blackledge, N. P., Farcas, A. M., Kondo, T., King, H. W., McGouran, J. F,,
Hanssen, L. L., et al. (2014). Variant PRC1 complex-dependent H2A
ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell
157, 1445-1459. doi: 10.1016/j.cell.2014.05.004

Blattler, S. M., Cunningham, J. T., Verdeguer, F., Chim, H., Haas, W., Liu, H., et al.
(2012). Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-
induced diabetic-like symptoms through activation of insulin/IGF signaling.
Cell Metab. 15, 505-517. doi: 10.1016/j.cmet.2012.03.008

Blum, R., and Dynlacht, B. D. (2013). The role of MyoD1 and histone
modifications in the activation of muscle enhancers. Epigenetics 8, 778-784.
doi: 10.4161/epi.25441

Blum, R., Vethantham, V., Bowman, C., Rudnicki, M., and Dynlacht, B. D.
(2012). Genome-wide identification of enhancers in skeletal muscle: the role
of MyoD1. Genes Dev. 26, 2763-2779. doi: 10.1101/gad.200113.112

Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J., and Rando, T. A. (2008). A
temporal switch from notch to Wnt signaling in muscle stem cells is necessary
for normal adult myogenesis. Cell Stem Cell 2, 50-59. doi: 10.1016/j.stem.2007.
10.006

Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., et al. (2007).
Increased Wnt signaling during aging alters muscle stem cell fate and increases
fibrosis. Science 317, 807-810. doi: 10.1126/science.1144090

Brack, A. S., Murphy-Seiler, F., Hanifi, J., Deka, J., Eyckerman, S., Keller, C.,
et al. (2009). BCLY is an essential component of canonical Wnt signaling
that mediates the differentiation of myogenic progenitors during muscle
regeneration. Dev. Biol. 335, 93-105. doi: 10.1016/j.ydbio.2009.08.014

Brack, A. S., and Rando, T. A. (2007). Intrinsic changes and extrinsic influences of
myogenic stem cell function during aging. Stem Cell Rev. 3, 226-237. doi: 10.
1007/512015-007-9000-2

Brenman, J. E., Chao, D. S., Xia, H., Aldape, K., and Bredt, D. S. (1995). Nitric
oxide synthase complexed with dystrophin and absent from skeletal muscle

sarcolemma in Duchenne muscular dystrophy. Cell 82, 743-752. doi: 10.
1016/0092-8674(95)90471-9

Buck, M., and Chojkier, M. (1996). Muscle wasting and dedifferentiation induced
by oxidative stress in a murine model of cachexia is prevented by inhibitors of
nitric oxide synthesis and antioxidants. EMBO J. 15, 1753-1765.

Buckingham, M., and Rigby, P. W. (2014). Gene regulatory networks and
transcriptional mechanisms that control myogenesis. Dev. Cell 28, 225-238.
doi: 10.1016/j.devcel.2013.12.020

Burks, T. N., and Cohn, R. D. (2011). Role of TGF-beta signaling in inherited and
acquired myopathies. Skelet Muscle 1:19. doi: 10.1186/2044-5040-1-19

Cacchiarelli, D., Martone, J., Girardi, E., Cesana, M., Incitti, T., Morlando, M., et al.
(2010). MicroRNAs involved in molecular circuitries relevant for the Duchenne
muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS
pathway. Cell Metab. 12, 341-351. doi: 10.1016/j.cmet.2010.07.008

Calabria, E., Ciciliot, S., Moretti, L., Garcia, M., Picard, A., Dyar, K. A., et al. (2009).
NFAT isoforms control activity-dependent muscle fiber type specification.
Proc. Natl. Acad. Sci. U S A 106, 13335-13340. doi: 10.1073/pnas.0812911106

Canalis, E., Economides, A. N., and Gazzerro, E. (2003). Bone morphogenetic
proteins, their antagonists and the skeleton. Endocr. Rev. 24, 218-235. doi: 10.
1210/er.2002-0023

Cao, Y., Yao, Z., Sarkar, D., Lawrence, M., Sanchez, G. J., Parker, M. H., et al.
(2010). Genome-wide MyoD binding in skeletal muscle cells: a potential for
broad cellular reprogramming. Dev. Cell 18, 662-674. doi: 10.1016/j.devcel.
2010.02.014

Castel, D., Mourikis, P., Bartels, S. J., Brinkman, A. B., Tajbakhsh, S., and
Stunnenberg, H. G. (2013). Dynamic binding of RBP] is determined by Notch
signaling status. Genes Dev. 27, 1059-1071. doi: 10.1101/gad.211912.112

Cazzella, V., Martone, J., Pinnaro, C., Santini, T., Twayana, S. S., Sthandier, O.,
et al. (2012). Exon 45 skipping through Ul-snRNA antisense molecules
recovers the Dys-nNOS pathway and muscle differentiation in human DMD
myoblasts. Mol. Ther. 20, 2134-2142. doi: 10.1038/mt.2012.178

Cha, T. L., Zhou, B. P, Xia, W., Wu, Y., Yang, C. C, Chen, C. T,, et al. (2005).
Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in
histone H3. Science 310, 306-310. doi: 10.1126/science.1118947

Chargé, S. B., and Rudnicki, M. A. (2004). Cellular and molecular regulation
of muscle regeneration. Physiol. Rev. 84, 209-238. doi: 10.1152/physrev.
00019.2003

Chen, A. E,, Ginty, D. D., and Fan, C. M. (2005). Protein kinase A signalling via
CREB controls myogenesis induced by Wnt proteins. Nature 433, 317-322.
doi: 10.1038/nature03126

Chen, S. L., Loffler, K. A., Chen, D., Stallcup, M. R., and Muscat, G. E. (2002).
The coactivator-associated arginine methyltransferase is necessary for muscle
differentiation: CARMI coactivates myocyte enhancer factor-2. J. Biol. Chem.
277, 4324-4333. doi: 10.1074/jbc.m109835200

Chiarugi, P., and Cirri, P. (2003). Redox regulation of protein tyrosine
phosphatases during receptor tyrosine kinase signal transduction. Trends
Biochem. Sci. 28, 509-514. doi: 10.1016/s0968-0004(03)00174-9

Choi, J. K. (2010). Contrasting chromatin organization of CpG islands and exons
in the human genome. Genome Biol. 11:R70. doi: 10.1186/gb-2010-11-7-r70

Choi, J., Jang, H., Kim, H., Lee, J. H,, Kim, S. T., Cho, E. J., et al. (2014a).
Modulation of lysine methylation in myocyte enhancer factor 2 during
skeletal muscle cell differentiation. Nucleic Acids Res. 42, 224-234. doi: 10.
1093/nar/gkt873

Choi, M. C., Ryu, S, Hao, R, Wang, B., Kapur, M., Fan, C. M,, et al.
(2014b). HDAC4 promotes Pax7-dependent satellite cell activation and
muscle regeneration. EMBO Rep. 15, 1175-1183. doi: 10.15252/embr.2014
39195

Chow, C. W., and Davis, R. J. (2006). Proteins kinases: chromatin-associated
enzymes? Cell 127, 887-890. doi: 10.1016/j.cell.2006.11.015

Colussi, C., Gurtner, A., Rosati, J., Illi, B., Ragone, G., Piaggio, G., et al. (2009).
Nitric oxide deficiency determines global chromatin changes in Duchenne
muscular dystrophy. FASEB J. 23, 2131-2141. doi: 10.1096/£].08-115618

Colussi, C., Mozzetta, C., Gurtner, A., Illi, B., Rosati, J., Straino, S., et al. (2008).
HDAC?2 blockade by nitric oxide and histone deacetylase inhibitors reveals a
common target in Duchenne muscular dystrophy treatment. Proc. Natl. Acad.
Sci. US A 105, 19183-19187. doi: 10.1073/pnas.0805514105

Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and
Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a
young systemic environment. Nature 433, 760-764. doi: 10.1038/nature03260

Frontiers in Aging Neuroscience | www.frontiersin.org

12 April 2015 | Volume 7 | Article 36


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Brancaccio and Palacios

Epigenetics and signaling in muscle

Conboy, I. M., and Rando, T. A. (2002). The regulation of Notch signaling controls
satellite cell activation and cell fate determination in postnatal myogenesis. Dev.
Cell 3, 397-409. doi: 10.1016/51534-5807(02)00254-x

Consalvi, S., Mozzetta, C., Bettica, P., Germani, M., Fiorentini, F., Del Bene, F.,
etal. (2013). Preclinical studies in the mdx mouse model of duchenne muscular
dystrophy with the histone deacetylase inhibitor givinostat. Mol. Med. 19,

79-87. doi: 10.2119/molmed.2013.00011

Cooper, S., Dienstbier, M., Hassan, R., Schermelleh, L., Sharif, J., Blackledge, N. P.,
et al. (2014). Targeting polycomb to pericentric heterochromatin in embryonic
stem cells reveals a role for H2AK119ul in PRC2 recruitment. Cell Rep. 7,
1456-1470. doi: 10.1016/j.celrep.2014.04.012

Cornelison, D. D., and Wold, B. J. (1997). Single-cell analysis of regulatory gene
expression in quiescent and activated mouse skeletal muscle satellite cells. Dev.
Biol. 191, 270-283. doi: 10.1006/dbi0.1997.8721

Cosgrove, B. D., Gilbert, P. M., Porpiglia, E., Mourkioti, F., Lee, S. P., Corbel, S. Y.,
et al. (2014). Rejuvenation of the muscle stem cell population restores strength
to injured aged muscles. Nat. Med. 20, 255-264. doi: 10.1038/nm.3464

Cuenda, A., and Cohen, P. (1999). Stress-activated protein kinase-2/p38 and a
rapamycin-sensitive pathway are required for C2C12 myogenesis. J. Biol. Chem.
274, 4341-4346. doi: 10.1074/jbc.274.7.4341

Cunningham, J. T., Rodgers, J. T., Arlow, D. H., Vazquez, F., Mootha, V. K,,
and Puigserver, P. (2007). mTOR controls mitochondrial oxidative function
through a YY1-PGC-lalpha transcriptional complex. Nature 450, 736-740.
doi: 10.1038/nature06322

Cuschieri, J., and Maier, R. V. (2005). Mitogen-activated protein kinase (MAPK).
Crit. Care Med. 33, S417-5419. doi: 10.1097/01.CCM.0000191714.39495.A6

Dacwag, C. S., Bedford, M. T,, Sif, S., and Imbalzano, A. N. (2009). Distinct protein
arginine methyltransferases promote ATP-dependent chromatin remodeling
function at different stages of skeletal muscle differentiation. Mol. Cell. Biol.
29, 1909-1921. doi: 10.1128/MCB.00742-08

Dahlqvist, C., Blokzijl, A., Chapman, G., Falk, A., Dannaeus, K., Ibanez, C. F., et al.
(2003). Functional Notch signaling is required for BMP4-induced inhibition
of myogenic differentiation. Development 130, 6089-6099. doi: 10.1242/dev.
00834

Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks,
J. D., et al. (2013). Differential DNA methylation with age displays both
common and dynamic features across human tissues that are influenced by
CpG landscape. Genome Biol. 14:R102. doi: 10.1186/gb-2013-14-9-r102

Delling, U., Tureckova, J., Lim, H. W., De Windt, L. J., Rotwein, P., and Molkentin,
J. D. (2000). A calcineurin-NFATc3-dependent pathway regulates skeletal
muscle differentiation and slow myosin heavy-chain expression. Mol. Cell. Biol.
20, 6600-6611. doi: 10.1128/mcb.20.17.6600-6611.2000

de Nadal, E., and Posas, F. (2010). Multilayered control of gene expression
by stress-activated protein kinases. EMBO J. 29, 4-13. doi: 10.1038/emboj.
2009.346

Deuring, R., Fanti, L., Armstrong, J. A., Sarte, M., Papoulas, O., Prestel, M.,
et al. (2000). The ISWI chromatin-remodeling protein is required for gene
expression and the maintenance of higher order chromatin structure in vivo.
Mol. Cell 5, 355-365. doi: 10.1016/s1097-2765(00)80430-x

Dilworth, F. ], Seaver, K. J., Fishburn, A. L., Htet, S. L., and Tapscott, S. J. (2004).
In vitro transcription system delineates the distinct roles of the coactivators
pCAF and p300 during MyoD/E47-dependent transactivation. Proc. Natl.
Acad. Sci. US A 101, 11593-11598. doi: 10.1073/pnas.0404192101

Di Padova, M., Caretti, G., Zhao, P., Hoffman, E. P, and Sartorelli, V. (2007).
MyoD acetylation influences temporal patterns of skeletal muscle gene
expression. J. Biol. Chem. 282, 37650-37659. doi: 10.1074/jbc.m707309200

Dirks, A.]., and Leeuwenburgh, C. (2006). Tumor necrosis factor alpha signaling
in skeletal muscle: effects of age and caloric restriction. J. Nutr. Biochem. 17,
501-508. doi: 10.1016/j.jnutbio.2005.11.002

Doi, R, Endo, M., Yamakoshi, K., Yamanashi, Y., Nishita, M., Fukada, S., et al.
(2014). Critical role of Frizzled1 in age-related alterations of Wnt/beta-catenin
signal in myogenic cells during differentiation. Genes Cells 19, 287-296. doi: 10.
1111/gtc.12132

Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al.
(2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183.
doi: 10.1038/nature10137

Duquet, A., Polesskaya, A., Cuvellier, S., Ait-Si-Ali, S., Hery, P., Pritchard, L. L.,
et al. (2006). Acetylation is important for MyoD function in adult mice. EMBO
Rep. 7, 1140-1146. doi: 10.1038/sj.embor.7400820

Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., et al.
(2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat.
Genet. 38, 1378-1385. doi: 10.1038/ng1909

Elia, D., Madhala, D., Ardon, E., Reshef, R., and Halevy, O. (2007). Sonic hedgehog
promotes proliferation and differentiation of adult muscle cells: involvement of
MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta 1773, 1438-1446.
doi: 10.1016/j.bbamcr.2007.06.006

Ervasti, J. M., and Sonnemann, K. J. (2008). Biology of the striated muscle
dystrophin-glycoprotein complex. Int. Rev. Cytol. 265, 191-225. doi: 10.
1016/50074-7696(07)65005-0

Feinberg, A. P., and Tycko, B. (2004). The history of cancer epigenetics. Nat. Rev.
Cancer 4, 143-153. doi: 10.1038/nrc1279

Fong, A. P, Yao, Z., Zhong, ]. W., Cao, Y., Ruzzo, W. L., Gentleman, R. C,, et al.
(2012). Genetic and epigenetic determinants of neurogenesis and myogenesis.
Dev. Cell 22, 721-735. doi: 10.1016/j.devcel.2012.01.015

Forcales, S. V., Albini, S., Giordani, L., Malecova, B., Cignolo, L., Chernov, A., et al.
(2012). Signal-dependent incorporation of MyoD-BAF60c into Brgl-based
SWI/SNF chromatin-remodelling complex. EMBO J]. 31, 301-316. doi: 10.
1038/emboj.2011.391

Formicola, L., Marazzi, G., and Sassoon, D. A. (2014). The extraocular muscle stem
cell niche is resistant to ageing and disease. Front. Aging Neurosci. 6:328. doi: 10.
3389/fnagi.2014.00328

Friday, B. B., Horsley, V., and Pavlath, G. K. (2000). Calcineurin activity is required
for the initiation of skeletal muscle differentiation. J. Cell Biol. 149, 657-666.
doi: 10.1083/jcb.149.3.657

Friday, B. B., and Pavlath, G. K. (2001). A calcineurin- and NFAT-dependent
pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J. Cell
Sci. 114, 303-310.

Friedrichs, M., Wirsdoerfer, F., Flohe, S. B., Schneider, S., Wuelling, M., and
Vortkamp, A. (2011). BMP signaling balances proliferation and differentiation
of muscle satellite cell descendants. BMC Cell Biol. 12:26. doi: 10.1186/1471-
2121-12-26

Fu, W., Asp, P., Canter, B., and Dynlacht, B. D. (2014). Primary cilia control
hedgehog signaling during muscle differentiation and are deregulated in
rhabdomyosarcoma. Proc. Natl. Acad. Sci. U S A 111, 9151-9156. doi: 10.
1073/pnas.1323265111

Fulco, M., Schiltz, R. L., Tezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., et al. (2003).
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox
state. Mol. Cell 12, 51-62. doi: 10.1016/s1097-2765(03)00226-0

Garcfa-Prat, L., Sousa-Victor, P., and Mufoz-Cénoves, P. (2013). Functional
dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.
FEBS J. 280, 4051-4062. doi: 10.1111/febs.12221

Gardiner-Garden, M., and Frommer, M. (1987). CpG islands in vertebrate
genomes. J. Mol. Biol. 196, 261-282. doi: 10.1016/0022-2836(87)90689-9

George, R. M., Biressi, S., Beres, B. J., Rogers, E., Mulia, A. K., Allen, R. E,,
et al. (2013). Numb-deficient satellite cells have regeneration and proliferation
defects. Proc. Natl. Acad. Sci. U S A 110, 18549-18554. doi: 10.1073/pnas.
1311628110

Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., Sacco, A., Leonardi, N. A,,
Kraft, P., et al. (2011). Substrate elasticity regulates skeletal muscle stem
cell self-renewal in culture. Science 329, 1078-1081. doi: 10.1126/science.11
91035

Gillespie, M. A., Le Grand, F., Scimg, A., Kuang, S., von Maltzahn, J., Seale, V., et al.
(2009). p38-gamma-dependent gene silencing restricts entry into the myogenic
differentiation program. J. Cell Biol. 187, 991-1005. doi: 10.1083/jcb.200907037

Goll, M. G., and Bestor, T. H. (2005). Eukaryotic cytosine methyltransferases.
Annu. Rev. Biochem. 74, 481-514. doi: 10.1146/annurev.biochem.74.010904.
153721

Griine, T., Brzeski, J., Eberharter, A., Clapier, C. R., Corona, D. F., Becker,
P. B., et al. (2003). Crystal structure and functional analysis of a nucleosome
recognition module of the remodeling factor ISWI. Mol. Cell 12, 449-460.
doi: 10.1016/s1097-2765(03)00273-9

Guardiola, O., Lafuste, P., Brunelli, S., Taconis, S., Touvier, T., Mourikis, P., et al.
(2012). Cripto regulates skeletal muscle regeneration and modulates satellite
cell determination by antagonizing myostatin. Proc. Natl. Acad. Sci. U S A 109,
E3231-E3240. doi: 10.1073/pnas.1204017109

Guasconi, V., and Puri, P. L. (2009). Chromatin: the interface between extrinsic
cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol. 19,
286-294. doi: 10.1016/.tcb.2009.03.002

Frontiers in Aging Neuroscience | www.frontiersin.org

13 April 2015 | Volume 7 | Article 36


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Brancaccio and Palacios

Epigenetics and signaling in muscle

Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G., and Baldwin,
A. S.Jr. (1999). NF-kappaB controls cell growth and differentiation through
transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785-5799.

He, Y. F, Li, B. Z,, Li, Z,, Liu, P.,, Wang, Y., Tang, Q,, et al. (2011). Tet-mediated
formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
Science 333, 1303-1307. doi: 10.1126/science.1210944

Hendrich, B., and Bird, A. (1998). Identification and characterization of a
family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18,
6538-6547.

Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A., and Bird, A. (2001). Closely
related proteins MBD2 and MBD3 play distinctive but interacting roles in
mouse development. Genes Dev. 15, 710-723. doi: 10.1101/gad.194101

Himeda, C. L., Barro, M. V., and Emerson, C. P. Jr. (2013). Pax3 synergizes with
Gli2 and Zicl in transactivating the Myf5 epaxial somite enhancer. Dev. Biol.
383, 7-14. doi: 10.1016/j.ydbio.2013.09.006

Hoey, T., Sun, Y. L., Williamson, K., and Xu, X. (1995). Isolation of two new
members of the NF-AT gene family and functional characterization of the NF-
AT proteins. Immunity 2, 461-472. doi: 10.1016/1074-7613(95)90027-6

Hogan, P. G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation
by calcium, calcineurin and NFAT. Genes Dev. 17, 2205-2232. doi: 10.
1101/gad.1102703

Hong, W., and Guan, K. L. (2012). The YAP and TAZ transcription co-activators:
key downstream effectors of the mammalian Hippo pathway. Semin. Cell Dev.
Biol. 23, 785-793. doi: 10.1016/j.semcdb.2012.05.004

Horsley, V., Friday, B. B., Matteson, S., Kegley, K. M., Gephart, J., and Pavlath,
G. K. (2001). Regulation of the growth of multinucleated muscle cells by
an NFATC2-dependent pathway. J. Cell Biol. 153, 329-338. doi: 10.1083/jcb.
153.2.329

Horsley, V., and Pavlath, G. K. (2002). NFAT: ubiquitous regulator of cell
differentiation and adaptation. J. Cell Biol. 156, 771-774. doi: 10.1083/jcb.
200111073

Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo
signaling pathway coordinately regulates cell proliferation and apoptosis by
inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434.
doi: 10.1016/j.cell.2005.06.007

Huang, P., Zhao, X. S., Fields, M., Ransohoff, R. M., and Zhou, L. (2009). Imatinib
attenuates skeletal muscle dystrophy in mdx mice. FASEB J. 23, 2539-2548.
doi: 10.1096/1j.09-129833

Tezzi, S., Di Padova, M., Serra, C., Caretti, G., Simone, C., Maklan, E., et al.
(2004). Deacetylase inhibitors increase muscle cell size by promoting myoblast
recruitment and fusion through induction of follistatin. Dev. Cell 6, 673-684.
doi: 10.1016/s1534-5807(04)00107-8

Jeon, Y. H., Park, Y. H, Lee, J. H, Hong, J. H, and Kim, . Y. (2014).
Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ
binding to 14-3-3 protein. Biochim. Biophys. Acta 1843, 1356-1364. doi: 10.
1016/j.bbamcr.2014.04.002

Jeong, H., Bae, S., An, S. Y., Byun, M. R, Hwang, J. H., Yaffe, M. B., et al. (2010).
TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB
J. 24, 3310-3320. doi: 10.1096/1j.09-151324

Jiang, J., and Hui, C. C. (2008). Hedgehog signaling in development and cancer.
Dev. Cell 15, 801-812. doi: 10.1016/j.devcel.2008.11.010

Jin, L., Jiang, Z., Xia, Y., Lou, P., Chen, L., Wang, H., et al. (2014). Genome-wide
DNA methylation changes in skeletal muscle between young and middle-aged
pigs. BMC Genomics 15:653. doi: 10.1186/1471-2164-15-653

Joe, A. W,, Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., et al. (2010).
Muscle injury activates resident fibro/adipogenic progenitors that facilitate
myogenesis. Nat. Cell Biol. 12, 153-163. doi: 10.1038/ncb2015

Judson, R. N, Tremblay, A. M., Knopp, P., White, R. B, Urcia, R., De Bari, C., et al.
(2012). The Hippo pathway member Yap plays a key role in influencing fate
decisions in muscle satellite cells. J. Cell Sci. 125, 6009-6019. doi: 10.1242/jcs.
109546

Kaliman, P., Canicio, J., Testar, X., Palacin, M., and Zorzano, A. (1999). Insulin-
like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and
inducible nitric-oxide synthase define a common myogenic signaling pathway.
J. Biol. Chem. 274, 17437-17444. doi: 10.1074/jbc.274.25.17437

Kasten, M., Szerlong, H., Erdjument-Bromage, H., Tempst, P., Werner, M., and
Cairns, B. R. (2004). Tandem bromodomains in the chromatin remodeler RSC
recognize acetylated histone H3 Lys14. EMBO J. 23, 1348-1359. doi: 10.1038/sj.
emboj.7600143

Katoh, M. (2007). WNT signaling pathway and stem cell signaling network. Clin.
Cancer Res. 13, 4042-4045. doi: 10.1158/1078-0432.ccr-06-2316

Kawabe, Y., Wang, Y. X.,, McKinnell, I. W., Bedford, M. T., and Rudnicki,
M. A. (2012). Carml regulates Pax7 transcriptional activity through MLL1/2
recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell 11,
333-345. doi: 10.1016/j.stem.2012.07.001

Kegley, K. M., Gephart, J., Warren, G. L., and Pavlath, G. K. (2001). Altered
primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in
the adult. Dev. Biol. 232, 115-126. doi: 10.1006/dbio.2001.0179

Klose, R. J., and Zhang, Y. (2007). Regulation of histone methylation by
demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8, 307-318.
doi: 10.1038/nrm2143

Kohli, R. M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA
demethylation. Nature 502, 472-479. doi: 10.1038/nature12750

Koleva, M., Kappler, R., Vogler, M., Herwig, A., Fulda, S., and Hahn, H. (2005).
Pleiotropic effects of sonic hedgehog on muscle satellite cells. Cell. Mol. Life
Sci. 62, 1863-1870. doi: 10.1007/s00018-005-5072-9

Kollias, H. D., Perry, R. L., Miyake, T., Aziz, A., and McDermott, ]J. C. (2006).
Smad7 promotes and enhances skeletal muscle differentiation. Mol. Cell. Biol.
26, 6248-6260. doi: 10.1128/mcb.00384-06

Kopan, R., and Ilagan, M. X. (2009). The canonical Notch signaling pathway:
unfolding the activation mechanism. Cell 137, 216-233. doi: 10.1016/j.cell.
2009.03.045

Kouzarides, T. (1999). Histone acetylases and deacetylases in cell proliferation.
Curr. Opin. Genet. Dev. 9, 40-48. doi: 10.1016/50959-437x(99)80006-9

Kiihl, M. (2004). The WNT/calcium pathway: biochemical mediators, tools and
future requirements. Front. Biosci. 9, 967-974. doi: 10.2741/1307

Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001).
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.
Nature 410, 116-120. doi: 10.1038/35065132

Langen, R. C., Schols, A. M., Kelders, M. C., Wouters, E. F., and Janssen-Heininger,
Y. M. (2001). Inflammatory cytokines inhibit myogenic differentiation through
activation of nuclear factor-kappaB. FASEB J. 15, 1169-1180. doi: 10.1096/fj.
00-0463

Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., and Kambadur,
R. (2002). Myostatin inhibits myoblast differentiation by down-regulating
MyoD expression. J. Biol. Chem. 277, 49831-49840. doi: 10.1074/jbc.m2042
91200

Laplante, M., and Sabatini, D. M. (2012). mTOR signaling in growth control and
disease. Cell 149, 274-293. doi: 10.1016/j.cell.2012.03.017

Lassar, A. B. (2009). The p38 MAPK family, a pushmi-pullyu of skeletal
muscle differentiation. J. Cell Biol. 187, 941-943. doi: 10.1083/jcb.2009
11123

Le Grand, F., Jones, A. E., Seale, V., Scime, A., and Rudnicki, M. A. (2009). Wnt7a
activates the planar cell polarity pathway to drive the symmetric expansion of
satellite stem cells. Cell Stem Cell 4, 535-547. doi: 10.1016/j.stem.2009.03.013

Ling, B. M., Bharathy, N., Chung, T. K., Kok, W. K., Li, S., Tan, Y. H., et al. (2012a).
Lysine methyltransferase G9a methylates the transcription factor MyoD and
regulates skeletal muscle differentiation. Proc. Natl. Acad. Sci. U S A 109,
841-846. doi: 10.1073/pnas.1111628109

Ling, B. M., Gopinadhan, S., Kok, W. K., Shankar, S. R., Gopal, P., Bharathy, N.,
et al. (2012b). G9a mediates Sharp-1-dependent inhibition of skeletal muscle
differentiation. Mol. Biol. Cell 23, 4778-4785. doi: 10.1091/mbc.e12-04-0311

Liu, L., Cheung, T. H., Charville, G. W., Hurgo, B. M., Leavitt, T., Shih, J.,
et al. (2013). Chromatin modifications as determinants of muscle stem cell
quiescence and chronological aging. Cell Rep. 4, 189-204. doi: 10.1016/j.celrep.
2013.05.043

Liu, D., Kang, J. S., and Derynck, R. (2004). TGF-beta-activated Smad3 represses
MEF2-dependent transcription in myogenic differentiation. EMBO J. 23,
1557-1566. doi: 10.1038/sj.emboj.7600179

Liu, L., and Rando, T. A. (2011). Manifestations and mechanisms of stem cell
aging. J. Cell Biol. 193, 257-266. doi: 10.1083/jcb.201010131

Lluis, F., Ballestar, E., Suelves, M., Esteller, M., and Munoz-Céanoves, P. (2005).
E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and
muscle-specific gene transcription. EMBO J. 24, 974-984. doi: 10.1038/sj.
emboj.7600528

Lluis, F., Perdiguero, E., Nebreda, A. R., and Munoz-Cénoves, P. (2006).
Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell
Biol. 16, 36-44. doi: 10.1016/j.tcb.2005.11.002

Frontiers in Aging Neuroscience | www.frontiersin.org

14 April 2015 | Volume 7 | Article 36


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Brancaccio and Palacios

Epigenetics and signaling in muscle

Lu, J., McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2000). Regulation of skeletal
myogenesis by association of the MEF2 transcription factor with class IT histone
deacetylases. Mol. Cell 6, 233-244. doi: 10.1016/s1097-2765(00)00025-3

Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.
(1997). Crystal structure of the nucleosome core particle at 2.8 A resolution.
Nature 389, 251-260. doi: 10.1038/38444

Ma, K, Chan, J. K, Zhu, G., and Wu, Z. (2005). Myocyte enhancer factor 2
acetylation by p300 enhances its DNA binding activity, transcriptional activity
and myogenic differentiation. Mol. Cell. Biol. 25, 3575-3582. doi: 10.1128/mcb.
25.9.3575-3582.2005

MacDonald, M. J.,, and Marshall, L. K. (2000). Mouse lacking NAD+-linked
glycerol phosphate dehydrogenase has normal pancreatic beta cell function but
abnormal metabolite pattern in skeletal muscle. Arch. Biochem. Biophys. 384,
143-153. doi: 10.1006/abbi.2000.2107

Mal, A., Sturniolo, M., Schiltz, R. L., Ghosh, M. K., and Harter, M. L. (2001). A
role for histone deacetylase HDACI in modulating the transcriptional activity
of MyoD: inhibition of the myogenic program. EMBO J. 20, 1739-1753. doi: 10.
1093/emboj/20.7.1739

Mallappa, C., Hu, Y. J., Shamulailatpam, P., Tae, S., Sif, S., and Imbalzano, A. N.
(2011). The expression of myogenic microRNAs indirectly requires protein
arginine methyltransferase (Prmt)5 but directly requires Prmt4. Nucleic Acids
Res. 39, 1243-1255. doi: 10.1093/nar/gkq896

Margueron, R., and Reinberg, D. (2011). The Polycomb complex PRC2 and its
mark in life. Nature 469, 343-349. doi: 10.1038/nature09784

Martens, J. A., and Winston, F. (2002). Evidence that Swi/Snf directly represses
transcription in S. cerevisiae. Genes Dev. 16, 2231-2236. doi: 10.1101/gad.
1009902

Matsumura, K., Tomé, F. M., Collin, H., Leturcq, F., Jeanpierre, M., Kaplan,
J. C., et al. (1994). Expression of dystrophin-associated proteins in dystrophin-
positive muscle fibers (revertants) in Duchenne muscular dystrophy.
Neuromuscul. Disord. 4, 115-120. doi: 10.1016/0960-8966(94)90002-7

Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol.
9, 493-495. doi: 10.1083/jcb.9.2.493

McGill, M. A., and McGlade, C. J. (2003). Mammalian numb proteins promote
Notchl receptor ubiquitination and degradation of the Notchl intracellular
domain. J. Biol. Chem. 278, 23196-23203. doi: 10.1074/jbc.m302827200

McKinnell, I. W., Ishibashi, J., Le Grand, F., Punch, V. G., Addicks, G. C,,
Greenblatt, J. F., et al. (2008). Pax7 activates myogenic genes by recruitment
of a histone methyltransferase complex. Nat. Cell Biol. 10, 77-84. doi: 10.
1038/ncb1671

McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000). Signal-dependent
nuclear export of a histone deacetylase regulates muscle differentiation. Nature
408, 106-111. doi: 10.1038/35040593

McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2001). Identification of a signal-
responsive nuclear export sequence in class II histone deacetylases. Mol. Cell.
Biol. 21, 6312-6321. doi: 10.1128/MCB.21.18.6312-6321.2001

Minetti, G. C., Colussi, C., Adami, R,, Serra, C., Mozzetta, C., Parente, V., et al.
(2006). Functional and morphological recovery of dystrophic muscles in mice
treated with deacetylase inhibitors. Nat. Med. 12, 1147-1150. doi: 10.3410/f.
1046893.496918

Mitchell, K. J., Pannérec, A., Cadot, B., Parlakian, A., Besson, V., Gomes, E. R,,
et al. (2010). Identification and characterization of a non-satellite cell muscle
resident progenitor during postnatal development. Nat. Cell Biol. 12, 257-266.
doi: 10.1038/ncb2025

Miyazawa, K. (2010). Hepatocyte growth factor activator (HGFA): a serine
protease that links tissue injury to activation of hepatocyte growth factor. FEBS
J. 277,2208-2214. doi: 10.1111/j.1742-4658.2010.07637.x

Montcouquiol, M., Rachel, R. A., Lanford, P. J., Copeland, N. G., Jenkins,
N. A, and Kelley, M. W. (2003). Identification of Vangl2 and Scrbl as
planar polarity genes in mammals. Nature 423, 173-177. doi: 10.1038/nature
01618

Mourikis, P., Gopalakrishnan, S., Sambasivan, R., and Tajbakhsh, S. (2012a). Cell-
autonomous Notch activity maintains the temporal specification potential of
skeletal muscle stem cells. Development 139, 4536-4548. doi: 10.1242/dev.
084756

Mourikis, P., Sambasivan, R., Castel, D., Rocheteau, P., Bizzarro, V., and
Tajbakhsh, S. (2012b). A critical requirement for notch signaling in
maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30,
243-252. doi: 10.1002/stem.775

Mousavi, K., Zare, H., Dell’'orso, S., Grontved, L., Gutierrez-Cruz, G., Derfoul,
A, et al. (2013). eRNAs promote transcription by establishing chromatin
accessibility at defined genomic loci. Mol. Cell 51, 606-617. doi: 10.1016/j.
molcel.2013.07.022

Mousavi, K., Zare, H., Wang, A. H., and Sartorelli, V. (2012). Polycomb protein
Ezh1 promotes RNA polymerase II elongation. Mol. Cell 45, 255-262. doi: 10.
1016/j.molcel.2011.11.019

Moustakas, A. (2002). Smad signalling network. J. Cell Sci. 115, 3355-3356.

Mozzetta, C., Consalvi, S., Saccone, V., Forcales, S. V., Puri, P. L, and
Palacios, D. (2011). Selective control of Pax7 expression by TNF-activated
p38alpha/polycomb repressive complex 2 (PRC2) signaling during muscle
satellite cell differentiation. Cell Cycle 10, 191-198. doi: 10.4161/cc.10.2.14441

Mozzetta, C., Consalvi, S., Saccone, V., Tierney, M., Diamantini, A., Mitchell,
K. J., et al. (2013). Fibroadipogenic progenitors mediate the ability of HDAC
inhibitors to promote regeneration in dystrophic muscles of young, but not old
Mdx mice. EMBO Mol. Med. 5, 626-639. doi: 10.1002/emmm.201202096

Munoz-Cénoves, P., Scheele, C., Pedersen, B. K., and Serrano, A. L. (2013).
Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?
FEBS J. 280, 4131-4148. doi: 10.1111/febs.12338

Murakami, M., Tominaga, J., Makita, R., Uchijima, Y., Kurihara, Y., Nakagawa, O.,
et al. (2006). Transcriptional activity of Pax3 is co-activated by TAZ. Biochem.
Biophys. Res. Commun. 339, 533-539. doi: 10.1016/j.bbrc.2005.10.214

Murphy, M. M., Keefe, A. C., Lawson, J. A., Flygare, S. D., Yandell, M., and Kardon,
G. (2014). Transiently active Wnt/B-catenin signaling is not required but must
be silenced for stem cell function during muscle regeneration. Stem Cell Reports
3, 475-488. doi: 10.1016/j.stemcr.2014.06.019

Nakane, M., Schmidt, H. H., Pollock, J. S., Forstermann, U., and Murad, F.
(1993). Cloned human brain nitric oxide synthase is highly expressed in skeletal
muscle. FEBS Lett. 316, 175-180. doi: 10.1016/0014-5793(93)81210-q

Nan, X., Meehan, R. R., and Bird, A. (1993). Dissection of the methyl-CpG
binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21,
4886-4892. doi: 10.1093/nar/21.21.4886

Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N,
et al. (1998). Transcriptional repression by the methyl-CpG-binding protein
MeCP2 involves a histone deacetylase complex. Nature 393, 386-389. doi: 10.
1038/30764

Nathan, C., and Xie, Q. W. (1994). Nitric oxide synthases: roles, tolls and controls.
Cell 78, 915-918. doi: 10.1016/0092-8674(94)90266-6

Ng, S. S., Yue, W. W., Oppermann, U., and Klose, R. J. (2009). Dynamic protein
methylation in chromatin biology. Cell. Mol. Life Sci. 66, 407-422. doi: 10.
1007/s00018-008-8303-z

Ng, H. H.,, Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-
Bromage, H., et al. (1999). MBD2 is a transcriptional repressor belonging to the
MeCP1 histone deacetylase complex. Nat. Genet. 23, 58-61. doi: 10.1038/12659

Nott, A., Watson, P. M., Robinson, J. D., Crepaldi, L., and Riccio, A. (2008).
S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in
neurons. Nature 455, 411-415. doi: 10.1038/nature07238

Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res. 18, 523-527.
doi: 10.1038/cr.2008.47

Ong, M. L., and Holbrook, J. D. (2014). Novel region discovery method for
Infinium 450K DNA methylation data reveals changes associated with aging
in muscle and neuronal pathways. Aging Cell 13, 142-155. doi: 10.1111/acel.
12159

Ono, Y., Calhabeu, F., Morgan, J. E., Katagiri, T., Amthor, H., and Zammit, P. S.
(2011). BMP signalling permits population expansion by preventing premature
myogenic differentiation in muscle satellite cells. Cell Death Differ. 18,222-234.
doi: 10.1038/cdd.2010.95

Palacios, D., Mozzetta, C., Consalvi, S., Caretti, G., Saccone, V., Proserpio, V.,
etal. (2010). TNF/p38a/polycomb signaling to Pax7 locus in satellite cells links
inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell
7, 455-469. doi: 10.1016/j.stem.2010.08.013

Palacios, D., and Puri, P. L. (2006). The epigenetic network regulating muscle
development and regeneration. J. Cell. Physiol. 207, 1-11. doi: 10.1002/jcp.
20489

Pan, D. (2010). The hippo signaling pathway in development and cancer. Dev. Cell
19, 491-505. doi: 10.1016/j.devcel.2010.09.011

Pannérec, A., Formicola, L., Besson, V., Marazzi, G., and Sassoon, D. A. (2013).
Defining skeletal muscle resident progenitors and their cell fate potentials.
Development 140, 2879-2891. doi: 10.1242/dev.089326

Frontiers in Aging Neuroscience | www.frontiersin.org

15 April 2015 | Volume 7 | Article 36


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Brancaccio and Palacios

Epigenetics and signaling in muscle

Park, G. H,, Jeong, H., Jeong, M. G., Jang, E. J., Bae, M. A,, Lee, Y. L., et al.
(2014). Novel TAZ modulators enhance myogenic differentiation and muscle
regeneration. Br. J. Pharmacol. 171, 4051-4061. doi: 10.1111/bph.12755

Parsons, S. A., Wilkins, B. J., Bueno, O. F., and Molkentin, J. D. (2003). Altered
skeletal muscle phenotypes in calcineurin A and Ap gene-targeted mice. Mol.
Cell. Biol. 23, 4331-4343. doi: 10.1128/mcb.23.12.4331-4343.2003

Phillips, T., and Leeuwenburgh, C. (2005). Muscle fiber specific apoptosis
and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie
restriction. FASEB J. 19, 668-670. doi: 10.1096/1j.04-2870fje

Piao, Y.J., Seo, Y. H., Hong, F., Kim, J. H., Kim, Y. J., Kang, M. H., et al. (2005). Nox
2 stimulates muscle differentiation via NF-kappaB/iNOS pathway. Free Radic.
Biol. Med. 38, 989-1001. doi: 10.1016/j.freeradbiomed.2004.11.011

Piccolo, F. M., and Fisher, A. G. (2014). Getting rid of DNA methylation. Trends
Cell Biol. 24, 136-143. doi: 10.1016/j.tcb.2013.09.001

Pokholok, D. K., Zeitlinger, J., Hannett, N. M., Reynolds, D. B, and Young, R. A.
(2006). Activated signal transduction kinases frequently occupy target genes.
Science 313, 533-536. doi: 10.1126/science.1127677

Polesskaya, A., Seale, P., and Rudnicki, M. A. (2003). Wnt signaling induces
the myogenic specification of resident CD45+ adult stem cells during muscle
regeneration. Cell 113, 841-852. doi: 10.1016/50092-8674(03)00437-9

Potthoff, M. J., and Olson, E. N. (2007). MEF2: a central regulator of diverse
developmental programs. Development 134, 4131-4140. doi: 10.1242/dev.
008367

Price, F. D., von Maltzahn, J., Bentzinger, C. F., Dumont, N. A, Yin, H., Chang,
N. C, et al. (2014). Inhibition of JAK-STAT signaling stimulates adult satellite
cell function. Nat. Med. 20, 1174-1181. doi: 10.1038/nm.3655

Puri, P. L., Iezzi, S., Stiegler, P., Chen, T. T., Schiltz, R. L., Muscat, G. E,,
et al. (2001). Class I histone deacetylases sequentially interact with MyoD and
pRb during skeletal myogenesis. Mol. Cell 8, 885-897. doi: 10.1016/51097-
2765(01)00373-2

Puri, P. L., and Sartorelli, V. (2000). Regulation of muscle regulatory factors
by DNA-binding, interacting proteins and post-transcriptional modifications.
J. Cell. Physiol. 185, 155-173. doi: 10.1002/1097-4652(200011)185:2<155::aid-
jepl>3.0.co;2-z

Radley, H. G., Davies, M. J., and Grounds, M. D. (2008). Reduced muscle necrosis
and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF)
treatment. Neuromuscul. Disord. 18, 227-238. doi: 10.1016/j.nmd.2007.11.002

Ramirez-Carrozzi, V. R., Braas, D., Bhatt, D. M., Cheng, C. S., Hong, C., Doty,
K. R, et al. (2009). A unifying model for the selective regulation of inducible
transcription by CpG islands and nucleosome remodeling. Cell 138, 114-128.
doi: 10.1016/j.cell.2009.04.020

Rampalli, S., Li, L., Mak, E., Ge, K., Brand, M., Tapscott, S. J., et al. (2007). p38
MAPK signaling regulates recruitment of Ash2L-containing methyltransferase
complexes to specific genes during differentiation. Nat. Struct. Mol. Biol. 14,
1150-1156. doi: 10.1038/nsmb1316

Rebbapragada, A., Benchabane, H., Wrana, J. L., Celeste, A. J., and Attisano,
L. (2003). Myostatin signals through a transforming growth factor beta-like
signaling pathway to block adipogenesis. Mol. Cell. Biol. 23,7230-7242. doi: 10.
1128/mcb.23.20.7230-7242.2003

Riising, E. M., Comet, I, Leblanc, B., Wu, X,, Johansen, J. V., and Helin, K. (2014).
Gene silencing triggers polycomb repressive complex 2 recruitment to CpG
islands genome wide. Mol. Cell 55, 347-360. doi: 10.1016/j.molcel.2014.06.005

Rochat, A., Fernandez, A., Vandromme, M., Molés, J. P., Bouschet, T., Carnac,
G., et al. (2004). Insulin and wntl pathways cooperate to induce reserve cell
activation in differentiation and myotube hypertrophy. Mol. Biol. Cell 15,
4544-4555. doi: 10.1091/mbc.e03-11-0816

Rodgers, J. T., King, K. Y., Brett, J. O., Cromie, M. J., Charville, G. W., Maguire,
K. K, etal. (2014). mTORCI controls the adaptive transition of quiescent stem
cells from GO to G(Alert). Nature 510, 393-396. doi: 10.1038/nature13255

Saccone, V., Consalvi, S., Giordani, L., Mozzetta, C., Barozzi, 1., Sandona, M.,
et al. (2014). HDAC-regulated myomiRs control BAF60 variant exchange and
direct the functional phenotype of fibro-adipogenic progenitors in dystrophic
muscles. Genes Dev. 28, 841-857. doi: 10.1101/gad.234468.113

Saha, A., Wittmeyer, J., and Cairns, B. R. (2006). Chromatin remodelling: the
industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7,
437-447. doi: 10.1038/nrm1945

Sartorelli, V., Puri, P. L., Hamamori, Y., Ogryzko, V., Chung, G., Nakatani, Y., et al.
(1999). Acetylation of MyoD directed by PCAF is necessary for the execution of
the muscle program. Mol. Cell 4, 725-734. doi: 10.1016/s1097-2765(00)80383-4

Schlesinger, Y., Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman,
J., et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-
marks genes for de novo methylation in cancer. Nat. Genet. 39, 232-236. doi: 10.
1038/ng1950

Schneider, R., Bannister, A. J., Myers, F. A., Thorne, A. W., Crane-Robinson, C.,
and Kouzarides, T. (2004). Histone H3 lysine 4 methylation patterns in higher
eukaryotic genes. Nat. Cell Biol. 6, 73-77. doi: 10.1038/ncb1076

Schroeter, E. H., Kisslinger, J. A., and Kopan, R. (1998). Notch-1 signalling
requires ligand-induced proteolytic release of intracellular domain. Nature 393,
382-386. doi: 10.1038/30756

Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and
Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic
satellite cells. Cell 102, 777-786. doi: 10.1016/s0092-8674(00)00066-0

Segalés, J., Perdiguero, E., and Munoz-Cénoves, P. (2014). Epigenetic control of
adult skeletal muscle stem cell functions. FEBS J. doi: 10.1111/febs.13065. [Epub
ahead of print].

Serra, C., Palacios, D., Mozzetta, C., Forcales, S. V., Morantte, L, Ripani, M.,
et al. (2007). Functional interdependence at the chromatin level between the
MKK®6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol.
Cell 28, 200-213. doi: 10.1016/j.molcel.2007.08.021

Sethi, J. K., and Vidal-Puig, A. (2010). Wnt signalling and the control of cellular
metabolism. Biochem. J. 427, 1-17. doi: 10.1042/BJ20091866

Shen, M. M., and Schier, A. F. (2000). The EGF-CFC gene family in vertebrate
development. Trends Genet. 16, 303-309. doi: 10.1016/s0168-9525(00)
02006-0

Shi, X., Zhang, Z., Zhan, X., Cao, M., Satoh, T., Akira, S., et al. (2014). An
epigenetic switch induced by Shh signalling regulates gene activation during
development and medulloblastoma growth. Nat. Commun. 5:5425. doi: 10.
1038/ncomms6425

Shinin, V., Gayraud-Morel, B., Gomes, D., and Tajbakhsh, S. (2006). Asymmetric
division and cosegregation of template DNA strands in adult muscle satellite
cells. Nat. Cell Biol. 8, 677-687. doi: 10.1038/ncb1425

Silvagno, F., Xia, H., and Bredt, D. S. (1996). Neuronal nitric-oxide synthase-
mu, an alternatively spliced isoform expressed in differentiated skeletal muscle.
J. Biol. Chem. 271, 11204-11208. doi: 10.1074/jbc.271.19.11204

Simone, C., Forcales, S. V., Hill, D. A., Imbalzano, A. N., Latella, L., and Puri,
P. L. (2004). p38 pathway targets SWI-SNF chromatin-remodeling complex to
muscle-specific loci. Nat. Genet. 36, 738-743. doi: 10.1038/ng1378

Sinha, M., Jang, Y. C,, Oh, J., Khong, D., Wu, E. Y., Manohar, R, et al. (2014).
Restoring systemic GDFI11 levels reverses age-related dysfunction in mouse
skeletal muscle. Science 344, 649-652. doi: 10.1126/science.1251152

Sousa-Victor, P., Gutarra, S., Garcia-Prat, L., Rodriguez-Ubreva, J., Ortet, L.,
Ruiz-Bonilla, V., et al. (2014). Geriatric muscle stem cells switch reversible
quiescence into senescence. Nature 506, 316-321. doi: 10.1038/nature13013

Sparmann, A., and van Lohuizen, M. (2006). Polycomb silencers control cell fate,
development and cancer. Nat. Rev. Cancer 6, 846-856. doi: 10.1038/nrc1991

Stark, G. R., and Darnell, J. E. Jr. (2012). The JAK-STAT pathway at twenty.
Immunity 36, 503-514. doi: 10.1016/j.immuni.2012.03.013

Stoick-Cooper, C. L., Moon, R. T., and Weidinger, G. (2007). Advances in
signaling in vertebrate regeneration as a prelude to regenerative medicine.
Genes Dev. 21, 1292-1315. doi: 10.1101/gad.1540507

Stojic, L., Jasencakova, Z., Prezioso, C., Stiitzer, A., Bodega, B., Pasini, D.,
et al. (2011). Chromatin regulated interchange between polycomb repressive
complex 2 (PRC2)-Ezh2 and PRC2-Ezhl complexes controls myogenin
activation in skeletal muscle cells. Epigenetics Chromatin 4:16. doi: 10.
1186/1756-8935-4-16

Straface, G., Aprahamian, T., Flex, A., Gaetani, E., Biscetti, F., Smith, R. C,, et al.
(2009). Sonic hedgehog regulates angiogenesis and myogenesis during post-
natal skeletal muscle regeneration. J. Cell. Mol. Med. 13, 2424-2435. doi: 10.
1111/j.1582-4934.2008.00440.x

Sun, L., Ma, K., Wang, H., Xiao, F., Gao, Y., Zhang, W, et al. (2007). JAK1-STAT1-
STAT3, a key pathway promoting proliferation and preventing premature
differentiation of myoblasts. J. Cell Biol. 179, 129-138. doi: 10.1083/jcb.
200703184

Tatsumi, R., Anderson, J. E., Nevoret, C. J., Halevy, O., and Allen, R. E. (1998).
HGEF/SF is present in normal adult skeletal muscle and is capable of activating
satellite cells. Dev. Biol. 194, 114-128. doi: 10.1006/dbio.1997.8803

Tatsumi, R., Hattori, A., Ikeuchi, Y., Anderson, J. E., and Allen, R. E. (2002).
Release of hepatocyte growth factor from mechanically stretched skeletal

Frontiers in Aging Neuroscience | www.frontiersin.org

16 April 2015 | Volume 7 | Article 36


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Brancaccio and Palacios

Epigenetics and signaling in muscle

muscle satellite cells and role of pH and nitric oxide. Mol. Biol. Cell 13,
2909-2918. doi: 10.1091/mbc.e02-01-0062

Tazi, J., and Bird, A. (1990). Alternative chromatin structure at CpG islands. Cell
60, 909-920. doi: 10.1016/0092-8674(90)90339-g

Tessarz, P., and Kouzarides, T. (2014). Histone core modifications regulating
nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703-708.
doi: 10.1038/nrm3890

Tierney, M. T., Aydogdu, T., Sala, D., Malecova, B., Gatto, S., Puri, P. L., et al.
(2014). STATS3 signaling controls satellite cell expansion and skeletal muscle
repair. Nat. Med. 20, 1182-1186. doi: 10.1038/nm.3656

Torres, M., and Forman, H. J. (2003). Redox signaling and the MAP kinase
pathways. Biofactors 17, 287-296. doi: 10.1002/biof.5520170128

Tremblay, A. M., and Camargo, F. D. (2012). Hippo signaling in mammalian
stem cells. Semin. Cell Dev. Biol. 23, 818-826. doi: 10.1016/j.semcdb.2012.
08.001

Tremblay, A. M., Missiaglia, E., Galli, G. G., Hettmer, S., Urcia, R., Carrara, M.,
et al. (2014). The Hippo transducer YAP1 transforms activated satellite cells
and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer
Cell 26, 273-287. doi: 10.1016/j.ccr.2014.05.029

Trendelenburg, A. U., Meyer, A., Jacobi, C., Feige, J. N, and Glass, D. J. (2012).
TAK-1/p38/nNF«B signaling inhibits myoblast differentiation by increasing
levels of Activin A. Skelet Muscle 2:3. doi: 10.1186/2044-5040-2-3

Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., and Tsuchida, K. (2010).
Mesenchymal progenitors distinct from satellite cells contribute to ectopic
fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143-152. doi: 10.
1038/ncb2014

Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., and Sowers, L. C.
(2004). Oxidative damage to methyl-CpG sequences inhibits the binding of
the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2
(MeCP2). Nucleic Acids Res. 32, 4100-4108. doi: 10.1093/nar/gkh739

van der Velden, J. L., Langen, R. C., Kelders, M. C., Wouters, E. F., Janssen-
Heininger, Y. M., and Schols, A. M. (2006). Inhibition of glycogen synthase
kinase-3beta activity is sufficient to stimulate myogenic differentiation. Am. J.
Physiol. Cell Physiol. 290, C453-C462. doi: 10.1152/ajpcell.00068.2005

Vladar, E. K., Antic, D., and Axelrod, J. D. (2009). Planar cell polarity signaling: the
developing cell’s compass. Cold Spring Harb. Perspect. Biol. 1:a002964. doi: 10.
1101/cshperspect.a002964

Voigt, P., Tee, W. W., and Reinberg, D. (2013). A double take on bivalent
promoters. Genes Dev. 27, 1318-1338. doi: 10.1101/gad.219626.113

Vokes, S. A, Ji, H., Wong, W. H., and McMahon, A. P. (2008). A genome-scale
analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated
patterning of the mammalian limb. Genes Dev. 22, 2651-2663. doi: 10.
1101/gad.1693008

von Maltzahn, J., Bentzinger, C. F., and Rudnicki, M. A. (2011). Wnt7a-Fzd7
signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal
muscle. Nat. Cell Biol. 14, 186-191. doi: 10.1038/ncb2404

von Maltzahn, J., Chang, N. C., Bentzinger, C. F., and Rudnicki, M. A. (2012). Wnt
signaling in myogenesis. Trends Cell Biol. 22, 602-609. doi: 10.1016/j.tcb.2012.
07.008

Wackerhage, H., Del Re, D. P., Judson, R. N., Sudol, M., and Sadoshima, J. (2014).
The Hippo signal transduction network in skeletal and cardiac muscle. Sci.
Signal. 7:re4. doi: 10.1126/scisignal.2005096

Wade, P. A. (2005). SWItching off methylated DNA. Nat. Genet. 37, 212-213.
doi: 10.1038/ng0305-212

Wang, Y. X., Dumont, N. A., and Rudnicki, M. A. (2014). Muscle stem cells at a
glance. J. Cell Sci. 127, 4543-4548. doi: 10.1242/jcs.151209

Wang, Y., Shankar, S. R., Kher, D., Ling, B. M., and Taneja, R. (2013). Sumoylation
of the basic helix-loop-helix transcription factor sharp-1 regulates recruitment
of the histone methyltransferase G9a and function in myogenesis. J. Biol. Chem.
288, 17654-17662. doi: 10.1074/jbc.M113.463257

Wang, K., Wang, C., Xiao, F., Wang, H., and Wu, Z. (2008). JAK2/STAT2/STAT3
are required for myogenic differentiation. J. Biol. Chem. 283, 34029-34036.
doi: 10.1074/jbc.M803012200

Watt, K. I, Judson, R., Medlow, P., Reid, K., Kurth, T. B., Burniston, J. G., et al.
(2010). Yap is a novel regulator of C2C12 myogenesis. Biochem. Biophys. Res.
Commun. 393, 619-624. doi: 10.1016/j.bbrc.2010.02.034

Wen, Y., Bi, P, Liu, W., Asakura, A., Keller, C., and Kuang, S. (2012). Constitutive
Notch activation upregulates Pax7 and promotes the self-renewal of skeletal
muscle satellite cells. Mol. Cell. Biol. 32, 2300-2311. doi: 10.1128/MCB.
06753-11

Winston, F., and Allis, C. D. (1999). The bromodomain: a chromatin-targeting
module? Nat. Struct. Biol. 6, 601-604. doi: 10.1038/10640

Wu, Z., Woodring, P. J., Bhakta, K. S., Tamura, K., Wen, F., Feramisco, J. R, et al.
(2000). p38 and extracellular signal-regulated kinases regulate the myogenic
program at multiple steps. Mol. Cell. Biol. 20, 3951-3964. doi: 10.1128/mcb.
20.11.3951-3964.2000

Yamada, M., Tatsumi, R., Yamanouchi, K., Hosoyama, T., Shiratsuchi, S., Sato,
A, et al. (2010). High concentrations of HGF inhibit skeletal muscle satellite
cell proliferation in vitro by inducing expression of myostatin: a possible
mechanism for reestablishing satellite cell quiescence iin vivo. Am. J. Physiol.
Cell Physiol. 298, C465-C476. doi: 10.1152/ajpcell.00449.2009

Yu, F. X, and Guan, K. L. (2013). The Hippo pathway: regulators and regulations.
Genes Dev. 27, 355-371. doi: 10.1101/gad.210773.112

Yu, F. X,, Zhao, B., Panupinthu, N,, Jewell, J. L., Lian, I, Wang, L. H,, et al.
(2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor
signaling. Cell 150, 780-791. doi: 10.1016/j.cell.2012.06.037

Zaccagnini, G., Martelli, F., Magenta, A., Cencioni, C., Fasanaro, P., Nicoletti, C.,
etal. (2007). p66(ShcA) and oxidative stress modulate myogenic differentiation
and skeletal muscle regeneration after hind limb ischemia. J. Biol. Chem. 282,
31453-31459. doi: 10.1074/jbc.m702511200

Zetser, A., Gredinger, E., and Bengal, E. (1999). p38 mitogen-activated protein
kinase pathway promotes skeletal muscle differentiation. Participation of the
Mef2c transcription factor. J. Biol. Chem. 274, 5193-5200. doi: 10.1074/jbc.274.
8.5193

Zhu, S., Goldschmidt-Clermont, P. J., and Dong, C. (2004). Transforming growth
factor-beta-induced inhibition of myogenesis is mediated through Smad
pathway and is modulated by microtubule dynamic stability. Circ. Res. 94, 617-
-625. doi: 10.1161/01.res.0000118599.25944.d5

Zykovich, A., Hubbard, A., Flynn, J. M., Tarnopolsky, M., Fraga, M. F., Kerksick,
C., et al. (2014). Genome-wide DNA methylation changes with age in disease-
free human skeletal muscle. Aging Cell 13, 360-366. doi: 10.1111/acel.12180

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Brancaccio and Palacios. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution and reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org

17 April 2015 | Volume 7 | Article 36


http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

	Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment
	Muscle Regeneration
	Epigenetics: From the DNA Sequence to Differential Gene Expression
	When Signaling Cascades get into the Nucleus
	Calcium-Dependent Chromatin Signaling
	Growth Factor Activated Signaling Pathways
	Inflammatory Signals
	Developmental Programs Re-Activated in Adult Stem Cells
	Redox Status
	Mechano-Transduction

	Age-Dependent Decline of Satellite Cell Function
	Conclusions and Perspectives
	Acknowledgments
	References


