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Amyloid beta (Aβ) homeostasis in the brain is governed by its production and clearance
mechanisms. An imbalance in this homeostasis results in pathological accumulations
of cerebral Aβ, a characteristic of Alzheimer’s disease (AD). While Aβ may be cleared
by several physiological mechanisms, a major route of Aβ clearance is the vascular-
mediated removal of Aβ from the brain across the blood-brain barrier (BBB). Here,
we discuss the role of the predominant Aβ clearance protein—low-density lipoprotein
receptor-related protein 1 (LRP1)—in the efflux of Aβ from the brain. We also outline
the multiple factors that influence the function of LRP1-mediated Aβ clearance, such
as its expression, shedding, structural modification and transcriptional regulation by
other genes. Finally, we summarize approaches aimed at restoring LRP1-mediated Aβ

clearance from the brain.

Keywords: amyloid βββ clearance, blood-brain barrier, lipoprotein receptor-related protein 1 (LRP1), PICALM,
Alzheimer’s disease (AD)

Introduction

Alzheimer’sdisease (AD) is a neurodegenerative disorder characterized by abnormal elevations
of amyloid β (Aβ), neurofibrillary tau tangles and neurovascular dysfunction. Aβ is generated
from the transmembranous amyloid precursor protein (APP) after proteolytic cleavage by β- and
γ-secretase (Selkoe, 2001) and is proposed to have multiple roles in the brain such as, to name a
few, neurotrophic activity, modulation of synaptic plasticity, neurogenesis, metal ion sequestration,
antioxidant activity, and calcium homeostasis (del Cárdenas-Aguayo et al., 2014); and also
interferes with signal transduction within the neurovascular unit affecting multiple neurovascular
functions (Zlokovic, 2011). Thus, regulated clearance of Aβ via receptor-mediated transport
potentially allows for controlled regulation of all these Aβ functions at any given time and also
prevents accumulation of excess Aβ as a metabolic waste product.

Neurotoxic accumulation of Aβ in the brain has been hypothesized to result from an
imbalance in the Aβ homoeostasis i.e., between its production and clearance (Zlokovic, 2011;
Musiek and Holtzman, 2015). Recent evidence in humans has suggested that indeed faulty Aβ

clearance mechanisms, but not overproduction, contribute to pathological accumulations of
cerebral Aβ in late-onset sporadic AD (Mawuenyega et al., 2010). Because impaired clearance
of Aβ is now widely identified as a contributing factor towards AD progression, studying Aβ

clearance mechanisms, their regulation and devising methods to modulate clearance function is of
importance in generating potential AD-related therapeutic interventions (Tarasoff et al., in press).
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To prevent Aβ aggregation and deposition, various
physiological clearance mechanisms exists to help steer Aβ

removal from the brain, namely, transvascular clearance
across the blood-brain barrier (BBB; Zlokovic, 2008, 2010,
2011), interstitial fluid (ISF) bulk flow i.e., traditional
perivascular clearance (Weller et al., 2008; Hawkes et al.,
2012) and glymphatic paravascular clearance (Iliff et al.,
2012), cerebrospinal fluid (CSF) absorption (Pollay, 2010) and
enzymatic degradation (Farris et al., 2003; Kanemitsu et al.,
2003; Hernandez-Guillamon et al., 2015). Aβ removal from
brain by transcytosis is typically a concentration-dependent
process physiologically driven by a much higher brain-to-
plasma concentration gradient of Aβ This receptor-mediated
mechanism allows for removal of Aβ from both the mammalian
(Zlokovic et al., 2010) and human (Roberts et al., 2014) brain
across the largest possible surface area for removal of about
100 cm2 of the capillary endothelium per gram of brain
tissue representing the surface of the BBB in vivo (Zlokovic,
2011). Previous studies have demonstrated that the majority
of Aβ is cleared by the BBB (∼85%) under physiological
conditions with a smaller percentage being cleared by ISF
bulk flow (Shibata et al., 2000; Zlokovic and Frangione, 2003).
Disrupted Aβ transcytosis leads to accumulation of Aβ in the
brain causing pathophysiologal changes as shown by multiple
previous studies. In this review, we focus on transvascular
clearance of Aβ across the BBB mediated by low-density
lipoprotein receptor-related protein 1 (LRP1) in association
with AD.

Blood-Brain Barrier and LRP1
Maintenance of a toxin-free brain microenvironment is essential
for normal neuronal function. The endothelial cells of brain
capillaries are compactly connected end-to-end by tight
junction proteins forming the BBB, isolating the brain ISF-CSF
compartments from the plasma compartment and authorizing
entry of molecules from the blood into the brain (Zlokovic, 2008;
Abbott et al., 2010). The specialized brain vascular endothelial
cells of the BBB, along with pericytes, glial cells and neurons
form the neurovascular unit (NVU; Zlokovic, 2011). This
arrangement is very different from the highly permeable and
lenient systemic capillaries permitting transport of solutes and
bigger molecules into the parenchymal tissue space (Mann et al.,
1985). At the level of brain capillaries, while oxygen from the
blood diffuses freely into the brain, the entry of polar molecules
is typically restricted by the BBB (Zlokovic, 2011). However,
nutrients can cross the BBB using specific transporters expressed
within the brain endothelium (Zlokovic, 2011). The polarized
distribution of transporters on the luminal and abluminal
endothelial membranes of the BBB allows the brain endothelial
cells to control movement of ions, nutrients and other molecules
between brain and blood in a highly-regulated manner to match
metabolic demands of brain. Although, larger molecules are
typically excluded from the brain by the BBB, some proteins
and peptides can still cross the BBB slowly if their respective
transporters and/or carriers are expressed within the brain
endothelium (Zlokovic et al., 1985, 1987; Zlokovic, 1995; Mackic
et al., 2002).

At the BBB, the transporter LRP1 plays a pivotal role in
maintaining Aβ homeostasis in the central nervous system
(CNS). LRP1 is expressed mainly at the abluminal side of the
BBB (Zlokovic, 2008; Ueno et al., 2010; Zhao et al., 2015). LRP1
is the primary receptor mediating transport of Aβ across the
BBB into circulation, thereby clearing it from the brain. LRP1
is a member of the LDLR family. This cell surface receptor is
highly expressed on multiple cell types (Kanekiyo and Bu, 2014).
At the neurovascular interface, LRP1 is expressed by vascular
endothelial cells forming the BBB, vascular mural cells, namely,
pericytes and vascular smooth muscle cells (VSMCs), neurons
and astrocytes (Zlokovic et al., 2010; Sagare et al., 2012; Kanekiyo
and Bu, 2014).

The distinct structural arrangement of LRP1 enables its
multifaceted role as a cargo transporter, a multifunctional
scavenger and a signaling receptor involved in endocytosis of
its ligands (Lillis et al., 2008). LRP1 recognizes and is involved
in the endocytosis of more than 40 different ligands including
apolipoprotein E (apoE), APP and Aβ (Zlokovic et al., 2010;
Sagare et al., 2012; Kanekiyo and Bu, 2014).

LRP1 physiologically exists in two forms: a cell surface bound
form (LRP1) and a truncated soluble form (sLRP1; Figure 1A).
The surface-bound LRP1 is composed of two subunits that
includes an extracellular α-chain (515 kDa) and a β-chain
(85 kDa) containing a short extracellular extension, a single
transmembrane domain and a 100 amino acid intracellular
domain (Emonard et al., 2014). The characteristic motifs on
the cytoplasmic tail of LRP1, namely, two NPXY motifs, one
YXXL motif and two di-leucine motifs bind to endocytotic
and scaffold adaptors, rapidly trafficking ligands like Aβ into
endosomes in a clathrin-dependent manner (Li et al., 2001a;
Deane et al., 2004, 2008) transporting them into the vascular
lumen. Cell surface levels of LRP1 are controlled by proteolytic
cleaving of its ectodomain. Several proteases including beta-
secretase 1 (BACE-1), A Disintegrin And Metalloprotease
(ADAM)-10, ADAM-12, ADAM-17, membrane type-1 matrix
metalloprotease (MT1-MMP) and tissue plasminogen activator
(t-PA) have been shown to be involved in shedding of LRP1
(Rozanov et al., 2004; von Arnim et al., 2005; Polavarapu
et al., 2007; An et al., 2008; Liu et al., 2009; Selvais et al.,
2011). The extracellular domain or ectodomain of LRP1 released
after shedding is sLRP1 (Quinn et al., 1997), as described
above. The truncated soluble form of LRP1 freely circulates
in the plasma and sequesters unbound Aβ in the periphery
(Sagare et al., 2007, 2013a). sLRP1 is also detectable in
the cerebrospinal fluid (CSF; Qiu et al., 2001; Liu et al.,
2009).

The endocytotic efficiency of LRP1 is dynamically regulated
by post-translational phosphorylation of serine, tyrosine and
threonine residues on its cytoplasmic tail (Bu et al., 1998;
van der Geer, 2002), which also enables its downstream cell
signaling functions. Phosphorylation on serine and tyrosine
residues by protein kinase Cα (PKCα) enables the LRP1
intracellular domain to bind to adaptor protein Disabled-1
(Dab1) decreasing endocytosis by 25% (Ranganathan et al.,
2004), whereas, phosphorylation on serine residues by protein
kinase A (PKA) increases LRP1 endocytosis (Li et al., 2001b).
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FIGURE 1 | (A) The structure of LRP1. The extracellular domain
consists of a heavy α-chain (515 kDa) with four ligand-binding
domains. The light chain or the β-chain (85 kDa) extends into the
intracellular compartment where it has two characteristic NPxY motifs
involved in endocytosis and cell signaling. Proteolytic cleavage of

surface-bound LRP1 yields the soluble sLRP1. (B) The three steps of
LRP1-mediated Aβ clearance from brain (step 1), from blood (step 2)
and from the body (step 3). For description of these three steps please
see panel (B). See “Role of LRP1 in Aβ Clearance” Section for a more
detailed explanation.

Distinct from this, phosphorylation of tyrosine by Src activates
the Ras signaling pathway rather than endocytosis (Barnes et al.,
2003).

Interestingly, our recent study (Zhao et al., 2015) indicates
that phosphatidylinositol binding clathrin assembly protein
(PICALM; Dreyling et al., 1996; Tebar et al., 1999), a highly-
validated risk factor for AD confirmed in several genome-wide
association studies (Harold et al., 2009; Lambert et al., 2009;
Carrasquillo et al., 2010, 2015; Chen et al., 2012; Tanzi, 2012;
Liu et al., 2013; Morgen et al., 2014) binds to the intracellular
tail of LRP1 at the YXXL domain and regulates endocytsosis of
LRP1-Aβ complexes. Aβ binding to LRP1 presumably elicits a
conformational change in its cytoplasmic tail, enabling PICALM-
regulated endosomal transcytosis of Aβ (Zhao et al., 2015).

Role of LRP1 in Aβ Clearance
In order to prevent pathological accumulations of Aβ in the
brain, Aβ clearance from the cerebral milieu into periphery and
out of the system is of prime importance. The multi-site role
of the key Aβ-binding receptor, LRP1, helps eliminate systemic
Aβ in a three-step serial clearance mechanism (Figure 1B;
Zlokovic et al., 2010; Sagare et al., 2012). Step 1 (BBB). At the
site of the BBB, surface LRP1 is expressed on the endothelial
membrane facing the brain (abluminal). This membrane-bound
LRP1 binds cerebral Aβ and rapidly initiates its clearance
into the blood (luminal) side (Shibata et al., 2000; Deane
et al., 2004, 2008; Ito et al., 2006; Bell et al., 2007; Sagare
et al., 2007). Radiolabelled and unlabeled Aβ administered
intracerebrally has appeared intact in plasma, indicating Aβ

efflux from the brain by cerebrovascular LRP1 (Shiiki et al.,

2004; Bell et al., 2007). Step 2 (Plasma). sLRP1 in the periphery
contributes to Aβ clearance by sequestering free Aβ in circulation
(Sagare et al., 2007, 2013a). Coimmunoprecipitation of sLRP1-
bound Aβ in neurologically normal humans has indicated that
circulating sLRP1 can sequester 70–90% of plasma Aβ (Sagare
et al., 2007), thereby driving the Aβ gradient in favor of
efflux across the BBB. This endogenous peripheral Aβ ‘‘sink’’
created by sLRP1 promotes Aβ clearance from the brain into
circulation. Step 3 (Liver). LRP1 was first identified in the
liver (Herz et al., 1988), and at the hepatic site, is responsible
for binding to and clearing Aβ from the system (Tamaki
et al., 2006; Sagare et al., 2011b; Sutcliffe et al., 2011; Sehgal
et al., 2012). In addition to the liver, sLRP1-Aβ complexes
are also removed by the kidney and spleen (Sagare et al.,
2007).

Recent Techniques to Study Aβ Clearance
from the Brain

For many years, methods involving intracerebral injection of
radiolabelled Aβ and studying its efflux from the brain into the
plasma and/or CSF has been a validated method to predict Aβ

clearance. Over the recent years, there has been an increased
interest in exploring the brain ISF pool for Aβ levels, its metabolic
dynamics and clearance rates. To this effect, an analytical
technique—microdialysis (Figure 2)—which has been popularly
used to study neurotransmitters, has recently been recruited to
study soluble Aβ in the brain of awake APP overexpressing mice
(Cirrito et al., 2003; Chefer et al., 2009; Sagare et al., 2013b; Zhao
et al., 2015).
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FIGURE 2 | Brain microdialysis. A microdialysis probe is surgically implanted
into a specific brain region of interest. Aβ and other solutes from the brain ISF
freely enter the semipermeable membrane of the microdialysis probe. Fractions

of microdialysates obtained over a period of time are then used to quantify Aβ

levels reflecting steady-state levels and/or clearance of Aβ from the brain after
inhibition of Aβ production.

In freely moving rodents, cerebral microdialysis enables
continuous, time-lapsed readouts of Aβ levels in the brain ISF.
Briefly, the microdialysis method entails implanting a small
microdialysis probe (∼ 200 µm in diameter) into a discrete
brain region. Each probe has a characteristic recovery rate for
the analyte of interest, here, Aβ, that is optimized in vitro. The
probe comprises of a semipermeable membrane of a limited
porosity, (in this case, 35 kDa) and is perfused with artificial
CSF. Cerebral molecules up to 35 kDa in size can freely enter
the membrane and are recovered through the microdialysate.
Fractions of microdialysates can be collected over different
periods of times to represent a neurochemical ‘‘snapshot’’ of the
cerebral milieu around the probe along a certain time period. Aβ

in the microdialysate is then quantified using biochemical assays
like enzyme-linked immunosorbent assay (ELISA). In addition
to obtaining steady-state measurements of Aβ, its efflux kinetics
like half-life can be studied by administering a potent γ-secretase
inhibitor, compound E which inhibits the production of soluble
Aβ. The ISF Aβ levels from the microdialysate, upon compound
E injection, now represent its clearance from the brain. This
method has been used extensively in ADmouse models to obtain
valuable information on genetic factors that affect clearance Aβ

(Cirrito et al., 2003; Farris et al., 2007; Sagare et al., 2013b; Zhao
et al., 2015). Intracerebral microdialysis has also been used to
obtain human ISF Aβ concentrations in patients undergoing
invasive intracranial monitoring (Brody et al., 2008).

A pioneering method was recently developed to measure
rates of Aβ synthesis and clearance in human subjects. After
intravenously infusing a stable isotope-labeled amino acid
(13C6-leucine; Bateman et al., 2006; Mawuenyega et al., 2010)

CSF and plasma were sampled over a 36-h period. The
fractional synthesis rate (FSR) and fractional clearance rate
(FCR) of in vivo Aβ was then quantified using high-resolution
tandem mass spectrometry. This method was instrumental
in demonstrating that diminished Aβ clearance, and not
overproduction, contributes towards cerebral Aβ accumulation
in late-onset AD (Bateman et al., 2006; Mawuenyega et al., 2010).

Factors Regulating LRP1-Mediated Aβ

Clearance

The function of the BBB-localized LRP1 in actively removing
Aβ from the brain is regulated by several factors. Fluctuations
in LRP1 expression levels and structural modifications directly
affect Aβ clearance. LRP1 expression is further regulated by
several vascular genes in brain endothelium and VSMCs, and
genetic risk factors for late-onset AD that can all modulate LRP1-
mediated Aβ clearance (Figure 3).

Expression Levels
LRP1 expression levels are significantly reduced in brain
endothelial cells in normally aging and AD humans and animal
models (Kang et al., 2000; Shibata et al., 2000; Deane et al., 2004;
Donahue et al., 2006) leading to higher levels of Aβ in the brain
(Figure 3A). Additionally, LRP1 levels are also diminished on
VSMCs in AD patients (Bell et al., 2009). Importantly, there is
a significant negative correlation between the expression of LRP1
on microvessels and Aβ accumulation in cerebrovasculature and
brain parenchyma (Shibata et al., 2000; Donahue et al., 2006).
Also, sLRP1 fraction bound to Aβ40 and Aβ42 is significantly
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FIGURE 3 | Factors regulating transvascular LRP1-mediated Aβββ

clearance. (A) Age-dependent reduction in LRP1 levels and its shedding
and (B) oxidation of LRP1. LRP1 expression and Aβ clearance are further
regulated by (C) transcriptional suppression by Srebp2 and SLC2A1
(encoding glucose transporter, Glut1) in brain endothelial cells and SRF
and MYOCD in vascular smooth muscle cells (VSMCs), as well as by

MEOX2 in brain endothelial cells. Moreover, well-known highly replicated
Alzheimer’s disease (AD) genetic risk factors including PICALM (D) and
APOE4 gene (E) influence endocytosis and transcytosis of Aβ-LRP1
complexes across brain endothelium of the blood-brain barrier. See
“Factors Regulating LRP1-Mediated Aβ Clearance” Section for a more
detailed explanation.

reduced in Mild Cognitive Impairment (MCI) and AD subjects
that corresponds to elevated levels of free Aβ40 and Aβ42 in
plasma (Figure 3A; Sagare et al., 2011a). This free plasma Aβ

can cross the BBB and re-enter the brain in a concentration-
dependent manner mediated by the receptor for advanced
glycation end products (RAGE), the major Aβ influx receptor

at the BBB transporting Aβ from blood into the brain (Deane
et al., 2003; Ujiie et al., 2003; Zlokovic, 2008). Interestingly,
RAGE expression levels are increased in AD endothelium that
is associated with cerebrovascular and brain accumulation of Aβ

(Yan et al., 1996; Deane et al., 2003, 2012; Silverberg et al., 2010).
Therefore, the accumulation of Aβ in the brain can be attributed
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to the cumulative effects of reduced expression of surface-bound
LRP1 and sLRP1, causing higher cerebral and plasma Aβ levels
respectively, and increased expression of RAGE, increasing the
re-entry of Aβ into the brain.

Receptor Shedding
Lipoprotein receptors on the BBB are susceptible to ectodomain
shedding which alters endocytotic transport and clearance of
molecules, including Aβ, from the brain. Treating human brain
endothelial cells with Aβ causes shedding of sLRP1 (Bachmeier
et al., 2014; Figure 3A). Similarly, intracranial infusion of Aβ into
mouse brain results in sLRP1 shedding (Bachmeier et al., 2014).
In both the in vitro and in vivo experiments, the amount of sLRP1
shedding was reduced in the presence of ApoE2 or ApoE3 but
not ApoE4 (Bachmeier et al., 2014). Furthermore, sLRP1 levels
are increased in CSF from aged and AD subjects due to shedding
(Qiu et al., 2001) caused by ADAM10 and ADAM17 (Liu et al.,
2009). The dysregulation of shedded sLRP1, in part due to the
presence of Aβ, could impair Aβ clearance from the brain and
contribute to the pathogenesis of AD.

Oxidation
There is an increase in oxidative stress in the brain of aged
and AD subjects (Moosmann and Behl, 2002; Chen and Zhong,
2014). This is evidenced by increased biomarker levels in the
blood that reflect oxidative stress in the brain (Beal, 2005; Torres
et al., 2011). Oligomeric Aβ induces oxidative stress that is
believed to contribute to AD pathologies (Drake et al., 2003;
Boyd-Kimball et al., 2006; Clementi et al., 2006). Importantly,
LRP1 is oxidized in AD hippocampus and does not bind
Aβ leading to increased Aβ deposition (Figure 3B; Drake
et al., 2003). In addition to surface LRP1, in AD patients and
animal models, sLRP1 binding to Aβ is disrupted by oxidation
(Figure 3B; Sagare et al., 2012). Oxidized sLRP1, which does
not bind to Aβ, is associated with elevated levels of free Aβ40
and Aβ42 in the plasma (Sagare et al., 2011a). Our previous
studies have shown a significant positive correlation betweenCSF
tau/Aβ42 ratios and oxidized sLRP plasma levels (Sagare et al.,
2011a). Therefore, oxidation of both LRP1 and sLRP1 negatively
impacts Aβ clearance from the brain. Moreover, there is likely
a vicious cycle since Aβ induces LRP1 oxidation rendering the
receptor less capable of clearing/reducing Aβ levels in the brain.

Regulation of LRP1 Expression by Genes in Vascular
Cells
The expression of LRP1 is negatively regulated by its only known
transcriptional suppressor; the sterol regulatory element binding
protein (SREBP2; Llorente-Cortés et al., 2006, 2007). Recent
studies have evidenced how Aβ clearance mechanisms in the
CNS are indirectly altered by vascular- and metabolism-related
genes via SREBP2-mediated regulation of LRP1 (Figure 3C).

LRP1 and GLUT1
The brain, which exclusively depends on the vasculature for
essential metabolites, receives its supply of glucose across the
BBB through the glucose transporter (GLUT1; encoded by
SLC2A1). In AD, there is a reduction in this GLUT1 on cerebral

microvessels (Mooradian et al., 1997). Diminished uptake of
glucose, as studied by positron emission tomography (PET)
using a glucose analog, 18F-2-fluoro-2-deoxy-D-glucose (FDG),
is reported to be a forerunner to brain atrophy (Hunt et al., 2007),
and has been observed in individuals with a genetic risk for AD,
with a positive familial AD history, as well as those with none or
mild cognitive deficits to eventually go on to develop AD (Hunt
et al., 2007; Herholz, 2010).

Our group has recently demonstrated that GLUT1 deficiency
in a transgenic AD mouse model overexpressing human
APP Swedish mutant, APP sw/0, accelerated amyloid load and
aggravated Aβ accumulation (Winkler et al., 2015). Incidentally,
GLUT1 heterozygous mice (Slc2a1+/−) also expressed lower
levels of LRP1 with respect to controls (Slc2a1+/+); the trend
in diminished LRP1 expression further exacerbating with the
addition of APP phenotype in Slc2a1+/−APP Sw/0 (Winkler et al.,
2015). Re-expression and silencing of Slc2a1 correspondingly
boosted and decreased LRP1 levels, explaining the reversible
nature of the GLUT1-LRP1 relationship; while suppressing
LRP1 levels did not affect GLUT1 expression, indicating that
GLUT1 acts upstream to LRP1. In deciphering the molecular
mechanism behind this relationship, it was observed that Slc2a1
deficiency upregulates the SREBP2 transcription factor, in turn
downregulating LRP1 expression (Figure 3C; Winkler et al.,
2015).

Reductions in glucose transporters observed in AD (Kalaria
and Harik, 1989; Horwood and Davies, 1994; Simpson et al.,
1994; Mooradian et al., 1997), extends its effects beyond apparent
hypometabolism to essentially affect Aβ clearance mechanisms
by regulating LRP1 levels in the cerebral endothelia.

LRP1 and vascular-related genes
The expression levels of several vascular-related genes are
altered in AD. For example, transcriptome profiling of human
brain endothelial cells has indicated that the expression of
mesenchyme homeobox gene 2 (MEOX2), a regulator of vascular
differentiation and remodeling, is reduced in AD (Wu et al.,
2005). The downregulation of MEOX2, and consequently the
encoded protein, growth arrest-specific homeobox (GAX), is
associated with altered angiogenesis, cerebral hypoperfusion and
accumulation of brain Aβ (Wu et al., 2005). Unsurprisingly,
MEOX2 expression affects Aβ homeostasis by regulating LRP1
expression. Low levels of MEOX2, as studied in vivo and in
vitro models, leads to diminished LRP1 levels at the BBB
by promoting its proteosomal degradation (Figure 3C; Wu
et al., 2005). On the other hand, two other interrelated
transcriptional factors constituting the critical regulators of
VSMCs differentiation, namely, serum response factor (SRF)
and myocardin (MYOCD) are, in turn, upregulated in AD
(Chow et al., 2007; Bell et al., 2009). The overexpression profile
of SRF/MYOCD initiates a hypercontractile phenotype in the
cerebral arteries through increased expression of SRF/MYOCD-
regulated contractile proteins, thereby resulting in cerebral
hypoperfusion, diminished neurovascular coupling and cerebral
amyloid angiopathy (CAA; Chow et al., 2007). Cerebral VSMCs
from AD patients with CAA exhibit, along with overexpressed
SRF/MYOCD, an accumulation of Aβ and significantly lower
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levels of LRP in comparison with age-matched healthy controls
(Bell et al., 2009). Following this, it was then observed
that SRF/MYOCD overexpression in VSMCs transcriptionally
regulates LRP1 levels by transactivation of SREBP2, diminishing
LRP1 surface expression and affecting Aβ efflux from the brain
(Figure 3C; Bell et al., 2009).

Regulation of LRP1-Mediated Aβ Endocytosis and
Clearance by AD Risk Genes
PICALM
While the extracellular domain of LRP1 binds a diverse array of
ligands, the intracellular cytoplasmic domain is actively involved
in ligand endocytosis (Krieger and Herz, 1994; Reekmans et al.,
2010). Recently, a gene crucial for endocytotic internalization
of receptors—PICALM (Sorkin and von Zastrow, 2009; Treusch
et al., 2011) encoding phosphatidylinositol binding clathrin
assembly protein (Dreyling et al., 1996; Tebar et al., 1999), is
a highly-validated risk factor for AD and has been confirmed
in several genome-wide association studies (Harold et al.,
2009; Lambert et al., 2009; Carrasquillo et al., 2010, 2015;
Chen et al., 2012; Tanzi, 2012; Liu et al., 2013; Morgen et al.,
2014). Interestingly, in our most recent work (Zhao et al.,
2015), we observed that Picalm haploinsufficiency imparts
diminished clearance of cerebral Aβ and accelerated amyloid
pathology. Because the capillaries lining the BBB prolifically
express PICALM (Baig et al., 2010; Parikh et al., 2014), we
investigated whether this high-risk AD gene regulated the
internalization of the main Aβ-clearance receptor, LRP1,
thereby affecting Aβ clearance. Using primary human brain
endothelial cells, we observed that fluorescently-labeled
Aβ40-LRP1 complex rapidly colocalizes with PICALM, and
remains associated with it for several minutes after exposure,
indicating a downstream mechanism of PICALM-regulated
clathrin-dependent endocytosis of Aβ40-LRP1 (Figure 3D).
Further delineating the endocytotic fate Aβ40-LRP1, proximity
ligation studies with several downstream players from
endosomal pathway revealed that PICALM-driven Aβ40-LRP1
internalization is shunted away from lysosomal degradation
and instead directed towards a transcytotic clearance pathway,
shuttling Aβ from the brain into circulation (Figure 3D; Zhao
et al., 2015). This seminal finding marks the first of its kind,
mechanistically answering the integral question on the relation
between the AD risk factor PICALM, amyloid load and LRP1
function.

The binding of PICALM to the intracellular tail of LRP1
at the YXXL domain is specific for Aβ as the ligand, and
did not occur with other LRP1 ligands, like, apoE and α2-
macroglobulin (A2M; Zhao et al., 2015). Aβ binding to LRP1
presumably elicits a conformational change in its cytoplasmic
tail, enabling PICALM-regulated endosomal Aβ transcytosis.
PICALM is downregulated in AD (Zhao et al., 2015); these
reductions potentially contribute to an exacerbation in disease
pathology by hindering LRP1-mediated Aβ transport, further
tipping the Aβ balance in the brain (Figure 3D; Zlokovic et al.,
2010; Sagare et al., 2012).

Importantly, single-nucleotide polymorphisms (SNPs) in
PICALM, located upstream of the gene coding region but not

in the coding region, have been identified to influence AD
risk (Harold et al., 2009; Lambert et al., 2009; Carrasquillo
et al., 2010, 2015; Chen et al., 2012; Tanzi, 2012; Liu et al.,
2013; Morgen et al., 2014). It has been reported that some
AD-associated SNPs influence PICALM expression (Raj et al.,
2012). We recently studied the highly validated rs3851179
PICALM variants whose rs3851179A allele is associated with
a lower AD risk than the rs3851179G allele (Lambert et al.,
2009, 2013) using inducible pluripotent stem cell (iPSC)-
derived endothelial cells. These studies revealed that the
protective rs3851179A allele significantly increased PICALM
expression and, more importantly, Aβ clearance, reiterating
the essential role of PICALM in Aβ clearance (Zhao et al.,
2015).

ApoE
ApoE is a 34 kDa glycoprotein produced mainly by the glial cells
in brain and liver in the periphery (Huang and Mahley, 2014).
ApoE plays an important role in lipid metabolism (Mahley,
1988). In humans, the apoE exists in three isoforms, apoE2,
apoE3 and apoE4 which differ from each other by either one
or two amino acids at position 112 and 158 (Huang and
Mahley, 2014). Several genome wide association studies in the
past two decades identified APOE4 as a major genetic risk
factor for AD (Corder et al., 1993; Saunders et al., 1993; Tanzi,
2012). Recent studies suggest that apoE4 contributes to vascular
and neuronal dysfunction via both Aβ-dependent and Aβ-
independent pathways (Deane et al., 2008; Bell et al., 2012; Hudry
et al., 2013; Huang and Mahley, 2014; Casey et al., 2015; Halliday
et al., 2015). ApoE interacts with Aβ and plays an important
role in its metabolism and AD pathogenesis (Wisniewski and
Frangione, 1992; Holtzman et al., 2000; DeMattos et al., 2004;
Bell et al., 2007; Deane et al., 2008; Jiang et al., 2008; Castellano
et al., 2011; Zlokovic, 2013; Tai et al., 2014). Previous work
from our group has shown that lipidation status of apoE
can affect its binding to Aβ and clearance across the BBB
(Martel et al., 1997; Bell et al., 2007; Deane et al., 2008).
Our studies have also shown that rapid BBB clearance of
Aβ complexed to apoE2 and apoE3 occurs mainly by LRP1
(Figure 3E), by contrast, apoE4-Aβ complexes are removed by
slower very low density lipoprotein receptor (VLDLR)-mediated
internalization and transcytosis (Bell et al., 2007; Deane et al.,
2008).

Restoration of LRP1

In addressing the reduced expression of LRP1 on AD capillaries,
a potential method of selectively targeting LRP1 for its
restoration in aging or in diseased state is via the delivery of
gene transfer vectors. Viral-mediated gene transfer methods,
especially adeno-associated viral (AAV) systems have proven
to be effective both in different peripheral cell types as well
as in the CNS (Davidson et al., 2000; Mingozzi and High,
2011), are safe and more commonly used for targeted gene
therapy. In general, gene therapy directed towards neurological
disorders remains challenging due to the restricted entry of
vectors into the brain authorized by the BBB endothelial lining.
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However, targeting a receptor like LRP1 is more achievable
due to its favorable position on the endothelial membrane,
making it directly accessible to therapeutic interventions that
may be administered intravenously. In animal models, vascular
endothelial cells have been successfully transduced with AAV-
2 vector system by using peptides with a high affinity
for cerebral vasculature, specific for normal and diseased
states identified by in vivo phage panning (Chen et al.,
2009). Recently, AAV-9, a serotype less affected by human
neutralizing antibodies, has been developed for a highly efficient
transduction of endothelial cells (Varadi et al., 2012). Using
these recently-developed gene transfer techniques offering a
vascular-directed biodistribution, it is conceivable to use AAV-
based targeting vectors to deliver LRP1 whole cDNAs or a
part of its domains to restore reduced LRP1 expression at the
BBB in AD.

Additionally, another candidate site for restoration or
selective enhancement of LRP1 by gene therapy is the liver
(Sagare et al., 2012). Restoring normal LRP1 levels in hepatocytes
by use of the highly successful liver-directed AAV-based gene
transfer methods (Mingozzi and High, 2011; Wang et al., 2011)
can systemically ‘‘vacuum’’ out the peripheral Aβ and, in turn,
promote the removal of brain Aβ by driving the Aβ gradient.

Moreover, Aβ clearance therapy is feasible at the peripheral
‘‘sink’’ constituent of Aβ homeostasis (Zlokovic et al., 2010;
Sagare et al., 2011b, 2012, 2013a). In fact, circulating sLRP1-
Aβ in plasma serves as an early biomarker for mild cognitive
impairment preceding AD-type dementia (Sagare et al., 2011a).
Soluble LRP1 and/or its wild-type recombinant cluster IV, WT-
LRPIV, bind to free Aβ, preventing it from reentering the brain
via the RAGE receptor, and therapeutically enabling reductions
in Aβ pathology (Sagare et al., 2007). In order to limit the
binding of the recombinant LRPIV to only the neurotoxic Aβ

while excluding other LRP-binding ligands, a mutant of LRPIV
was recently developed, exhibiting higher binding affinity to Aβ

(Sagare et al., 2013a). This mutant, LRPIV-D3674 effectively
replaced oxidized sLRP1, is 25–27% more effective than WT-
LRPIV in clearing brain endogenous Aβ, and within 3 months
of treatment, significantly reduced Aβ levels in hippocampus
and cortex of APP sw/0 mice (Sagare et al., 2013a). LRPIV-
D3674 is thus capable of regulating Aβ levels in the periphery,
and forms the rationale for an efficient Aβ clearance therapy.
Restoring reduced or oxidized sLRP1, that contributes to ∼70%
of bound Aβ (Sagare et al., 2007), can restore the natural
peripheral ‘‘sink’’ and salvage the irregular Aβ homeostasis in
AD.

In developing these LRP1-targeted efforts, it is, however,
important to exert caution in Aβ specificity and the safety
of the therapies as LRP1 has a multi-functional role as an
endocytotic and a cell signaling receptor in several other systemic
mechanisms.

Conclusion

AD is a growing epidemic. There are currently 5.2 million
Americans suffering from this disease and the number of
individuals affected is projected to triple by the year 2050 (Sano

et al., 2013). Failure in Aβ clearance is highly recognized in
relation to AD pathogenesis in sporadic or late-onset AD, the
most common form of AD occurring in over 95% of patients
(Tanzi, 2012). Here, we have briefly reviewed the transvascular
Aβ clearance from the brain mediated by LRP1.

Because the cerebrovasculature highly influences Aβ

homeostasis it would be beneficial to develop therapeutic
strategies in AD including both, the neuronal and vascular
components of the CNS. In addition to the advantage that
the vascular system is easily accessible from the periphery
for pharmacological and genetic manipulations, vascular
damage patterns typically precede neuronal injury, providing
an opportunistic window for treatment—a concept proposed
in the vascular two-hit hypothesis (Zlokovic, 2011). According
to the vascular two-hit hypothesis, an initial vascular insult
to the brain (hit 1) elicited by hypoxia, hypoperfusion or a
disrupted BBB precedes observed amyloid pathology in AD.
Accumulated Aβ (hit 2), predominantly an effect of faulty
Aβ clearance in late-onset AD, now triggers a pathological
cascade of neuronal injury, cognitive decline and AD-
dementia.

LRP1 plays a regulatory role in both, the hit 1 (before
Aβ accumulation) as well as the hit 2 (amyloid pathology)
phases of the AD disease progression, making it an invaluable
target in AD clearance therapy (Zlokovic et al., 2010).
Currently, there are no drugs that can prevent or reverse
AD. Targeted LRP1-based therapies in restoration/enhancement
of surface LRP1 at the BBB or on hepatocytes, or the peripheral
application of LRPIV Aβ-binding clusters are currently being
explored, and show potential in serving as Aβ clearance
therapies (Sagare et al., 2012, 2013a). Due to the numerous
factors like oxidative stress, receptor shedding, and the
influence of other genes, among others, that regulate LRP1
expression and function, thereby affecting Aβ clearance,
there is a compelling need to adapt a multifaceted approach
in addressing therapeutic interventions. Pharmacological
interventions may be used in conjunction with gene therapy;
for example, administration of withanolides and withanosides
reverse AD pathology in APP/PS1 mice by enhancing LRP1
in the brain microvessels and liver (Sehgal et al., 2012),
olive-oil-derived oleocanthal enhances cerebral Aβ clearance
by upregulating LRP1 at the BBB (Abuznait et al., 2013).
Moreover, changes in lifestyle can have a meaningful impact
as preventive measures in AD. An antioxidant-rich diet,
such as the recently investigated Mediterranean-DASH
(Dietary Approaches to Stop Hypertension) Intervention
for Neurodegenerative Delay (MIND) diet has shown potential
in reducing AD risk (Morris et al., 2015), presumably by
rousing the body’s natural anti-oxidant defense mechanism.
Incorporating physical activity into one’s lifestyle serves as a
pro-angiogenic factor having beneficial effects on cognition.
Additionally, another promising compound performing as
a vasculoprotectant, antioxidant and an anti-inflammatory
agent is the activated protein C (APC; Griffin et al., 2002,
2015).

AD-associated genes regulating LRP1 function, like APOE,
SLC2A1 and PICALM, too extend potential as targets for
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AD therapy in alleviating AD pathology and/or amend Aβ

imbalance. Future studies focused on genetically engineered
mice possessing variants in these AD risk genes can generate
more knowledge on the role of LRP1-mediate transvacular
clearance of Aβ.
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