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Alzheimer’s disease (AD) is the most common form of dementia in the elderly. The vast
majority of cases are not linked to a known genetic defect and the molecular mechanisms
underlying AD pathogenesis are still elusive. Evidence suggests that mitochondrial
dysfunction is a prominent feature of the disease, and that mitochondrial DNA (mtDNA)
alterations may represent a possible starting point of the pathophysiological cascade.
Although specific mtDNA alterations have been reported in AD patients both in brain and
peripheral tissues, such as D-loop mutations, 4977-bp deletion and poly-C tract D310
cytosine insertion, a generalized subtle allelic shift has also been demonstrated. This shift
is significant for a few nucleotide positions (nps), but it is also detectable for most nps,
although at a lower level. As single allelic substitutions can unlikely be determinant, it
is proposed that the combination of all of them could lead to a less efficient oxidative
phosphorylation, thus influencing AD development and course.

Keywords: Alzheimer’s disease, mtDNA, mutation, aging, allele, MitoChip, heteroplasmy

Introduction

Alzheimer’s disease (AD) is an age-related neurological disorder that begins with occasional
memory loss, indistinguishable from memory disturbances associated with physiological
aging, and soon develops into a severe and debilitating disease, characterized by confusion,
aggressiveness, anxiety, sleep disturbance, depression, aberrant motor behavior and severe
cognitive impairments (Fernández et al., 2010). AD behavioral symptoms are a direct
consequence of the decimation of neurons, and researchers worldwide are trying to
unveil the cause of the widespread neuronal death. Many have focused on ‘‘plaques’’ and
‘‘tangles’’. Plaques are toxic aggregates of amyloid-ß (Aß) peptide distributed in the neuropil;
tangles are intraneuronal accumulations of the hyper-phosphorylated tau protein in twisted
filaments. Although much progress has been made regarding the knowledge of inter- and
intra-molecular interactions of both plaques and tangles (Perl, 2010), the reason why they
develop or why only some individuals are susceptible is still elusive. A popular, though
controversial, view posits that Aß is upstream of tau in AD pathogenesis and triggers
the conversion of tau from a normal to a toxic state (Bloom, 2014), implying that Aß
is central in the pathology (Herrup, 2015; Musiek and Holtzman, 2015). The observation
that AD is associated with a number of systemic manifestations, including altered gene
expression (Miller et al., 2008), oxidation (Moreira et al., 2005), and changes in enzymatic activity
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(Inestrosa et al., 1994), indicates that there could be common
factors underlying both central and peripheral manifestations
(Morris et al., 2014).

Mitochondrial dysfunction precedes both central nervous
system (CNS) neuropathological changes and peripheral
dysfunction, and it is one of the best documented systemic
alteration in AD (Galindo et al., 2010; Leuner et al., 2012;
Selfridge et al., 2013). Mitochondria involvement has been
confirmed by in vitro studies using cybrid models, i.e.,
mitochondria-depleted cell lines replenished with mitochondria
from patients with AD (Sheehan et al., 1997). Cybrids mimic
many features of AD, including decreased cytochrome c oxidase
(COX) activity, increased oxidative stress and Aß levels, and cell
death activation (Khan et al., 2000). The relationship between
impaired mitochondrial function and Aß neuropathology
is not well understood, although some evidence suggests
that mitochondrial bioenergetics and brain metabolism
affect amyloid precursor protein (APP) processing (Brody
et al., 2008; Xiang et al., 2010). Indeed, inhibition of energy
metabolism promotes potentially amyloidogenic pathways and
amyloidosis (Gabuzda et al., 1994; Gasparini et al., 1997). Most
mitochondrial functions are reportedly impaired in AD, and
the instability and limited repairability of mitochondrial DNA
(mtDNA), due to absence of histones and reduced efficacy
of enzymatic repair system, as well as the crucial role it plays
in oxidative phosphorylation (OXPHOS), render mtDNA
a candidate to be the primary site of damage. mtDNA is
inherited exclusively by maternal lineage and both mtDNA
haplotypes and maternal family history are associated with
cognitive and cerebrospinal fluid (CSF) biomarkers in AD
patients (Honea et al., 2012; Ridge et al., 2013). Interestingly,
mtDNA accumulates mutations throughout the aging process
(Michikawa et al., 1999; Krishnan et al., 2007), which is indeed
the main risk factor for AD (Swerdlow et al., 2014). Here we
shall explore different aspects of mitochondrial alterations
found in AD patients, with special emphasis on mtDNA,
reporting new data on subtle widespread changes in nucleotide
sequence.

Variations of Mitochondrial Function in
Alzheimer’s Disease

Mitochondria exhibit robust changes in both brain and
peripheral cells of AD patients. Fluorodeoxyglucose (FDG)
Positron Emission Tomography (PET) studies show that the
severity of dementia correlates closely to the magnitude
of brain metabolism reduction, and that decreased glucose
metabolism in cortical areas of AD subjects precedes functional
decline. On these bases, FDG PET investigations are being
increasingly adopted to assist clinicians in AD diagnosis, and to
predict future cognitive deterioration. Metabolic decline can be
attributed to reduced expression of mitochondrial and nuclear
genes encoding subunits of the tricarboxylic acid (TCA) cycle
and mitochondrial electron transport chain enzymes. Indeed,
α-ketoglutarate dehydrogenase, pyruvate dehydrogenase, and
COX expression and/or activity are reduced in AD (Gibson et al.,
1998; Maurer et al., 2000). COX activity is also decreased in

platelets (Parker et al., 1994), and represents one of the most
well-documented systemic change reported in AD. Interestingly,
a recent study shows reduced platelet COX activity in cognitively
healthy subjects with a maternal AD history compared to
those with a paternal history of AD. This implies that COX
abnormalities reflect the maternal inheritance and possibly
mtDNA involvement, which derives exclusively from the mother
(Mosconi et al., 2011).

Dysfunctional mitochondria contribute also to calcium
dyshomeostasis through impaired buffering capacity (Supnet
and Bezprozvanny, 2010). Both mitochondria and endoplasmic
reticulum (ER) are involved in altered Ca2+ homeostasis
described in AD, resulting in increased cytosolic Ca2+

concentration (Peterson et al., 1985). Mitochondria-associated
endoplasmic reticulum membrane (MAM) is a specialized
subdomain of the ER membrane that regulates ER-mitochondria
communications, and its function is significantly increased
in fibroblasts from patients with AD (Area-Gomez et al.,
2012). Strictly connected to mitochondrial calcium buffering
derangement is the activation of apoptotic pathway. Indeed, a
transient increase in mitochondrial Ca2+ induces opening of
permeability transition pore (PTP), and apoptosis. Although
it remains controversial whether apoptosis plays a major
role in AD neurodegeneration, many components of the
apoptotic pathway are activated or altered in AD brains and
peripheral cells. Studies in lymphocytes of sporadic AD patients
report significant changes in apoptotic markers compared to
age-matched controls, including increased DNA fragmentation,
enhanced vulnerability to proapoptotic stimuli, and increased
levels of caspases 3, 8 and 9 (Tacconi et al., 2004; Leuner et al.,
2012). Lymphocytes from AD patients bearing one or two APOE
ε4 alleles exhibit a higher rate of apoptotic cell death and caspase
3 activation than non-ε4 carriers (Frey et al., 2006).

In addition, mitochondrial dynamics is altered in AD. The
brain of patients with AD shows morphological mitochondrial
alterations, such as reduced number, increased size and broken
internal membrane cristae (Selfridge et al., 2013). Size and
number of mitochondria are regulated by the dynamic processes
of fusion and fission and recent studies reported significant
changes in the expression of almost all mitochondrial fusion and
fission related proteins in brains from AD patients, including
dynamin-like protein 1 (DLP1), optic atrophy 1 (OPA1), and
fission 1 (Fis1; Wang et al., 2009, 2012). The major effect
of these modifications is reduced fission, which leads to
structurally damaged and swollen mitochondria in vulnerable
areas of the CNS.

Overall, mitochondria undergo important alterations in both
brain and peripheral tissues in AD, supporting the hypothesis of
a systemic dysfunction involving energy metabolism.

Mitochondrial DNA Modifications in
Alzheimer’s Disease

A central role in mitochondrial dysfunctions is played by
mtDNA, as it represents a semi-permanent and transmissible
site of injury. mtDNA is composed of a circular molecule and
the sequence codes for the proteins of OXPHOS complexes,
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and the tRNAs and rRNAs used for the synthesis of mtDNA-
encoded proteins. It is present in multiple copies within a
mitochondrion, and therefore it is possible that mutant and wild-
type molecules coexist in a single cell. During the aging process
mtDNA mutations accumulate in cells and tissues, especially in
those with active oxidative metabolism like the brain (Lin et al.,
2002; Kennedy et al., 2013). To date, two mechanisms have been
proposed to explain this observation: oxidative damage deriving
from exposition to reactive oxygen species (ROS) and mtDNA
replication errors. Numerous studies show an age-related rise of
oxidative damage to lipids, proteins and DNA (Smith et al., 1991;
Ward et al., 2005; Santos et al., 2013), and a progressive increase
in 8-hydroxyguanine (8-OHdG) levels was reported in mtDNA
with aging (Mecocci et al., 1997). However, antioxidant enzymes
neither prevent the increase of mutations during aging, nor their
use increases lifespan (Lagouge and Larsson, 2013), suggesting
that an alternative mechanism may determine mtDNA damage,
e.g., accumulation of duplication errors. This process has been
investigated in the mtDNA mutator mice that have a defect
in the proofreading function of the mtDNA polymerase PolG
leading to a progressive and random collection of mtDNA
point mutations (Trifunovic et al., 2004). These mice show a
3- to 5-fold increase of the level of point mutations, as well
as premature aging and reduced lifespan. Questioning ROS
as central causative agents in age-dependent accumulation of
mtDNA mutations reflects the notion that, despite their bad
reputation, ROS are important signaling molecules involved in
metabolism regulation, cell differentiation and stress response
(Hou et al., 2014), and that their effects could even be beneficial in
stimulating internal anti-oxidant defense response. The increase
in mtDNA mutations observed during aging is exacerbated in
AD patients and in AD mouse models, in which a further
increase of mtDNA mutations is present in both brain and
peripheral tissues (Coskun et al., 2012; Kukreja et al., 2014).
Coskun et al. (2004) demonstrated that mtDNA control region
displays more sporadic mutations in AD brains than in control
cases, and that some of them are specific for AD patients like
T414C and T477C. The levels of mtDNA 4977-bp deletion are
increased in AD brains during the early stages of the disease
compared to controls and decline later, probably due to the
death of the affected cells (Corral-Debrinski et al., 1994). Other
peculiarities of mtDNA in AD have been reported, such as the
presence of the 7028C allele and a higher frequency of the poly-
C tract D310 with a number of cytosine >7 (Coto et al., 2011).
Conversely, conclusive evidence for an association of mtDNA
common haplogroups with AD has not been provided to date
(Hudson et al., 2012).

Low-Level Heteroplasmic Sequence
Changes of Mitochondrial DNA

mtDNA mutations could involve few copies or all the molecules
present in an organism, and these two conditions are called
heteroplasmy or homoplasmy, respectively. An homoplasmic
mutation could determine the specific mtDNA haplogroup,
whereas heteroplasmy influences the phenotype depending on
the associated damage and on the percentage of copies affected.

The percentage threshold for a critical phenotype vary for
different types of mutation. The threshold for deleted mtDNA is
approximately 50–60%, while for point mutations it is 70–90%
(Schon et al., 2012). A particular category of heteroplasmic
mutations includes those with a low percentage of mutated
copies, i.e., low-level heteroplasmic mutations. Their detection
is problematic because the signal coming from the minor
component cannot be easily distinguished from background
noise even with the latest Next Generation Sequencing (NGS)
technology. We recently employed Affymetrix MitoChip v2.0
array to sequence mtDNA from whole blood of AD patients
and controls (Casoli et al., 2014). MitoChip is a mtDNA
resequencing array with eight 25-mer probes/base position
(four oligonucleotide probes/strand) corresponding to the whole
revised Cambridge Reference Sequence (rCRS). Each 25-mer
probe is varied at the central position to incorporate each
possible nucleotide (A, G, C, or T), and fluorescence data are
elaborated by an algorithm. We set ‘‘model type’’ at diploid
to enable the detection of heteroplasmy and ‘‘quality score
threshold’’ at 3 to provide the best base calling accuracy and rate.
Resequencing software GSEQ 4.1 returns two kinds of output
files: single nucleotide polymorphism (SNP) View and Probe
Intensity allowing the identification of single base alterations,
but not insertions or deletions. SNP View files display the base
calls only for bases with mutations, classified as homoplasmic
or heteroplasmic (resembling the diploid condition with about
50% heteroplasmy), compared to the reference bases of rCRS.
Probe intensity files provide values of fluorescence intensity
corresponding to all of the four bases for each nucleotide
position (np) for both sense and antisense filament, producing a
quantitative estimate of allelic contribution. The analysis of SNP
View files revealed that neither homoplasmic nor heteroplasmic
total mutations were significantly different in the control as
compared to AD group. On the other hand, analysis of the Probe
Intensity files identified 270 significantly different nucleotide
positions (nps), which, with one exception, showed an increased
contribution of non-reference alleles in AD patients, as defined
by ratio of expected allele (REA) values, calculated as the log
ratio of the signal intensity of the reference allele at any site,
as indicated in the rCRS, to the average signal intensity of the
other three alleles (Coon et al., 2006). This result demonstrates
that controls have a notably higher fidelity to reference base
than AD patients, which consequently show a significant increase
of allelic shift. The 270 nps were characterized by low-level
heteroplasmy in AD subjects (5–20%; Figure 1), were not
associated with homo- or heteroplasmic mutations, did not
belong to a particular gene or class of genes, and could not
be ascribed to a particular nucleotide suggesting that that the
observed allelic shift was random and unspecific. The coding nps
(167) included 81% of non-synonymous mutations, therefore,
although single substitution unlikely could be determinant,
the combination of all of them could really influence disease
development and course. Interestingly, the increased allelic shift
observed in AD was not only restricted to the 270 significant
nps, but concerned the majority of the mtDNA nps analyzed.
Indeed, mean REA values were higher in controls in 89.7%
of the 16,544 nps analyzed (Figure 2). A control sequence
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FIGURE 1 | Increased contribution of non-reference alleles in
mitochondrial DNA (mtDNA) of Alzheimer’s disease (AD)
subjects. Representative Affymetrix sequencing chromatograms
(forward strand) relating to 5 of the 270 nucleotide positions (nps)

significantly different between controls and AD patients. The
highest peak corresponds to the reference allele. The increased
contribution of the other three non-reference alleles can be seen in
AD group.

tiled on the array, corresponding to a plasmid DNA (TagIQ-
EX), showed mean REA values higher for controls in 44.1% of
cases, indicating that the sequencing results were not affected
by experimental biases. The final outcome of these observations
is that mtDNA involvement in AD should not be searched in
single base mutation or individual gene malfunctioning, but
rather in random and widespread damage that probably leads
to less efficient OXPHOS and altered cell metabolism. To date,
it is not possible to state whether these changes are inherited
or acquired, but considering the age-dependent accumulation of

mtDNA mutations (Larsson, 2010) and the fact that aging is the
most important risk factor for AD, it is conceivable that the allelic
alterations accumulate during the lifetime at a rate depending
on baseline mitochondrial function and environmental factor
exposure (Swerdlow et al., 2014). This notion by no means
rules out the possibility that inherited mutations may contribute
to brain aging (Ross et al., 2013), as suggested by the recent
demonstration that low heteroplasmy variants can be maternally
inherited, and that they accumulate mostly in postmitotic tissue
such as mucle (Avital et al., 2012; Guo et al., 2013).
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FIGURE 2 | Distribution of the differences of ratio of expected allele (REA) values between controls and AD group. 16,544 nps have been analyzed and
the differences resulted positive for 14,847 cases, reported in red in the histogram (89.7%), suggesting a widespread increase of allelic shift in AD patients.

Conclusion and Future Directions

Here, we discussed new findings on the involvement of
mtDNA in AD, and report that diffuse, low-level heteroplasmic
sequence changes are important features of AD pathology.
mtDNA damage can be considered an upstream event in this
disease, and may induce alterations of OXPHOS enzymes.
Many researchers have ascribed this damage to progressive
oxidation of mtDNA molecules by ROS that are potentially
mutagenic and highly concentrated in its proximity. However,
the failure of clinical trials aimed at modulating ROS in AD
by antioxidants (Freund-Levi et al., 2006; Lloret et al., 2009)
has stimulated a partial revision of this assumption. Physical
activity and dietary restrictions are effective in preventing
age-associated diseases like AD, but both of them actually
determine a transient increase of ROS production instead
of a decrease, and it is possible that increased release of
oxidative species leads to enhanced stress defense. It therefore
seems that the best strategy against ROS is an exposure in
an on/off mode, which may stimulate endogenous reactions.

Since mtDNA mutations have been reported in most age-
related neurodegenerative diseases (Cha et al., 2015), a step
forward should be taken to verify if the reported mtDNA
diffuse allelic shift is specific for AD, by comparing groups of
patients affected by different types of neurodegeneration. The
proved involvement of mitochondria in AD neurodegeneration
may also stimulate the search for interventions aimed at
targeting these organelles. Various molecules could be
targeted to mitochondria thereby providing a basis for the
design of new medications, including RNA or DNA (e.g.,
antisense oligonucleotides, ribozymes, plasmid DNA expressing
mitochondrial genes etc.).
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