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Alzheimer’s disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released

by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and

γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid

plaque formation. Aβ accumulation is not only dependent on de novo synthesis but

also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ

degradation. Here we investigate the molecular mechanism of NEP regulation, which is

up to now controversially discussed to be affected by APP processing itself. We found

that NEP expression is highly dependent on the APP intracellular domain (AICD), released

by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by

the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS)

1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP

expression, activity and protein level. Similar results were obtained by utilizing cells lacking

a functional AICD domain (APP1CT15) or expressing mutations in the genes encoding

for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could

rescue the down-regulation of NEP further strengthening the link between AICD and

transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein.

Especially AICD generated by the amyloidogenic pathway seems to be more involved

in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six

transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double

knock-out, APP-swedish, APP-swedish/PS11exon9, and APP1CT15) confirmed the

results obtained in cell culture. In summary, in the present study we clearly demonstrate

an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and

elucidate the underlying mechanisms that might be beneficial to develop new therapeutic

strategies for the treatment of AD.
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Introduction

Alzheimer’s disease (AD) is a progressive, irreversible
neurodegenerative disease of the central nervous system and the
most common cause of dementia in the aged population. One
of the focal histopathological hallmarks of AD are extracellular
senile plaques, mainly consisting of aggregated amyloid-β (Aβ)
peptides (Glenner and Wong, 1984; Masters et al., 1985). Aβ

peptides are derived from sequential proteolytic processing of
the amyloid precursor protein (APP), member of a conserved
protein family also including the APP-like proteins 1 and 2
(APLP1 and APLP2) (Wasco et al., 1992, 1993), by β- and
γ-secretase (Selkoe, 2001; Sisodia and St George-Hyslop, 2002).
Initial β-secretase shedding of APP releases soluble β-secreted
APP fragments (sAPPβ) and generates a membrane-tethered
C-terminal fragment of APP, called β-CTF, which is further
cleaved by γ-secretase, generating Aβ peptides of different
lengths (e.g., Aβ37, Aβ40, Aβ42, Aβ46, Aβ49) (Wang et al.,
1996; Zhao et al., 2007; Schieb et al., 2011). The γ-secretase
activity involves a heterotetrameric protein complex (Edbauer
et al., 2003; Kimberly et al., 2003; Takasugi et al., 2003) with
the presenilins, presenilin 1 (PS1) and 2 (PS2), as catalytically
active subunits (Herreman et al., 2000; Zhang et al., 2000; Ahn
et al., 2010). Beside β-secretase cleavage of APP, APP can be
first cleaved by α-secretases in a non-amyloidogenic pathway,
preventing the generation of Aβ peptides. The α-secretases
process APP within the Aβ domain, generating α-secreted APP
(sAPPα) and the C-terminal fragment α-CTF, further cleaved by
γ-secretase to generate p3 (Esch et al., 1990; Haass et al., 1993;
Lichtenthaler, 2011). Processing of α-CTF and β-CTF fragments
by the γ-secretase complex also results in the release of the APP
intracellular domain (AICD) to the cytosol which is discussed to
be involved in gene transcription (Passer et al., 2000; Gao and
Pimplikar, 2001; Cao and Sudhof, 2004; von Rotz et al., 2004;
Pardossi-Piquard and Checler, 2012). Multiple-site cleavages
executed by the γ-secretase complex generate accordingly
AICDs of various lengths including C50, C53, C57, and C59
(Gu et al., 2001; Pinnix et al., 2001; Sastre et al., 2001; Yu et al.,
2001; Sato et al., 2003; Zhang et al., 2012; Pinnix et al., 2013).
However, all of the endogenous AICD isoforms are rarely
detected, because of their rapid degradation in the cytosol by
insulin degrading enzyme (IDE) (Edbauer et al., 2002; Farris
et al., 2003; Miller et al., 2003), the proteasome (Nunan et al.,
2003) and Cathepsin B (Vingtdeux et al., 2007; Asai et al., 2011).
Rapid binding of AICD peptides to adaptor proteins like Fe65
might stabilize released AICD peptides (Kimberly et al., 2001;
Kinoshita et al., 2002), enabling AICD to translocate to the
nucleus and to form a trimeric protein complex with the histone
acetyltransferase Tip60 (AFT-complex) (Cao and Sudhof, 2001;
von Rotz et al., 2004; Grimm et al., 2013). Several potential target
genes of AICD nuclear signaling have been identified (Grimm
et al., 2013), including e.g. enzymes of different lipid pathways
(Grimm et al., 2011a,c, 2012b), glycogen synthase kinase-3β
(Kim et al., 2003), lipoprotein receptor LRP1 (Liu et al., 2007),
and mitochondrial master transcriptional coactivator PGC1α
(Robinson et al., 2014). Interestingly, AICD is also discussed
to regulate transcription of APP and the β-secretase BACE1 as

well as the transcription of neprilysin (NEP) (von Rotz et al.,
2004; Pardossi-Piquard et al., 2005), beside IDE (Farris et al.,
2003; Hersh, 2006) one of the most prominent Aβ-degrading
enzymes (Iwata et al., 2000, 2001; Hersh and Rodgers, 2008).
For AICD mediated activation of NEP gene expression an
epigenetical mechanism involving the competitive replacement
of histone deacetylases (HDAC) at the NEP regulatory site has
been demonstrated (Belyaev et al., 2009; Nalivaeva et al., 2012).
However, the impact of AICD in transcriptional regulation
of NEP is still controversially discussed (Grimm et al., 2013)
(summarized in Table 1). Summing up, the results in Table 1

clearly show how controversially the impact of AICD on NEP
regulation is discussed in literature. The aim of this study was
to comprehensively elucidate a possible regulation of NEP
expression by AICD. Besides addressing this aim with known
and published systems we generated broad pharmacological
and genetic approaches to unambiguously elucidate the role
of AICD in NEP regulation. Moreover, it was important for
us to confirm our findings in vivo in several transgenic mouse
models. Additionally, we found further evidences supporting
the underlying mechanisms of AICD mediated NEP regulation.
These mechanisms might also be involved in the regulation of
other transcriptional targets discussed in literature, which are
mentioned above. In respect to AD it is important to notice that
NEP has been shown to be reduced in brain areas early affected
in AD and characterized by extensive plaque load (Akiyama
et al., 2001; Yasojima et al., 2001; Carpentier et al., 2002; Russo
et al., 2005; Wang et al., 2005; Miners et al., 2006) indicating the
significance of understanding the regulation of this Aβ degrading
enzyme.

Materials and Methods

Chemicals
Chemicals and cell culture materials were purchased from Sigma
(Taufkirchen, Germany) if not stated otherwise.

Cell Culture
Cultivation
Human neuroblastoma SH-SY5Y wildtype (wt) cells were
cultivated in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal calf serum (FCS) (PAN Biotech, Aidenbach,
Germany) and 0.1mM non-essential amino acid solution
(MEM). For SH-SY5Y cells stably overexpressing APP/APPswe
and α-/β-CTF, culture medium was supplemented with
400µg/ml hygromycin B (PAN Biotech, Aidenbach, Germany)
or 300µg/ml zeocin (Invitrogen, Karlsruhe, Germany),
respectively. SH-SY5Y Fe65 knock-down, IDE knock-down
and the corresponding mock-transfected control cells were also
cultivated in 10% FCS/DMEM supplemented with hygromycin B.

Wildtype mouse embryonic fibroblasts (MEF wt), PS1/2
deficient MEF (MEF PS1/2−/−) (Herreman et al., 2000),
APP/APLP2 deficient MEF (MEF APP/APLP2−/−) (Heber et al.,
2000) andMEF expressing an APP construct that lacks the last 15
amino acids (aa) from the C-terminus (MEF APP1CT15)(Ring
et al., 2007) were cultivated in 10% FCS/DMEM. For MEF
PS1/2−/− retransfected with PS1 wt or PS1 carrying the familial
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TABLE 1 | Summary of studies elucidating the impact of γ-secretase and members of the APP protein family on NEP resulting in inhomogeneous

outcomes (↓, decreased; -, no effect; 1, genetic deletion).

Used celllines/

Mousemodels

NEP expression NEP level NEP activity Rescue?

MEF 1PS11PS2 ↓ (Pardossi-Piquard et al., 2005)

− (Huysseune et al., 2009)

↓ (Pardossi-Piquard et al., 2005)

− (Hébert et al., 2006)

↓ (Chen and Selkoe, 2007)

↓ (Pardossi-Piquard et al., 2005) By expression of PS1, PS2,

PS1+PS2 and AICD50,AICD59;

higher effects by expression of

AICD50/59+ Fe65+ Tip60

(Pardossi-Piquard et al., 2005);

Not by expression of PS1 (Chen

and Selkoe, 2007)

BD8 1PS11PS2 ↓ (Pardossi-Piquard et al., 2005)

− (Chen and Selkoe, 2007)

↓ (Pardossi-Piquard et al., 2005) By expression of AICD50 and

AICD59 (Pardossi-Piquard et al.,

2005);

Not by expression of PS1, PS2

or AICD60+ Fe65+ Tip60 (Chen

and Selkoe, 2007)

1PS11PS2 (conditional)

mouse brain

↓ (Pardossi-Piquard et al., 2005) ↓ (Pardossi-Piquard et al., 2005)

1PS1 mouse embryo brain

(E14, 5)

− (Hébert et al., 2006)

1PS1 mouse brain − (Pardossi-Piquard et al., 2005)

MEF 1Aph1a − (Hébert et al., 2006)

1Aph1a whole mouse

embryo (E9, 5)

− (Hébert et al., 2006)

γ-secretase inhibition in

MEF WT

− with DAPT and γ-secretase

inhibitor X (Hébert et al., 2006)

− with DAPT (Chen and Selkoe,

2007)

↓ with several γ-secretase

inhibitors (Pardossi-Piquard

et al., 2005)

γ-secretase inhibition in

TSM1 neurons

↓ with DFK167

(Pardossi-Piquard et al., 2005)

γ-secretase inhibition in

primary cultured neurons

↓ with DFK167

(Pardossi-Piquard et al., 2005)

γ-secretase inhibition in

Hela WT, cos7 WT and N2a

WT

− with DAPT and γ-secretase

inhibitor X (Hébert et al., 2006)

γ-secretase inhibition in

BD8 WT and HEK293T WT

− with Compound E (Chen and

Selkoe, 2007)

γ-secretase inhibition in

NB7 cells and SK-N-SH

cells

↓ with DAPT (Xu et al., 2011)

MEF1APP1APLP2 ↓ (Pardossi-Piquard et al., 2005) ↓ (Pardossi-Piquard et al., 2005)

− (Hébert et al., 2006)

− (Huysseune et al., 2009)

↓ (Pardossi-Piquard et al., 2005) By expression of ALID1 or ALID2

or AICD50 (Pardossi-Piquard

et al., 2005)

MEF1APP ↓ (Pardossi-Piquard et al., 2005)

− (Huysseune et al., 2009)

↓ (Pardossi-Piquard et al., 2005)

− (Huysseune et al., 2009)

↓ (Pardossi-Piquard et al., 2005) By expression of APP

(Pardossi-Piquard et al., 2005)

MEF1APLP2 ↓ (Pardossi-Piquard et al., 2005) ↓ (Pardossi-Piquard et al., 2005) ↓ (Pardossi-Piquard et al., 2005) By expression of APLP2

(Pardossi-Piquard et al., 2005)

APP knockdown in NB7

cells

↓ (Belyaev et al., 2009)

↓ (Xu et al., 2011)

APP knockdown in

SK-N-SH cells

↓ (Xu et al., 2011)

1APP1APLP2 mouse brain ↓ (Pardossi-Piquard et al., 2005)

1APP1APLP2 embryonic

brain (E15, 5)

− (Hébert et al., 2006) − (Hébert et al., 2006)

1APP1APLP1 mouse brain ↓ (Pardossi-Piquard et al., 2005)

1APP mouse brain − (Chen and Selkoe, 2007) ↓ (Pardossi-Piquard et al., 2005)

− (Chen and Selkoe, 2007)

1APLP2 mouse brain − (Chen and Selkoe, 2007) − (Chen and Selkoe, 2007)
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AD (FAD) T354I mutation (Grimm et al., 2005), cell culture
medium was supplemented with 300µg/ml zeocin.

Incubations
Cells were cultured until attaining confluence. 16 h prior to
incubation FCS content of the culture medium was reduced
to 1%. Then cells were treated with 5µM α-secretase inhibitor
GM6001 (Calbiochem, Darmstadt, Germany), 500 nM β-
secretase inhibitor IV (Calbiochem, Darmstadt, Germany), 2µM
γ-secretase inhibitor X (Calbiochem, Darmstadt, Germany)
or 10µM human insulin for 24 h with a medium change after
12 h in 1% FCS/DMEM; control cells were treated with the
corresponding solvent.

To determine the effects of AICD peptide, MEF APP1CT15
cells were treated with synthetic AICD peptide (sequence in
1-letter code: KMQQNGYENPTYKFFEQMQN) (Genscript
Corporation, Piscatway, USA). For long term AICD incubation
2µM AICD was incubated on cells over a period of 9 days
with medium change every 12 h in 10% FCS/DMEM; short time
incubation (12 h) was performed by using 2,5µM AICD and
the protein delivery reagent Saint PhD (Synvolux Therapeutics,
Groningen, The Netherlands) according to manufacturer’s
protocol. For AICD uptake analysis FITC-tagged AICD
peptides (Genscript Corporation, Piscatway, USA) were used for
incubations. Incubation of MEF with human Aβ40/42 peptides
in a physiological ratio was performed in analogy to long term
AICD incubation. The final concentrations of Aβ40 and Aβ42 in
cell culture medium were 40 and 4 ng/ml, respectively.

Transfections
All transfections were performed by using Lipofectamine 2000
and Opti-MEM (Invitrogen, Karlsruhe, Germany) according to
manufacturer’s instructions. 48 h after transfection, cells were
harvested in the case of transient transfections or selection for
stable clones was started.

Knock-down Experiments
SH-SY5Y Fe65 knock-down cells were described earlier
(Grimm et al., 2011a). SH-SY5Y IDE knock-down and the
corresponding control cells were generated by transfection
with SureSilencingTM–Insulin degrading enzyme shRNA
plasmid and control vector (SABioscience, Frederick, MD, USA)
according to manufacturer’s protocol followed by selection for
stable clones with hygromycin B.

Murine Brain Material
Murine APP−/−, APLP2−/−, APP/APLP2−/−, and APP1CT15
brain material was obtained from U. Müller (Heidelberg,
Germany), APPswe/PS11exon9 and APPswe mouse brains from
H. Tanila (Kuopio, Finland).

Quantitative Real-time PCR (RT-PCR)
TRIzolReagent (Invitrogen, Karlsruhe, Germany) was used for
extraction of total RNA from cells and tissue. 2µg RNA was
reverse-transcribed using the High-Capacity cDNA Reverse
Transcription Kit (Life Technologies, Darmstadt, Germany)
according to manufacturers’ protocols. Quantitative real-time
PCR was performed by application of Fast SYBR Green Master

Mix (Applied Biosystems, Darmstadt, Germany) and Piko Real
Real-Time PCR System (Thermo Scientific, Waltham, USA).
After normalization to β-actin, changes in gene expression were
calculated with the 2-(11Ct) method (Livak and Schmittgen,
2001). The following primer sequences were used (Eurofins
MWG Operon, Eberberg, Germany): murine: β-actin 5′-CCT
AGG CAC CAG GGT GTG AT-3′ and 5′-TCT CCA TGT CGT
CCC AGT TG-3′; insulin degrading enzyme 5′-GCT ACG TGC
AGA AGG ACC TC-3′ and 5′-TGG ACG TAT AGC CTC GTG
GT-3′; neprilysin 5′-TGAACTTTGCCCAGGTGTG-3′ and 5′-
GCA AAG TCC CAA TGA TCC TG-3′; human: β-actin 5′-CTT
CCTGGGCATGGAGTC-3′ and 5′-AGCACTGTG TTGGCG
TAC AG-3′; Fe65 5′-TTT GGA AGG ATG AAC CCA GT-3′

and 5′-AAG CTT CTC CTC CTC TTG GG-3′; insulin degrading
enzyme 5′- TGC CCT AGA CAG GTT TGC AC-3′ and 5′-CTC
CAG GCA TCA TTC ATC ACA T-3′; neprilysin 5′-GAT CAG
CCT CTC GGT CCT TG-3′ and 5′-TGT TTT GGA TCA GTC
GAG CAG-3′.

Preparation of Cell Lysates and Collection of
Conditioned Media
Cells were washed with phosphate-buffered saline (PBS), scraped
off and lysed chemically for 1 h with different lysis buffers
depending on further usage. Conditioned media were collected
and centrifuged for 5min at 16.000 × g, the supernatants were
applied for determination of Aβ, sAPPα, and sAPPβ level by
western blot analysis.

Membrane Preparation of Eukaryotic Cells
After incubation of pelleted cells in hypotonic buffer (10mM
Tris pH 7.6, 1mM EDTA, 1mM EGTA) for 15min, cell
suspension was passed through 0.6mm-needles (BD, Franklin
Lakes, NJ, USA). Samples were centrifuged for 5min at 300 × g,
supernatant was collected and centrifuged for further 30min at
12.000× g. Pelleted membranes were resuspended in lysis buffer
(150mM NaCl, 50mM Tris/HCl pH 7.4, 2mM EDTA, 0.1% NP-
40, 0.1% Triton-X 100) and further used for NEP western blot
analysis.

Protein Determination
Protein determination was carried out using bicinchoninic acid
according to Smith et al. (1985) as described in detail earlier
(Rothhaar et al., 2012). Samples were adjusted to equal protein
amount prior to further usage in experiments.

Western Blot Analysis
Cells were lysed in lysis buffer (150mM NaCl, 50mM Tris/HCl
pH 7.4, 2mM EDTA, 0.1% NP-40, 0.1% Triton-X 100)
containing protease inhibitor cocktail (Roche Diagnostics,
Mannheim, Germany), adjusted to equal protein amount
and loaded on 10–20% Tricine gels (Anamed Elektrophorese,
Groß-Bieberau, Germany). Proteins were transferred onto
nitrocellulose membranes (Whatman, Dassel, Germany).
For Western blot analysis the following primary antibodies
were used: anti-sAPPβ MBS492139 (MyBioSource, SanDiego,
USA), anti-NEP ab951 (Abcam, Cambridge, UK) and W02-
antibody (Millipore, Billerica, USA) for detection of sAPPα
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and immunoprecipitated Aβ as described earlier (Grimm
et al., 2011b, 2015). Anti-rabbit W401 (Promega, Mannheim,
Germany) and anti-mouse P0260 (Dako, Hamburg, Germany)
were used as secondary antibodies. Proteins were detected by
ECL-method (Perkin Elmer, Rodgau-Jügesheim, Germany),
densitometric quantification was performed with Image Gauge
V3.45 software.

Analysis of AICD Uptake
For AICDpeptide uptake analysis in cell lysatesMEFAPP1CT15
were incubated with FITC-AICD as decribed above. Under
light exclusion cells were washed 5 times with PBS to remove
attached FITC-AICD peptides and lysed in lysis buffer (150mM
NaCl, 50mM Tris/HCl pH 7.4, 2mM EDTA, 0.1% NP-40, 0.1%
Triton-X 100). Lysates were adjusted to equal protein content
and dispensed on black 96-well plates (Corning, Lowell, MA,
USA). Fluorescence signal of FITC-AICD was determined at
an excitation wavelength of 495 ± 10 nm and an emission
wavelength of 521 ± 10 nm using an Infinite M1000Pro
Fluorometer (Tecan, Crailsheim, Germany).

Cell Viability Measurement
Cell viability after short term incubation with AICD peptides was
determined by measuring lactate dehydrogenase (LDH) activity
using the Cytotoxicity Detection KitPLUS (Roche Diagnostics,
Mannheim, Germany) according to manufacturer’s protocol.

Enzyme Activity Measurements
Measurement of γ-Secretase Activity
Measurement of γ-secretase activity as described earlier (Grimm
et al., 2008, 2011b, 2012a, 2014, 2015; Rothhaar et al., 2012;
Burg et al., 2013): Briefly, for determination of γ-secretase
activity in living cells fluorogenic γ-secretase substrate NMA-
GGVVIATVK(DNP)-DRDRDR-NH2 (Calbiochem, Darmstadt,
Germany) was used as described in detail earlier (Grimm et al.,
2015). Resulting fluorescence was determined continuously at
an excitation wavelength of 355 ± 10 nm and an emission
wavelength of 440 ± 10 nm for 1 h at 37◦C under light exclusion
using an Infinite M1000Pro Fluorometer (Tecan, Crailsheim,
Germany). The γ-secretase activity in living cells was calculated
by subtracting the unspecific turnover determined by adding
2µM of the highly specific γ-secretase inhibitor X (Shearman
et al., 2000). It should be mentioned that similar results showing
a decreased γ-secretase activity for several PS1 FAD mutations
were observed by us and others in previous studies confirming
our assay and the obtained data (Walker et al., 2005; Wiley et al.,
2005; Bentahir et al., 2006; Pinnix et al., 2013; Grimm et al., 2014).

For measurement of γ-secretase activity in purified
membranes, cell homogenates were adjusted to equal protein
amount prior to centrifugation at 900 rcf for 10min at 4◦C.
The obtained post-nuclear fractions were centrifuged at
55.000 rpm for 75min at 4◦C. Pelleted purified membranes
were resuspended in sucrose buffer and dispensed on black
96-well plates. After addition of 10 µM γ-secretase substrate
fluorescence was measured as described above. Unspecificity
of this method was between 10 and 30% as published earlier
(Rothhaar et al., 2012; Burg et al., 2013).

Measurement of NEP activity
After chemical lysis of the cells in lysis buffer (0.5% TritonX-
100, 20mM Tris pH 7.4, 10% Sucrose) NEP activity assay
was performed according to Miners et al. (2008b) with
minor modifications utilizing the anti-NEP antibody AF1182
(R&D Systems, Minneapolis, Minn., USA) and 5µM MCA-
RPPGFSAFK(DNP)-OH fluorogenic peptide substrate (R&D
Systems, Minneapolis, Minn., USA). Fluorescence was measured
with an excitation wavelength of 320 ± 10 nm and an emission
wavelength of 405 ± 10 nm in a Safire2 Fluorometer (Tecan,
Crailsheim, Germany) as described above. Unspecificity of the
assay was 22.1% (± 2.4%, p ≤ 0.001) as measured in presence
of 10µM thiorphan (Santa Cruz Biotechnology, Dallas, USA)
(Supplementary Figure 1A).

Measurement of IDE activity
After cells were lysed in lysis buffer (0.5% TritonX-100, 20mM
Tris pH 7.4, 10% Sucrose) IDE activity assay was performed
as described in Miners et al. (2008a) with minor modifications
utilizing the anti-IDE antibody ST1120 (Calbiochem, Darmstadt,
Germany) and 10µM MCA-RPPGFSAFK(DNP)-OH
fluorogenic peptide substrate (R&D Systems, Minneapolis,
Minn., USA). Resulting fluorescence was measured at an
excitation wavelength of 320 ± 10 nm and an emission
wavelength of 405± 10 nm in a Safire2 Fluorometer as described
above.

Measurement of total Aβ degradation
For determination of total Aβ degradation cells were lysed in
lysis buffer (150mM NaCl, 50mM Tris/HCl pH 7.4, 2mM
EDTA, 0.1% NP-40, 0.1% Triton-X 100). 60µg total protein of
each sample was incubated with 1µg/ml synthetic human Aβ40
peptide in 100µl PBS for 1 h at 37◦C under gentle shaking.
For determination of specific NEP mediated Aβ degradation,
samples were incubated additionally with 50µM thiorphan.
Quantification of the remaining, not degraded Aβwas carried out
withW02-antibody, only detecting the supplemented human but
not the endogenous murine Aβ of the cells. Aβ degrading activity
in the lysates was calculated as reciprocal value of the quantified
remaining Aβ peptides.

Statistical Analysis
All quantified data represent an average of at least three
independent experiments. Error bars represent standard
deviation of the mean. Statistical significance was calculated
using two-tailed Student’s t-test; significance was set at ∗p ≤ 0.05;
∗∗p ≤ 0.01 and ∗∗∗p ≤ 0.001.

Results

NEP Gene Expression, Protein Level and Enzyme
Activity is Decreased in Absence of PS1/PS2 or
APP/APLP2
To investigate a potential role of the catalytically active part of the
γ-secretase complex in the regulation of NEP, we used PS1/PS2-
deficient MEFs (MEF PS1/2−/−) and PS1 wt retransfected
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control cells (MEF PS1rescue) to obtain clonal homogeneity. RT-
PCR analysis revealed that NEP gene expression was reduced to
71.6% in absence of PS1 and PS2 compared to MEF PS1 rescue.
The effect in respect of NEP expression was also confirmed by
comparing MEF devoid of PS not only with PS1rescue, but also
with wt cells, further emphasizing that the effects are independent
of the used control. In accordance with decreased NEP
expression, the protein level of NEP as well as NEP activity was

also significantly reduced to 26.2 and 66.6% in MEF PS1/2−/−

cells vs. MEF PS1rescue (Figure 1A, Supplementary Figure 1B).
It has to be pointed out, that effect strength between expression,
protein and activity differs. Whereas NEP activity was measured
out of total lysates, the protein levels were determined after a
membrane protein preparation, which might contribute to the
observed differences. Additionally, protein stability or differences
in protein translation of NEP might also result in differences

FIGURE 1 | Reduction of NEP gene expression, protein level and

activity in PS1/2 and APP/APLP2 deficient mouse embryonic

fibroblasts (MEF). (A) Reduced NEP gene expression (71.6 ± 6.4%,

p ≤ 0.001), protein level (26.2 ± 3.5%, p ≤ 0.001) and activity (66.6 ± 1.9%,

p ≤ 0.001) in MEF cells devoid of PS1 and PS2 (MEF PS1/2 −/−) compared

to MEF PS1/2 −/− retransfected with PS1 wt (MEF PS1rescue). Level of

NEP gene expression in MEF wt: 111.2 ± 9.2%, p = 0.005 when compared

to MEF PS1/2 −/−. (B) Decreased NEP gene expression (20.4 ± 13.3%,

p ≤ 0.001), protein level (50.4 ± 10.9%, p = 0.012) and activity (74.9 ±

6.4%, p ≤ 0.001) in MEF lacking APP and the APP-like protein APLP2 (MEF

APP/APLP2 −/−) in comparison to wild-type cells (MEF wt). (C) Decreased

NEP gene expression in MEF wt treated with γ-secretase inhibitor (87.8 ±

3.6%, p = 0.015). Unaltered NEP gene expression in MEF APP/APLP2 −/−

after incubation with γ-secretase inhibitor (20.8 ± 1.3%, p = 0.73 compared

to 20.4% in cells treated with solvent control). (D) No effect of Aβ40/42

peptide long term incubation on NEP gene expression in MEF PS1/2−/−

(80.2 ± 9.9%, p = 0.43 compared to 71.6% in cells treated with solvent

control) and MEF APP/APLP2−/− (18.8 ± 2.5%, p = 0.43 compared to

20.4% in cells treated with solvent control). Asterisks show the statistical

significance (*p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001, n.s., not significant). All

quantified data represent an average of at least three independent

experiments. Error bars represent standard deviation of the mean.
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in the effect strength. Nevertheless, independent of the used
method at every stage NEP is significantly reduced in PS
deficient cells, beginning from its expression, to the protein level
finally resulting in a decreased enzyme activity. Similar results
were obtained in cells devoid of the APP-family. To elucidate
whether APP or the APP-like proteins APLP1 or APLP2 or PS-
dependent cleavage products of the APP-family are involved in
NEP regulation, we used MEF lacking APP and APLP2 (MEF
APP/APLP2−/−) and thus devoid of the hole APP-family as
APLP1 expression is restricted to neurons (Tanzi et al., 1988;
Slunt et al., 1994; Lorent et al., 1995). For MEF APP/APLP2−/−

cells, RNA level of NEP were even reduced to 20.4% compared to
wt cells, indicating that the APP-family or fragments thereof are
involved in transcriptional regulation of NEP. As a consequence
of decreased NEP gene expression, MEF APP/APLP2−/−cells
also revealed a reduction in the NEP protein level and NEP
enzyme activity to 50.4 and 74.9%, respectively (Figure 1B,
Supplementary Figure 1C). Taken into consideration that the
PS-dependent APP cleavage product AICD has been suggested
to increase NEP gene transcription (Grimm et al., 2013), one
might expect a very similar reduction in the NEP RNA level for
MEF PS1/2−/− cells and MEF APP/APLP2−/− cells, both cell
lines lacking AICD and the intracellular domains of APLP1 and
APLP2, ALID 1 and ALID2. However, as γ-secretase activity in
MEF PS1rescue cells accounted only for 49.8% (± 7.3%, p =

0.004) compared to MEF wt cells (Supplementary Figure 1D),
it is not astonishing that the effect on NEP gene expression
is less pronounced in MEF PS1/2−/− vs. MEF PS1rescue cells
in comparison to the experimental setting comparing MEF
APP/APLP2−/− cells with MEF wt cells. It has to be mentioned
that the effect strength of AICD on NEP gene expression seems
not to be direct proportional to the amount of AICD. Whereas
PS1rescue cells have 50% less γ-secretase activity, the NEP
expression compared to wt cells NEP gene expression is only
slightly decreased. Several reasons, such as clonal heterogeneity,
might contribute to this finding. Nevertheless, it cannot be ruled
out that e.g. ceiling effects above a certain AICD concentration
occur or other additional factors might also influence NEP
expression. Although the effect strength on NEP expression is
not directly linear to the AICD level, a correlation between
NEP expression and AICD amount was observed. To determine
whether PS1 indeed regulates NEP through processing of APP,
we inhibited γ-secretase activity in MEF APP/APLP2−/− cells
and MEF wt cells. Treatment with γ-secretase inhibitor resulted
in a significantly decreased NEP gene expression to 87.8% in
MEF wt. In contrast, inhibition of γ-secretase activity had no
effect on NEP expression in APP/APLP2-deficient cells, clearly
demonstrating NEP gene expression to be regulated by a γ-
secretase derived APP/APLP2 cleavage product (Figure 1C).
To further elucidate the mechanism how PS and the APP-
family regulate NEP expression, we incubated APP/APLP2-
and PS1/PS2-deficient MEFs with Aβ40/42 peptides over a
period of 9 days with intermediate medium changes. Treatment
with Aβ40/42 peptides had no significant effect on NEP gene
expression in both cell lines indicating NEP expression not to be
regulated by Aβ peptides (Figure 1D).

AICD Mediates Gene Regulation of NEP
To elucidate the impact of AICD onNEP expression, we analyzed
APP knock-in MEF devoid of full-length APP, expressing an
APP construct lacking the last 15 aa from the C-terminus (MEF
APP1CT15) (Ring et al., 2007). The deleted 15 aa include the
NPXY motif of APP, which apparently plays a crucial role in
regulating transcription of several genes by interacting with
phosphotyrosine-binding (PTB) domain containing adaptor
proteins (von Rotz et al., 2004; Uhlik et al., 2005). Therefore, cells
expressing the truncated APP construct are lacking a functional
AICD domain. Indeed, RNA levels of NEP were strongly reduced
to 23.4% in MEF APP1CT15 cells (Figure 2A). This reduction
was nearly identical to the decrease of NEP expression to 20.4%
observed for MEF APP/APLP2−/− cells, suggesting that the
PS-dependent APP cleavage product AICD mainly regulates
NEP gene transcription and that the intracellular domains of
APLP1 and APLP2, ALID1 and ALID2, might play no or only a
minor role in regulating NEP expression. In addition to reduced
gene expression of NEP, MEF APP1CT15 cells also showed
a decreased NEP protein level and enzyme activity to 68.0
and 55.3%, respectively (Figure 2A, Supplementary Figure 1E).
Additionally total degradation of human Aβ40 in lysates of MEF
APP1CT15 was decreased to 54.7% in absence and to 68.5%
in presence of thiorphan compared to MEF wt, indicating a
contribution of altered NEP activity to the effects on total Aβ

degradation mediated by a concurrence of several proteases
(Figure 2A). To further substantiate the finding that AICD
is involved in NEP gene transcription, we incubated MEF
APP1CT15 cells with synthetic AICD peptides, corresponding
to the last 20 aa of the APPC-terminus. Incubated AICD peptides
were efficiently taken up (Figure 2B) and were shown to be
localized in the nuclear compartment earlier (Robinson et al.,
2014). Biological activity of incubated AICD peptides has also
been demonstrated earlier in several studies (Grimm et al., 2011a,
2012b, 2014; Robinson et al., 2014). For short time incubation,
cells were treated for 12 h with 2.5µM AICD peptide using
the protein delivery reagent Saint PhD. NEP gene expression
was increased to 143.6% in AICD treated MEF APP1CT15
cells compared to untreated cells lacking functional AICD,
however the obtained increase was not statistically significant.
Nevertheless, long term incubation with 2µM AICD for 9 days
with intermediate medium changes to avoid AICD degradation
revealed a statistically significant increase of NEP expression
to 168.0% in AICD treated MEF APP1CT15 cells (Figure 2C),
illustrating the necessity to combine different experimental
settings to clarify the role of AICD in gene transcription.
The increase in NEP gene expression after AICD incubation
corresponds to a partial rescue of 13.3% for short term and
of 20.8% for long term AICD treatment compared to NEP
expression level in MEF wt cells. Enzyme activity of NEP was
also significantly elevated in AICD treated cells, for both short
and long term AICD incubation (MEF APP1CT15 + AICD
12 h, activity: 115.8% corresponding to 19.8% rescue; + AICD
9d, activity: 120.4% corresponding to 25.5% rescue (Figure 2D,
Supplementary Figures 1F,G). To exclude a toxic effect of
truncated AICD peptides (Passer et al., 2000), we determined
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FIGURE 2 | NEP gene expression and activity is regulated by AICD.

(A) Reduced NEP gene expression (23.4 ± 8.1%, p ≤ 0.001), protein level

(68.0 ± 4.1%, p ≤ 0.001), activity (55.3 ± 3.4%, p ≤ 0.001) and total Aβ

degradation (−Thiorphan: 54.7 ± 2.7%, p ≤ 0.001 compared to wt;

+Thiorphan: 68.5 ± 4.1%, p ≤ 0.001 compared to wt; p = 0.02 for effects

−Thiorphan vs. +Thiorphan) in MEF expressing an APP construct lacking

the last 15 C-terminal amino acids (aa) and therefore a functional AICD domain

(Continued)
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FIGURE 2 | Continued

(MEF APP1CT15) compared to control fibroblasts. (B) Measurement of

FITC-AICD uptake in lysates of MEF APP1CT15 after short term (2.8 ±

0.1%, p ≤ 0.001, shown in x fold change of fluorescence) and long term

incubation with FITC-AICD (18.0 ± 5.1%, p = 0.03, shown in x fold change

of fluorescence) compared to cells treated with solvent control. (C) Enhanced

NEP gene expression in MEF APP1CT15 after lipofection based short term

(12 h) (143.6 ± 29.8%, p = 0.193 compared to solvent control) and after

long term (9 days) (168.0 ± 18.7%, p = 0.002 compared to solvent control)

incubation with AICD peptides. Level of NEP gene expression in MEF wt cells

(427.0 ± 74.0%, p ≤ 0.001 when compared to MEF APP1CT15) indicates a

partial rescue of NEP gene expression after AICD incubation. (D) Increased

NEP activity in MEF APP1CT15 after lipofection based short term (12 h)

(115.8 ± 5.5%, p = 0.014 compared to solvent control) and after long term

(9 days) (120.4 ± 4.9%, p = 0.008 compared to solvent control) incubation

with AICD peptides. Level of NEP activity in MEF wt cells (180.0 ± 6.12%,

p ≤ 0.001 when compared to MEF APP1CT15) indicates a partial rescue of

NEP activity after AICD incubation. (E) Unaltered viabiliy (99.98 ± 0.11%,

p = 0.86) and total protein level (101.5 ± 0.87%, p = 0.33) in MEF

APP1CT15 incubated with AICD peptides. (F) Increase in NEP gene

expression (201.9 ± 21.4%, p = 0.009) in MEF APP1CT15 retransfected

with the last 50 C-terminal aa of APP (MEF APP1CT15 + C50) compared to

MEF APP1CT15. Level of NEP gene expression in MEF wt cells (427.0 ±

74.0%, p ≤ 0.001 when compared to MEF APP1CT15) indicates a partial

rescue of NEP gene expression due to expression of C50. Statistical

significance as described for Figure 1.

total protein level and cell viability in MEF APP1CT15 cells
after short term incubation with truncated AICD peptides.
Neither total protein level nor cell viability measured by LDH
release was altered in AICD treated cells in comparison to
cells treated with solvent control (Figure 2E). The function of
AICD in regulating NEP expression was further validated by
analyzing MEF APP1CT15 cells transiently retransfected with
C50, representing AICD generated by ε-cleavage of APP (Gu
et al., 2001; Yu et al., 2001). C50 expression resulted in a
significant increase of NEP expression to 201.9% corresponding
to a partial rescue of 31.2% compared to NEP gene expression
level in MEF wt cells (Figure 2F). When IDE was additionally
transiently knocked down to 70.8% (± 3.8%, p = 0.0016) in C50
expressing cells, NEP expression was slightly increased to 108.7%
(± 2.9%, p = 0.038) compared to C50 cells.

β-secretase Mediated APP Cleavage Generates
Transcriptionally Active AICD
Familial mutations in the genes encoding APP or PS1 and PS2 are
frequently used to describe the pathological situation of AD, but
they can also be beneficial for mechanistic studies. The familial
Swedish mutation of APP (APPswe) (Mullan et al., 1992), a
double mutation at the β-secretase cleavage site, results in a
strong increase of total Aβ level, as APPswe is preferentially
processed by the amyloidogenic β-secretase pathway instead of
non-amyloidogenic α-secretase processing (Citron et al., 1992;
Felsenstein et al., 1994). As β-secretase mediated APP cleavage
in endosomal compartments is considered mainly responsible
for the generation of transcriptionally active AICD species
(Belyaev et al., 2010; Flammang et al., 2012), one might expect
increased NEP gene transcription in APPswe expressing cells.
Indeed, human neuroblastoma SH-SY5Y cells, stably transfected
with APPswe showed a strong but not statistically significant
increase in NEP expression to 139.6% compared to SH-SY5Y
cells stably expressing APPwt. The effect on NEP gene expression
is statistically significant when comparing SH-SY5Y APPswe
to SH-SY5Y wt cells. Along with elevated NEP expression,
NEP enzyme activity was also increased to 127.5% in APPswe
cells (Figure 3A, Supplementary Figure 1H). In contrast to the
APPswe mutation affecting β-secretase cleavage, mutations in
the catalytically active presenilins affect γ-secretase processing of
APP, mainly by shifting the Aβ42/40 ratio towards the generation
of the more hydrophobic Aβ42 species (Duff et al., 1996; Citron

et al., 1997; Duering et al., 2005). However, several studies have
revealed that some of the known PS mutations also reduce
γ-secretase processing of APP resulting in decreased AICD
levels compared to cells expressing wt presenilins (Walker et al.,
2005; Wiley et al., 2005; Bentahir et al., 2006; Pinnix et al.,
2013). As a genetic approach we analyzed PS-deficient MEFs
retransfected with the FAD PS1 mutation T354I (MEF PS1-
T354I) compared to PS1 wt (MEF PS1rescue). This mutation
is known to decrease γ-secretase activity (Grimm et al., 2014).
RT-PCR analysis showed that NEP expression is reduced to
64% in MEF PS1-T354I expressing cells compared to MEF
PS1rescue. NEP activity was also decreased to 50.0% in these cells
(Figure 3B, Supplementary Figure 1I). Further characterization
of the PS1 mutation revealed that γ-secretase activity in living
cells is indeed reduced to 75.2% (± 2.4%, p ≤ 0.001) in
MEF PS1-T354I (Supplementary Figure 1J) suggesting that the
coincidental reduction in AICD generation is responsible for the
decrease in NEP expression.

To further clarify the involvement of β- and α-secretase
mediated APP processing in the generation of transcriptionally
active AICD peptides, we stably transfected SH-SY5Y cells
with α-CTF or β-CTF. Notably, NEP gene expression was
not significantly altered for α-CTF expressing SH-SY5Y cells,
whereas gene transcription of NEP was significantly elevated
to 223.5% in β-CTF expressing cells compared to SH-SY5Y
wt cells. Similar results were found for NEP activity. Enzyme
activity of NEP was unaltered for α-CTF expressing cells,
but strongly increased to 192.5% for β-CTF expressing cells
(Figure 3C, Supplementary Figure 1K). However, when SH-
SY5Y IDE knock-down (KD) cells (IDE RNA level: 75.9 ±

10.1%, p = 0.029) were transiently transfected with α-CTF,
we observed an increase in NEP gene expression to 157.2%
(Figure 3D). Additionally, we inhibited IDE by incubating
SH-SY5Y cells stably expressing α-CTF with 10µM insulin,
which results in inhibition of IDE activity to 63.1% (± 2.12%,
p = 0.0018) (Supplementary Figure 1L). This resulted in a
significant increase in NEP expression to 195.2% (Figure 3E).
These findings indicate that AICD generated by α-secretase
processing is rapidly degraded by IDE (Edbauer et al., 2002;
Farris et al., 2003) and thus not transcriptionally active, whereas
β-secretase generated AICD seems to be more stable, possibly
by rapid binding to adaptor proteins like Fe65, known to
stabilize AICD (Kimberly et al., 2001; Kinoshita et al., 2002).
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FIGURE 3 | NEP gene expression and activity is influenced by

amyloidogenic, but not by non-amyloidogenic APP processing due to

degradation of α-/γ-APP-cleavage derived AICD by IDE. (A) Increased

NEP gene expression (139.6 ± 52.3%, p = 0.49) and activity (127.5 ± 3.3%,

p ≤ 0.001) in SH-SY5Y cells overexpressing APP carrying the swedish

mutation (APPswe) compared to SH-SY5Y APP cells. Level of NEP gene

expression in SH-SY5Y wt cells is indicated by a dotted line (p = 0.01 for

NEP gene expression in SH-SY5Y APPswe compared to SH-SY5Ywt). (B)

Reduction of NEP gene expression (64.0 ± 4.4%, p = 0.0012) and

(Continued)
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FIGURE 3 | Continued

activity (50.0 ± 5.6%, p ≤ 0.001) in MEF PS1/2 deficient cells

retransfected with PS1 carrying the T354I mutation (MEF PS1-T354I)

compared to MEF PS1/2 deficient cells retransfected with PS1 wt

(MEF PS1rescue). Level of NEP gene expression in MEF wt cells

is indicated by a dotted line. (C) NEP gene expression and activity

in SH-SY5Y overexpressing the APP α-cleaved C-terminal fragment

(α-CFT) (RNA-level: 86.9 ± 9.5%, p = 0.241; activity: 100.3 ±

6.0%, p = 0.967) and the APP β-cleaved C-terminal fragment

(β-CFT) (RNA-level: 223.5 ± 36.3%, p = 0.027; activity: 192.5 ±

3.9%, p ≤ 0.001). (D) Increased NEP gene expression (157.2 ±

12.2%, p ≤ 0.001) in SH-SY5Y α-CFT cells with reduced IDE

expression (SH-SY5Y α-CTF + IDE-KD). (E) Enhanced NEP

expression (195.2 ± 6.9%, p ≤ 0.001) in SH-SY5Y α-CTF cells after

pharmacological IDE inhibition (SH-SY5Y α-CTF + IDE inhibitor). (F)

NEP gene expression in SH-SY5Y wt cells treated with α- (98.3 ±

5.4%, p = 0.764), β- (80.6 ± 3.5%, p = 0.005) or γ- (80.7 ±

0.6%, p ≤ 0.001) secretase inhibitor. (G) Reduction in NEP gene

expression (63.0 ± 5.1%, p = 0.002) and activity (71.5 ± 4.0%,

p ≤ 0.001) in SH-SY5Y Fe65 knock-down (SH-SY5Y Fe65-KD)

compared to mock-transfected control cells. Statistical significance as

described for Figure 1.

If the hypothesis is that α-secretase generated AICD is not
transcriptionally active, one would expect that inhibition of α-
secretase activity has no effect on NEP gene transcription. In
fact, treatment of SH-SY5Y wt cells with an α-secretase inhibitor
showed unaltered NEP expression, whereas in the presence of a
β-secretase inhibitor RNA level of NEP were decreased to 80.6%
(Figure 3F). As a control for α- and β-secretase inhibition, we
analyzed sAPPα and sAPPβ level in the cell culture media of
inhibitor-incubated cells. As expected sAPPα as well as sAPPβ

secretion were strongly reduced in presence of the inhibitors
(sAPPα: 38.1± 4.5%, p ≤ 0.001; sAPPβ: 6.3± 0.7%, p ≤ 0.001).
Treatment of SH-SY5Y wt cells with a γ-secretase inhibitor also
resulted in a reduction of NEP expression to 80.7% (Figure 3F),
identical to the reduction observed for β-secretase inhibition.
Efficiency of γ-secretase inhibitor treatment was verified by
analyzing total Aβ level in the medium of inhibitor-treated cells
which were reduced to 52.2% (± 7.5%, p = 0.004) compared to
cells treated with solvent control. To further validate a function
of AICD in regulating gene expression of NEP, we knocked-
down Fe65, one of the adaptor proteins known to bind to
the APP C-terminus and suggested to stabilize AICD peptides
(Kimberly et al., 2001; Kinoshita et al., 2002; Cao and Sudhof,
2004). Fe65 knocked-down SH-SY5Y wt cells showed a 59%
reduction of Fe65 expression (Fe65 RNA level: 41.2 ± 1.9%,
p ≤ 0.001) compared to SH-SY5Y wt cells. Notably, Fe65
KD cells also revealed a strong reduction of NEP expression
to 63.0% and a decrease in NEP activity to 71.5% (Figure 3G,
Supplementary Figure 1M), indicating that Fe65 is important
for AICD-mediated gene regulation of NEP.

Gene Expression of NEP is Also Affected In vivo

in Different Transgenic Mouse Models
Similar results regarding the regulation of NEP expression were
obtained in vivo by analyzing transgenic AD mouse brains. NEP
expression was significantly reduced to 81.3% in APP knock-
out (APP−/−) mouse brains compared to wt mouse brains.
Importantly, APP/APLP2 knock-out (APP/APLP2−/−) mouse
brains showed a reduction of NEP expression to 83.8% and thus
nearly identical to the reduction obtained for APP−/− mouse
brains. This indicates that the intracellular domain of APP, AICD,
but not the intracellular domain of APLP2, ALID2, is involved
in the regulation of NEP. This finding could be substantiated by
analyzing APLP2 single knock-out (APLP2−/−) mouse brains,
which revealed no significant changes in NEP gene expression
(Figure 4A). The importance of AICD in regulating NEP in vivo

could be further validated by the use of mouse brains expressing
the truncated APP construct APP1CT15, revealing a decrease
of NEP expression to 75.8% (Figure 4B). In line with our cell
culture findings, brains of APPswe transgenic mice revealed an
elevation of NEP expression to 149.5% compared to wt mouse
brains. In contrast, NEP expression was reduced to 78.6% in
brains of APPswe/PS1-1exon9 double transgenic mice, in which
γ-secretase processing and thus AICD generation is reduced
(Bentahir et al., 2006) (Figure 4C).

Discussion

Since identification of striking similarities between the
proteolytic processing of Notch and APP there has been
controversy on whether AICD mediates gene transcription in
analogy to the Notch intracellular domain NICD. Although
several AICD-regulated target genes have been identified
(Pardossi-Piquard and Checler, 2012; Grimm et al., 2013), a
putative role of AICD in gene transcription of NEP, one of the
most important Aβ-degrading enzymes, is still disputable. The
inconsistent results addressing AICD-mediated NEP regulation
and other target genes in general might be caused by rapid
degradation of AICD by IDE and other proteases once it is
released to the cytosol (Cupers et al., 2001; Edbauer et al., 2002;
Farris et al., 2003), complicating the finding of experimental
conditions to identify the physiological function of AICD.
Further experimental details, e.g., analyzed cell types or tissues,
knock-out vs. overexpressing cell culture systems, single vs.
double transgenic mouse models etc. might further contribute to
the conflicting outcomes of different studies (Pardossi-Piquard
et al., 2007; Bauer et al., 2011). Therefore, the present study
analyzed diverse knock-out systems in vitro and in vivo as
well as several overexpressing cell culture systems to further
clarify the involvement of PS-dependent γ-secretase processing
of the APP-family in NEP expression and to identify whether
amyloidogenic β-secretase or non-amyloidogenic α-secretase
processing generates transcriptionally active AICD peptides.
Furthermore, we used AICD peptide supplementation or
pharmacological inhibition of AICD generation.

Consistent with recent findings (Pardossi-Piquard et al., 2005;
Chen and Selkoe, 2007) we found that NEP expression as well
as NEP protein level and activity were strongly reduced in MEF
devoid of PS1/PS2 or APP/APLP2, indicating that γ-secretase
dependent cleavage products of the APP-family are involved
in gene regulation of NEP. In contrast, one study (Huysseune
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FIGURE 4 | NEP gene expression in brain tissue of transgenic

mice. (A) NEP gene expression in brain tissue of APP knock-out

(APP−/−) (81.3 ± 8.5%, p = 0.049), APLP2 knock-out (APLP2−/−)

(106.2 ± 6.1%, p = 0.317) and in APP/APLP2-double knockout mice

(APP/APLP2−/−) (83.8 ± 6.1%, p = 0.015). (B) NEP gene expression

in mice devoid of the last 15 APP C-terminal aa and hence AICD

(APP1CT15) (75.8 ± 5.7%, p ≤ 0.001). (C) NEP gene expression in

APPswe (149.5 ± 19.4%, p = 0.016) and APPswe/PS11E9 (78.6 ±

10.5%, p = 0.058) mouse brains. Statistical significance as described

for Figure 1.

et al., 2009) reported unaltered gene expression level of NEP
for PS1/2-deficient MEF and unchanged NEP protein level for
MEF devoid of APP and APLP2. In support of this, another
study (Hébert et al., 2006) found no alterations in the NEP
protein level in PS1/2-deficient and APP/APLP2-deficient cells,
illustrating the problematic of divergent results even for identical
cell lines and the necessity to combine a variety of adequate
experimental settings to clarify a putative role of AICD or
ALID1 and ALID2 in gene transcription. Using a truncated APP
construct, lacking a functional AICD domain by deletion of

the last 15 aa including the NPXY motif (Chen et al., 1990)
known to bind to PTB-domain containing adaptor proteins
(Cao and Sudhof, 2001; von Rotz et al., 2004; Uhlik et al.,
2005; Radzimanowski et al., 2008), we could further validate a
physiological role of AICD in transcription. NEP transcription,
protein level and enzymatic activity were dramatically reduced
in APP1CT15 cells. Interestingly, fibroblasts lacking a functional
AICD domain or APP/APLP2 revealed a very similar reduction
in NEP gene expression to 23.4% or 20.45%, respectively,
compared to wt fibroblasts. As APP/APLP2-deficient MEFs are
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also lacking APLP1 (Herms et al., 2004), one might conclude
that mainly AICD, but to a lesser extent the γ-secretase-derived
fragments of APLP1 (ALID1) and APLP2 (ALID2) are involved
in NEP gene transcription. These findings could be confirmed
in vivo by analyzing APP and APLP2 single or double knock-
out mice. Brains of APP−/− and APP/APLP2−/− mice also
revealed a nearly identical reduction in NEP transcription to
81.3 and 83.3%, respectively, whereas APLP2 single knock-out
mice showed no significant effect on NEP gene expression,
indicating that AICD also controls NEP transcription in vivo.
The in vivo function of AICD in the regulation of NEP is
confirmed by a study (Pardossi-Piquard et al., 2005) showing
reduced NEP activity in APP- and APP/APLP2-deficient mouse
brains. Although NEP activity was also reduced to a very similar
extent in APP- and APP/APLP2-deficient mouse brains in this
study, also indicating that mainly AICD controls cerebral NEP
transcription and activity in vivo, one cannot exclude that ALID1
and ALID2 might also be involved in the regulation of NEP.
Fibroblasts lacking APLP2 revealed reduced NEP expression and
enzymatic activity, and NEP activity could be restored by APLP2
retransfection (Pardossi-Piquard et al., 2005). Furthermore,
ALID1 and ALID2 have been shown to increase NEP activity
in fibroblasts (Pardossi-Piquard et al., 2005). However, similar
to our study addressing NEP transcription in APLP2-deficient
mice, Chen and Selkoe (2007) reported unchanged NEP protein
level and NEP activity for APLP2-deficient mouse brains
in vivo. In this context it should be mentioned that in contrast
to our findings and the findings by Pardossi-Piquard et al.
(2005), the authors also did not find alterations in the NEP
protein level and NEP activity for APP-deficient mouse brains,
supported by unchanged NEP expression level in APP/APLP2-
deficient embryonic mouse brains (Hébert et al., 2006). Despite
the conflicting data addressing the involvement of γ-secretase
dependent cleavage products of the APP-family in the regulation
of NEP, we could further demonstrate the importance of AICD
in NEP transcription in vivo by analyzing APP1CT15 transgenic
mice. The lack of a functional AICD domain resulted in a
significant reduction of NEP transcription to 75.8%.

Additionally, in the present study AICD-mediated NEP
transcription was further validated by incubating APP1CT15
cells with AICD peptides, corresponding to the last 20 aa from
the APP C-terminus. An exposure of MEF APP1CT15 cells with
AICD peptides for 12 h revealed increased but statistically non-
significant gene expression of NEP to 144%, whereas a longer
exposure for 9 days resulted in a significant increase in NEP
expression to 168%. NEP activity was also increased by both
short and long time AICD exposure. To exclude that these
changes are caused by the unphysiological nature of the applied
AICD peptides, we transiently transfected APP1CT15 cells with
C50, representing physiological AICD peptides generated by
γ-secretase dependent ε-cleavage of APP (Gu et al., 2001; Yu
et al., 2001). AICD-C50 expression also resulted in a strong
increase in NEP gene expression to 202%, further emphasizing
that AICD plays a crucial role in transcription by increasing NEP
expression. Increased NEP activity and NEP expression was also
found for PS-deficient fibroblasts and PS-deficient blastocyst-
derived cells (BD8) transiently transfected with AICD-C50 or

AICD-C59 (Pardossi-Piquard et al., 2005). In contrast, transient
transfection of PS-deficient BD8-cells with AICD-C60 along with
the adaptor protein Fe65 and the acetyltransferase Tip60 failed
to cause a significant increase in NEP protein level (Chen and
Selkoe, 2007). Transcriptome analysis of human neuroblastoma
cells inducible for AICD and/or Fe65 expression also failed to
identify differential expression of AICD target genes, including
NEP (Muller et al., 2007). However, in vivo AICD/Fe65 double-
transgenic mice displayed enhanced cerebral expression of NEP
compared to Fe65 single-transgenic mice (Pardossi-Piquard
et al., 2007), substantiating the conclusion that NEP can be
transcriptionally controlled by AICD.

The analysis of AICD-mediated gene transcription is further
complicated by experimental indications that not all pools of
AICD are transcriptionally active. It has been suggested that β-
secretase-mediated APP cleavage in endosomal compartments
generates AICD peptides active in nuclear signaling (Passer
et al., 2000; Goodger et al., 2009). As a cellular model for
increased β-secretase processing of APP we used APPswe
overexpressing human neuroblastoma cells. SH-SY5Y cells stably
expressing the Swedish double mutation showed an increase
in NEP transcription to 139.6% and NEP activity to 127.5%
compared to SH-SY5Y cells stably expressing APPwt and mainly
processed by α-secretase, indicating that amyloidogenic APP
processing by β-secretase is involved in the AICD-mediated
transcriptional control of NEP. In vivo, APPswe transgenic
mice also revealed a strong increase in NEP expression to
149.5%. These data are in line with a study (Belyaev et al.,
2010) demonstrating that the Swedish double mutation increases
NEP expression in cell culture experiments. To exclude that
the overexpression of APPswe resulted in a false-positive
result, we inhibited β-secretase processing of APP in human
neuroblastoma wt cells. As a consequence of reduced β-secretase
processing of APP verified by decreased sAPPβ levels in the cell
culture medium, NEP transcription was reduced to 80.6%. In
contrast, α-secretase inhibition did not cause alterations in NEP
gene expression, further indicating that β-secretase processing
generates transcriptionally active AICD peptides whereas α-
secretase processing of APP seems to be not involved in the
generation of AICD peptides active in nuclear signaling. This
finding is substantiated by the fact that γ-secretase inhibition,
which resulted in divergent outcomes in respect to the regulation
of NEP in literature (Pardossi-Piquard et al., 2005; Hébert et al.,
2006; Chen and Selkoe, 2007; Xu et al., 2011), also leads to a
reduction of NEP expression to 80.7%. The importance of β-
secretase processed APP in transcriptional regulation of NEP
is further validated by the results obtained by stably expressing
the β-secretase cleaved APP fragment β-CTF or the α-secretase
cleaved APP fragment α-CTF. Overexpression of β-CTF in SH-
SY5Y wt cells resulted in a strong increase in NEP expression to
223.5% and enzymatic activity to 192.5% compared to SH-SY5Y
wt cells, whereas overexpression of α-CTF revealed no significant
changes, neither in NEP expression nor NEP activity. However,
when IDE knock-down cells were transiently transfected with
α-CTF, NEP expression was significantly increased to 157%. A
strong elevation in NEP expression to 195% was also observed
when IDE activity was inhibited by using insulin as an inhibitor
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in α-CTF expressing cells, demonstrating that IDE is responsible
for the degradation of α-secretase generated AICD peptides.
Of note, the adaptor protein Fe65 is thought to increase the
stability of AICD (Kimberly et al., 2001; Kinoshita et al., 2002),
protecting AICD peptides from its degradation by IDE or other
proteases (Edbauer et al., 2002; Farris et al., 2003; Nunan et al.,
2003; Vingtdeux et al., 2007; Asai et al., 2011). Indeed knock-
down of Fe65 in SH-SY5Y wt cells resulted in a significant
reduction of NEP expression and NEP activity to 63.0 and
71.5%, respectively. These data support the model proposed
by Belyaev et al. (2010), in which AICD peptides generated
by α- and γ-secretase processing at the plasma membrane are
rapidly degraded by IDE and thus not transcriptionally active,
whereas AICD peptides generated by β-secretase processing in
the endosomal compartments are active in nuclear signaling
because of their rapid binding to Fe65 and subsequent transport
to the nucleus, controlling gene transcription of NEP.

In summary, our data show that AICD is able to control NEP
expression in vitro and in vivo and that mainly amyloidogenic
APP processing generates transcriptionally active AICD peptides.
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