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Background: Obesity is associated with vascular risk factors that in turn, may increase

dementia risk. However, higher body mass index (BMI) in late life may be neuroprotective.

The possible neural mechanisms underlying the benefit of higher BMI on cognition

in older adults are largely unknown. Thus, we used functional connectivity magnetic

resonance imaging (fcMRI) to examine: (1) the relationship between BMI and functional

brain connectivity; and (2) the mediating role of functional brain connectivity in the

association between baseline BMI and change in cognitive function over a 12-month

period.

Methods:We conducted a 12-month, prospective study among 66 community-dwelling

older adults, aged 70 to 80 years, who were categorized as: normal weight (BMI from

18.50 to 24.99); overweight (BMI from 25.00 to 29.99); and obese (BMI ≥ 30.00). At

baseline, participants performed a finger-tapping task during fMRI scanning. Relevant

neural networks were initially identified through independent component analysis (ICA)

and subsequently examined through seed-based functional connectivity analysis. At

baseline and 12-months, wemeasured three executive cognitive processes: (1) response

inhibition; (2) set shifting; and (3) working memory.

Results: Obese individuals showed lower task-related functional connectivity during

finger tapping in the default mode network (DMN) compared with their healthy weight

counterparts (p < 0.01). Lower task-related functional connectivity in the DMN at

baseline was independently associated with better working memory performance at

12-months (p = 0.02). Finally, DMN functional connectivity during finger tapping

significantly mediated the relationship between baseline BMI and working memory at

12-months (indirect effect: −0.155, 95% confidence interval [−0.313, −0.053]).

Conclusions: These findings suggest that functional connectivity of the DMN may be

an underlying mechanism by which higher BMI confers protective effects to cognition in

late life.
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Introduction

Obesity is a complex condition that is characterized by excess
body fat and is associated with adverse health outcomes, such as
hypertension (Dyer and Elliott, 1989; Kuczmarski et al., 1997),
diabetes (Medalie et al., 1974), stroke (Hubert et al., 1983), sleep
apnea (Millman et al., 1995), and cancer (Chute et al., 1991;
Bostick et al., 1994). Worldwide, there are estimated to be over
1.4 billion overweight (body mass index [BMI] from 25.00 to
29.99 kg/m2) and 500 million obese (BMI ≥ 30) adults over the
age of 20 years. For the year 2011–2012, age-adjusted estimates
suggested among older adults over the age of 60 years in the
United States, 71.6% had BMI > 25 and 35.4% had BMI >

30 (Ogden et al., 2014). Thus, the World Health Organization
(WHO) considers obesity an epidemic (WHO, 2000).

Current evidence suggests that higher BMI in young and
midlife are associated with greater cognitive decline in late life
(Elias et al., 2003; Gunstad et al., 2007; Nilsson and Nilsson, 2009;
Sabia et al., 2009). The Whitehall II Study, which followed 5131
individuals from young adulthood (25 years old) through midlife
(44 years old) to late life (61 years or older), found that higher
BMI over young andmiddle adulthood was associated with lower
cognitive performance of executive functions and verbal working
memory in late life (Sabia et al., 2009). Moreover, among 1423
adults from age 55 to 88 years, Elias et al. (2003) found that
obese individuals showed significantly reduced working memory
compared to non-obese individuals over an 18-year observational
period. Likewise, Nilsson and colleagues (Nilsson and Nilsson,
2009) followed 2675 middle-age (35–55 years), young-old (60–
70), and old-old (75–90) individuals over the span of 10 years
and in one cross-sectional analysis they found that in the young-
old group, normal weight range individuals performed better
in semantic memory compared with overweight individuals
(Nilsson and Nilsson, 2009). However, in the old-old group, there
was an overall beneficial effect of being overweight for episodic
memory (Nilsson and Nilsson, 2009).

This latter finding—along with those from other studies -
suggests that elevated BMI in late life may be associated with
neuroprotection. These observations, while counterintuitive, do
concur with the phenomenon known as the “obesity paradox”
(Artham et al., 2008; Childers and Allison, 2010; Flegal et al.,
2013), which refers to the observed beneficial association
between obesity and health outcomes. For example, a nine-
year prospective study by Buchman et al. (2005) with 832
older adults (mean age = 77 years) found that lower baseline
BMI was associated with greater cognitive decline. Moreover,
subsequent reduction in BMI over the nine-year observation
period exacerbated the rate of cognitive decline. Similarly, Van
Den Berg et al. (2007) followed 562 older adults over the age of
85 and found that lower BMI was associated with increased rate
of decline in both global cognition and executive functions. Thus,
although elevated BMI might have neurodegenerative qualities
among younger individuals, it appears to have neuroprotective
qualities among older individuals. A possible reason for these
rather paradoxical observations is that lower BMI and cognitive
decline among older adults are both the result of age-related
degeneration that affects the body and brain (Grundman et al.,

1996; Hu et al., 2002; Boxer et al., 2003; El Fakhri et al., 2003).
Unintentional weight loss is included in various criteria for frailty
(Bandeen-Roche et al., 2006; Rockwood et al., 2007), and frailty is
associated with reduced cognitive performance (Bandeen-Roche
et al., 2006).

Despite the growing recognition that higher BMI in older
adults may be neuroprotective, few studies to date have
assessed the underlying mechanisms. Limited evidence from
neuroimaging studies suggests that elevated BMI may moderate
the negative effects of Alzheimer’s disease (AD) (Grundman et al.,
1996; Hu et al., 2002). Specifically, Grundman et al. (1996) found
that higher BMI among individuals with AD was associated
with greater volumes in the medial temporal cortex, which
includes the amygdala, hippocampus, uncus, dentate gyrus, and
parahippocampal gyrus, compared with their lean counterparts
with AD (Grundman et al., 1996). Another study found that
higher BMI among older adults with AD was associated with
greater glucose metabolism in the anterior cingulate gyrus and
hypothalamus (Hu et al., 2002); this finding in conjunction
with studies that report AD-associated reduction in cerebral
metabolism (Minoshima et al., 1994, 1997) provide further
evidence that higher BMI may have neuroprotective effects in
older adults.

The maintenance of cognitive function is supported by
multiple neural networks and their mutual connections; both
aging and neurodegeneration are characterized by alterations
in the coordination of brain networks that support cognitive
function (Greicius et al., 2004; Reuter-Lorenz and Lustig, 2005;
Persson et al., 2006; Andrews-Hanna et al., 2007; Greicius,
2008; Park and Reuter-Lorenz, 2009; Vidoni et al., 2012).
Specifically, among older adults, researchers have identified
functional neural networks that are susceptible to aging-related
decoupling (Greicius et al., 2004; Reuter-Lorenz and Lustig, 2005;
Persson et al., 2006; Andrews-Hanna et al., 2007; Greicius, 2008;
Park and Reuter-Lorenz, 2009; Vidoni et al., 2012) and thus, are of
interest in the current study. These networks include the default
mode network (DMN), the fronto-executive network (FEN), and
the fronto-parietal network (FPN). Notably, these three networks
have been found to be sensitive to interventions, aging, and
BMI status (Mcfadden et al., 2013; Hayes et al., 2014; Gupta
et al., 2015; Wijngaarden et al., 2015). Functionally, the DMN
demonstrates greater activity during a task-free resting-state and
shows less activation during goal-oriented cognitive processes.
The DMN is believed to be involved in self-referential thoughts
and autobiographical memory retrieval (Andrews-Hanna et al.,
2007; Buckner et al., 2008). The FEN is involved in executive
function-related cognitive processes and the maintenance of an
extended cognitive state during task performance (Dosenbach
et al., 2006; Seeley et al., 2007). The FPN is involved in attentional
control (Fogassi and Luppino, 2005; Seeley et al., 2007; Sridharan
et al., 2008) and may potentially serve as an internal switch
that displays synchronous activity with the DMN depending
on the task at hand (Spreng et al., 2010; Campbell et al.,
2012).

Thus, functional connectivity Magnetic Resonance Imaging
(fcMRI) has become an important tool to provide insight into
functional coherence of various areas of the brain—in the
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presence and in the absence of overt behavior or disease. The
latter is important within the context of dementia research
as it is a disease with a long preclinical phase (Morris,
2005). Moreover, as opposed to changes in brain structures
that can only be observed over a longer period of time,
functional connectivity allows researchers to examine changes
in the brain that occur within minutes of administering the
stimulus.

Moreover, of the few neuroimaging studies that explored
the neural mechanisms underlying the association between
BMI and cognitive outcomes, the majority were cross-sectional
(Grundman et al., 1996; Wang et al., 2001; Hu et al., 2002). Yet,
longitudinal data are essential to gaining a greater understanding
of how higher BMI may maintain cognitive function among
older adults over time. Thus, we conducted a 12-month
prospective exploratory study among 66 community-dwelling
older adults aged 70 to 80 years, using fcMRI to examine: (1)
the relationship between BMI and functional brain connectivity
of the DMN, FEN, and FPN (Figure 1A); and (2) the mediating
role of functional brain connectivity in the association between
baseline BMI and change in cognitive function over the 12-
month study period (Figure 1B). We expected to observe
differences in functional network connectivity between older
individuals with different BMI and that these differences are
independently associated with change in cognitive function over
time.

Materials and Methods

Study Design and Participants
A 12-month prospective exploratory fcMRI study was conducted.
We recruited 66 community dwelling older adults from
metropolitan Vancouver region via newspaper advertisements.
Individuals were eligible if they: (1) were aged 70 to 80 years; (2)
scored > 24/30 on the Mini-Mental State Examination (MMSE)
(Cockrell and Folstein, 1988); (3) were right hand dominant as
measured by the Edinburgh Handedness Inventory (Oldfield,
1971); (4) were living independently in their own homes; (5)

had visual acuity of at least 20/40, with or without corrective
lenses; and (6) provided informed consent. We excluded those
who: (1) had a neurodegenerative disease, stroke, dementia (of
any type), or psychiatric condition; (2) were taking psychotropic
medication; (3) were living in a nursing home, extended care
facility, or assisted-care facility; or (4) did not meetMRI scanning
requirements. The study was approved by the Vancouver Coastal
Research Health Institute and University of British Columbia’s
Clinical Research Ethics Board.

Measurement
All measures, with the exception of neuroimaging as well as
comorbidity and depression, were assessed at both baseline and
12-months. All assessors were trained and standardized protocols
were used.

Anthropometry and Categorization based on BMI
Standing height was measured to 0.1 cm, and weight was
measured to 0.1 kg. Each participant was categorized as: (1)
normal weight (BMI of 18.50–24.99); (2) overweight (BMI of
25.00–29.99); and (3) obese (BMI ≥ 30.00) according to the BMI
classification by the WHO (WHO, 1995).

Global Cognition
Global cognition was assessed using the mini-mental state
examination (MMSE) (Cockrell and Folstein, 1988) and the
Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005). The MMSE and MoCA are 30-point tests that cover
multiple cognitive domains. Originally, a score of < 24/30 on the
MMSE indicated cognitive impairment (Cockrell and Folstein,
1988). However, recent evidence suggest that a cut-off score
of 27 (sensitivity of 0.69; specificity of 0.91) or 28 (sensitivity
of 0.78; specificity of 0.78) on the MMSE may be more ideal
for identifying individuals with cognitive impairment (O’Bryant
et al., 2008). The MoCA have excellent internal consistency
and test-retest reliability. It was reported to accurately identify
individuals with mild cognitive impairment using a cut-off score
of < 26/30 (Nasreddine et al., 2005).

FIGURE 1 | (A) Relationship between BMI, network connectivity, and cognitive function. (B) Proposed relationship model tested in current analysis.
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Comorbidity and Depression
We assessed comorbidities with the Functional Comorbidity
Index (FCI) (Groll et al., 2005). The FCI is a questionnaire
containing 18 items; and the sum of the 18 items reflects the total
number of comorbidities associated with physical functioning
(Groll et al., 2005). We used the 15-item Geriatric Depression
Scale (GDS) (Yesavage et al., 1982; Yesavage, 1988) to assess
individuals’ mood; a score≥ 5 indicates depression (VanMarwijk
et al., 1995).

Executive Functions
For the current study, we focused on three domains of executive
functions: selective attention, set-shifting, and verbal working
memory. To assess these functions, we administered the Stroop
Test (Graf et al., 1995), the Trail Making Tests (Part A and
B) (Spreen and Strauss, 1998), and the verbal Digit Span Test
(forward and backward; Wechsler, 1981), respectively.

The Stroop Test (Graf et al., 1995) consists of three conditions.
The first condition (Stroop 1) requires the participants to verbally
read out words printed in black ink. The second condition
(Stroop 2) requires the participants to verbally read out the
printed color of colored-X’s. The final condition (Stroop 3)
requires the participants to disregard the meaning of the color-
words and verbally name the printed color of color-words that
may have been displayed in incongruent ink (e.g., the word
“RED” printed in blue ink). The total time participants took to
finish each of the three conditions was recorded and difference
in time between the third condition and second condition (Part
3minus Stroop 2) was calculated. Larger time difference reflects
poorer selective attention performance.

The Trail Making Tests (Part A and B) (Spreen and Strauss,
1998) consists of two conditions and requires the participants to:
(1) sequentially draw lines that connect numbers in order (Part
A); or 2) draw lines in alternating sequence connecting numbers
and letters (Part B). The total time participants used to complete
each condition was recorded and time difference between the
two conditions was calculated (Part B minus Part A). Larger time
difference reflects poorer set-shifting ability.

The verbal Digit Span Test (Wechsler, 1981) consists of
two conditions (forward and backward) and requires the
participants to verbally recite a list of random numbers that
progressively increase in length in the same order (forward)
or reversed order (backward) that was initially read to them.
The total number of correct cases for each condition was
recorded and a difference score (forward minus backward) was
calculated. Larger difference score reflects poorer verbal working
memory.

Functional MRI (fMRI)
The following sections contain details on scanning protocol and
parameters as well as analysis pipeline that were described in our
previous work (Hsu et al., 2014).

All fMRI was performed at the University of British Columbia
(UBC) MRI Research Center located at the UBC Hospital
on a 3.0 Tesla Intera Achieva MRI Scanner (Phillips Medical
Systems Canada, Markham, Ontario) using an 8-channel SENSE
neurovascular coil. The fMRI consisted of 166 dynamic images of

36 slices (3mm thick) with the following parameters: repetition
time (TR) of 2000ms, echo time (TE) of 30ms, flip angle (FA)
of 90◦, field of view (FoV) of 240mm, acquisition matrix 80 ×

80. The high resolution T1 images were acquired using the
following parameters: 170 slices (1mm thick), TR of 7.7ms,
TE of 3.6ms, FA of 8◦, FoV of 256mm, acquisition matrix of
256× 200.

Motor Task
During the fMRI scan, participants performed a simple finger
tapping motor test that allows the examination of functional
connectivity of networks under different conditions. While
simple motor tasks have been shown to be able to elicit
strong DMN connectivity patterns (Greicius et al., 2004), it still
provides a degree of cognitive challenge that results in task-
related deactivation of the DMN relative to complete rest (Hao
et al., 2013). In addition, this type of motor task is sensitive
to differentiating older adults with AD from those with other
types of dementia (Arnold et al., 2005; Grady et al., 2010). Also,
evidence suggests that performing continuous task may elicit
functional network connectivity different from those generated
under task-free conditions in resting-state (Hampson et al.,
2004), hence offering additional insight into the behavior of
neural networks.

The motor task contains three conditions: finger tapping
with left hand, finger tapping with right hand, and rest
without finger movement. The sequence of finger tapping
starts with index finger and progressing outward to the
little (pinky) finger. Continuous finger tapping motion was
required until different condition was presented. During the
rest condition, the participants were asked to remain still with
their eyes open until the next instruction appears on the display
screen.

The motor task is a block-designed test, and the specific
sequence of the task blocks (not disclosed to the participants) was
counter-balanced over three runs as followed:

Run 1: Rest, Left, Rest, Right, Rest, Left, Rest, Right, Rest
Run 2: Rest, Right, Rest, Left, Rest, Right, Rest, Left, Rest
Run 3: Rest, Left, Rest, Left, Rest, Right, Rest, Right, Rest
Each run contained nine short blocks of 34 s, and the duration
of each run was 330.897 s.

Data Analysis
Functional MRI Data Preprocessing
Preprocessing was performed using tools from FSL (FMRIB’s
Software Library) (Smith et al., 2004), MATLAB (Matrix
Laboratory), and toolboxes from SPM (Statistical Parametric
Mapping). Skull-stripping on acquired images was conducted
through an automated process via Brain Extraction Tool (BET)
and later visually inspected for consistency and accuracy. Rigid
body motion correction was applied using MCFLIRT, which also
allowed absolute and relative mean displacement to be extracted
and subsequently included as covariates in statistical analysis.
Spatial smoothing was completed using Gaussian kernel of Full-
Width-Half-Maximum (FWHM) 6.0mm. high-pass temporal
filtering was applied using a cut-off of 120 s. For the purpose of
functional connectivity analysis, an additional low-pass temporal
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filtering was applied to restrict the fMRI signal fluctuation
between 0.008<f<0.080Hz. The inclusion of a low-pass filter
also enables the elimination of high frequency signals that could
potentially confound our results. Participants’ preprocessed
functional data were first registered to each individuals’ skull-
stripped high resolution T1 anatomical images and then to
the standardized 152 T1 Montreal Neurological Institute (MNI)
space.

Regression of cerebral-spinal fluid (CSF) signal, white
matter signal, global brain signal, and motion parameters were
completed to remove both physiological and non-physiological
noises as well as excess movement from the data.

Independent Component Analysis (ICA)
Independent component analysis was completed using FSL-
MELODIC. Highpass filter cutoff was set at 120 s; motion
correction was applied via MCFLIRT; spatial smoothing was
performed with 6mm FWHM Gaussian kernel; preprocessed
data was subsequently registered first to the brain-extracted
subject-specific high resolution T1 structural images then
further registered to a standardized Montreal Neurological
Institute (MNI152) brain space template provided within the
FSL package. Independent components were estimated through
FSL-MELODIC using Laplace approximation to the Bayesian
evidence for a probabilistic principal components model (Sala-
Llonch et al., 2012). The number of data dimension estimate
was set at 20, which was reported to provide sufficient power of
detection (Smith et al., 2009; Biswal et al., 2010). The default value
of p > 0.5 for alternative hypothesis test (an automated threshold
that fits a mixture model to the histogram of intensity value) was
selected and applied to each component map. The component
map outputs were visually inspected to identify relevant neural
networks and noise structures.

To examine between group differences, FSL Dual Regression
(Beckmann et al., 2009; Filippini et al., 2009) was performed to
compare: (1) Normal weight>Overweight, (2) Normal weight>
Obese, (3) Overweight > Normal weight, (4) Obese > Normal
weight. In FSL Dual Regression, for each subject, the group-
average spatial maps are first inputted as spatial-regressors into
the subject’s 4D dataset. This generates one set of subject-specific
time-series data per group-level spatial map. These subject-
specific time-series data were then used as temporal-regressors
into the same subject’s 4D dataset, which outputs one set
of subject-specific spatial map per group-level spatial map.
Subsequently, group differences are tested using FSL’s randomize
permutation tool (default setting selected for 5000 permutations).

Seed-based Functional Connectivity Analysis
Results from the ICA in the previous section guided our choice of
networks to include in the whole brain analysis. Neural networks
represented by statistically significant group contrast component
maps were selected for seed-based analysis. Seed-selection of the
networks of interested was based on our previous work (Hsu
et al., 2014) and published literature (Voss et al., 2010).

For all regions of interest (ROI) included in the analysis,
preprocessed time-series data were extracted with 14mm
spherical ROI drawn around their respective MNI coordinates

in standard space (Voss et al., 2010). The different conditions
(i.e., left, right, and rest) within each block of the motor task
were temporally spliced and compiled (Fair et al., 2007). In
order to perform temporal concatenation of the time-series
data, the stimulus onset time for each task condition was
acquired from the task program. Volumes of the data were
then sorted according to their respective condition. Once the
data were properly categorized, the tapping-specific volumes
(e.g., all the “left tapping” and “right tapping” volumes) were
combined using a bash script provided in the FSL program
(i.e., “left tapping” and “right tapping” volumes concatenated
into “tapping”). Consequently, two sets of data were produced:
“resting” and “tapping”. The first three volumes of any condition
were removed to account for delay of the hemodynamic response.

Regions of interest time-series data were cross-correlated with
every voxel within the brain to establish functional connections
of the associated neural networks. Individual-level within-subject
results were generated via ordinary least squares (OLS) in FSL by
congregating the voxel-wise functional connectivity maps from
each condition. Group-level comparison was performed using
a mixed-level OLS analysis. The statistical map thresholding
was set at Z = 2.33, with cluster correction of p < 0.05.
Lastly, Pearson’s correlation coefficients were calculated between
all ROI.

Statistical Analysis
Statistical analysis was performed on resulting data from the
seed-base functional connectivity analysis. To normalize our
data, the Pearson’s correlation coefficients were converted
into Fisher’s z correlation coefficients via Fisher’s r-to-
z transformation (Konishi, 1981) in MATLAB. Fisher’s
transformation generates normally distributed sample
distribution and ensures the variance of the correlation
coefficient remain constant for all values in the sample
population correlation (Konishi, 1981).

To reduce Type I error and produce more robust signal, the
number of comparisons were reduced by calculating the mean
correlation of all the ROI-pairs within each of the networks as
well as all ROI-pairs between the networks (Hsu et al., 2014).
Therefore, for the DMN, there is a total of 15 ROI-pairs based on
all possible combination of the ROIs listed in Table 4. The mean
network correlation for the DMN was calculated by taking the
sum of the 15 Fisher’s z correlation coefficients and then divided
the total value by 15.

Statistical analysis was performed using IBM SPSS 19 for
Windows (SPSS Inc., Chicago, IL). Descriptive data are reported
for variables of interest. Comparisons of group characteristics
at baseline and 12-month were conducted using a Chi Square
test for differences in proportions and ANOVAs for differences
in means. Analysis of covariance (ANCOVA) was completed
to statistically test for significant differences in mean network
functional connectivity between: (1) normal BMI and overweight
individuals; and (2) normal BMI and obese individuals. In the
model, baseline FCI, and mean relative head motion (extracted
from McFLIRT) (Power et al., 2012; Van Dijk et al., 2012)
were included as covariates. The overall alpha value was set at
p ≤ 0.05.
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Mediation analysis was performed using the PROCESSMacro
for SPSS (Hayes, 2012). In the mediationmodel, BMI was entered
as the independent variable; network connectivity of interest
(that was significantly different between groups) was entered as
the mediator; and the cognitive function measures at 12-month
(that was significantly correlated with the network connectivity
of interest) as dependent variables (Figure 2). Sex, age, FCI, and
baselineMoCAwere included as covariates in all models. Sex was
included as a covariate as it was statistically different between
the groups; while age, FCI, and baseline cognitive performance
measure were included due to biological relevance. Two separate
linear regression analyses calculated the parameter values for
paths A, B, and C’ of the proposed mediation model (Figure 2).
In the regression analysis for path A, network connectivity was
entered as the dependent variable while the covariates were
included in the first block of a hierarchical regression analysis.
The main predictor—BMI—was entered in the second block
of the hierarchical regression analysis, and represents Path A.

FIGURE 2 | Proposed mediation models. “C” represents the total effect;

“C”’ represent the direct effect; “A and B” in conjunction represents the indirect

effect.

The second linear regression analysis included both network
connectivity and BMI as predictors and cognitive function as
the dependent variable. The effect of network connectivity on
cognitive function represents path B, and the effect of BMI
(once accounting for network connectivity) on cognitive function
represents path C’. It is important to note that each model only
tested one mediator and one dependent variable at one time.
Lastly, we computed the indirect effect (Path A∗ Path B), which
quantifies the size of mediation via network connectivity. Because
the indirect effect is non-normally distributed (Hayes and
Scharkow, 2013), we calculated the 95% confidence interval (CI)
around the indirect effect using 5000 bootstrapped resamples. A
95% CI not containing zero is evidence for a significant indirect
effect.

Results

Participant Demographics
A total of 66 study participants completed both baseline and
12-month assessments. Among the 66 participants, 24 were
classified in the normal BMI group, 27 in the overweight
BMI group, and 15 in the obese BMI group. Table 1 provides
baseline and 12-month descriptive statistics for the three BMI
groups. Sex was not evenly distributed across the different
BMI groups (Table 1). In the normal and obese BMI groups,
there were significantly more female participants compared
with male participants; whereas in the overweight group,
the distribution of male and female participants was more
evenly divided. Compared with the normal BMI group, both
overweight, and obese groups had significantly lower mean
MoCA scores at baseline. Notably, both the overweight and
obese groups had a mean baseline MoCA score suggestive of
mild cognitive impairment (Nasreddine et al., 2005). However,
at 12-months, this difference in MoCA scores was no longer
apparent.

Table 2 provides the descriptive statistics for change in
cognitive function over the 12-month study period for all three
BMI groups. There were no significant differences among the
groups in regards to change in cognitive function. However, it is
notable that compared with the normal and overweight groups,
the obese group showed the greatest improvement in the Digit
Span Test performance (22.37% improvement; Table 2).

TABLE 2 | Change in cognitive test performance over 12-months.

Variable Normal (n = 24) Overweight (n = 27) Obese (n = 15)

Mean SD % change Mean SD % change p-valuea Mean SD % Change p-valuea

1 Digit span test 0.33 3.50 10.28 0.12 2.82 3.09 0.91 −0.85 2.88 −22.37% 0.26

1 Stroop test (s) −6.57 19.38 −12.71 −1.72 14.27 −3.65 0.32 −3.28 29.79 −4.92% 0.64

1 Trail making (s) −1.49 37.91 −3.07 −2.80 36.30 6.12 0.96 1.26 24.25 1.31% 0.61

1 MoCA −0.88 2.88 −3.38 0.12 2.98 0.50 0.21 −0.64 1.91 −2.74% 0.80

1 in performance scores were calculated by taking performance at 12-month minus performance at baseline; negative score and percent change in 1 Digit Span Test, 1 Stroop Test

and 1Trail Making reflect improvement; positive score in 1 MoCA reflects improvement.
aComparison to normal weight group.
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Functional Connectivity of Fallers vs. Non-fallers
Independent Component Analysis

Resting-state
Group ICA estimation generated a user-designated 25
components. Among the 25 independent components, five
components were identified as relevant neural networks through
visual inspection (Table 3A; Figure S1 in Supplementary
Material). Group comparison of these five components revealed
a significant difference between the normal BMI group and
overweight group in the right FEN (p = 0.05; Figure 3).
However, this difference was no longer significant after
correcting for multiple comparisons (Bonferroni corrected
p = 0.005; p < 0.05/2groups∗5components).

Task-state
Similarly, group ICA estimated a pre-set value of 25 components.
Of the 25 components, four were deemed relevant via visual

Table 3A | Relevant resting-state independent components.

Independent components Networks

Component 4 Visual network

Component 6 Sensori-motor network

Component 7 Default mode network

Component 21 R. Fronto-executive network

Component 22 L. Fronto-executive network

Table 3B | Relevant task-state independent components.

Independent components Networks

Component 4 Default mode network

Component 9 Sensori-motor network

Component 19 Fronto-executive network

Component 21 Fronto-parietal network

inspection (Table 3B; Figure S2 in Supplementary Material).
Group comparison of these six components revealed a significant
difference between the normal BMI and obese groups in the
DMN (p < 0.05; Figure 4A). The between-group difference in
the DMN remained significant after adjusting the alpha level for
multiple comparison (Bonferroni corrected p < 0.006 based on
0.05/2groups*4components; Figure 4B).

Seed-based Analysis
In light of the ICA results, only the DMN was considered in the
seed-based functional connectivity analysis. Key regions within
the DMN selected for the analysis were the posterior cingulate
cortex (PCC), ventral and superior frontal medial cortices
(FMC), middle temporal gyrus (MTG), parahippocampal gyrus
(PHG), middle frontal gyrus (MFG), and lateral occipital
cortex (LOC) (Fox et al., 2005; Buckner et al., 2008). Current
understanding of the functional roles of the DMN include
retrieval of memory from past events, future planning, and
self-awareness (Andrews-Hanna et al., 2007; Buckner et al.,
2008). Particularly, multiple regions within the DMN are
involved in semantic memory and disrupted DMN connectivity
correlates with semantic memory impairment (Gardini et al.,
2015). Research also suggests that the strength of connection
between regions within the DMN positively correlates with
working memory performance (Hampson et al., 2006; Sambataro
et al., 2010). Moreover, abnormal DMN connectivity pattern is
significantly associated with MCI (Greicius, 2008; Qi et al., 2010;
Petrella et al., 2011). The respective MNI space coordinates for
each region of interest (ROI) are provided in Table 4. Correlation
between regions of the DMN was extracted for the purpose
of performing partial correlation and mediation statistical
analyses.

Correlation results
We found higher baseline BMI was associated with less DMN
connectivity at baseline (partial r = −0.45, p = 0.001), but
did not predict performance on any of the 12-month cognitive

FIGURE 3 | Resting-state group contrast. Highlighted areas show regions where Normal > Overweight in FEN functional connectivity (P < 0.05) during

resting-state.
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FIGURE 4 | (A) Group contrast during finger tapping. Highlighted areas

show regions where Normal > Obese in DMN functional connectivity

(P < 0.05) during finger tapping. (B) Bonferroni-corrected group contrast

during finger tapping. Highlighted areas show regions where Normal >

Obese in DMN functional connectivity (p < 0.006) during finger

tapping.

Table 4 | Neural networks and regions of interests included in the

analysis.

Neural networks Region of interest MNI coordinates (mm)

X Y Z

DMN PCC 8 −56 30

FMC −2 54 −12

RMTG 58 −10 −18

LMTG −52 −14 −20

RPHG 24 −26 −20

LPHG −26 −24 −20

LMFG −30 20 50

RLOC 54 −62 32

LLOC −44 −72 30

PCC, posterior cingulate cortex; FMC, frontal medial cortex; RMTG/LMTG, right/left

middle temporal gyrus; RPHG/LPHG, right/left parahippocampal gyrus; LMFG, left middle

frontal gyrus; RLOC/LLOC, right/left parietal cortex.

measures (see Table 5A). Additionally, connectivity of the DMN
during finger tapping at baseline was significantly associated with
Digit Span Test performance at 12-month, independent of the
covariates and baseline Digit Span Test performance (partial r =
0.30, p = 0.02; Table 5B). Specifically, higher DMN connectivity
was associated with higher digit span test scores (i.e., poorer
working memory).

Mediation Analyses
Given the preceding evidence that baseline BMI is significantly
associated with DMN connectivity and that DMN connectivity
predicts verbal working memory (digit span test performance)
at 12-month, we conducted a mediation analysis shown in
Figure 5.

Results from the mediation analysis suggest that DMN
connectivity during finger tapping significantly mediated the
relationship between baseline BMI and Digit Span Test at 12-
month (indirect effect: −0.155, 95% CI [−0.313, −0.053]). In
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Table 5A | Partial correlations of baseline BMI, network connectivity, and cognitive outcome measures.

Variables DMN finger tapping Digit span test 12-month Stroop test 12-month Trail making test 12-month

Partial r p-value Partial r p-value Partial r p-value Partial r p-value

Baseline BMI −0.45 0.001 −0.001 0.99 0.22 0.10 −0.001 0.99

Controlled for baseline FCI, baseline age, sex, and baseline cognitive performance. Digit Span Test score was calculated by taking Digit Span Forward minus Digit Span Backward;

Stroop Test score was calculated by taking Stroop 3minus Stroop 2; Trail Making score was calculated by taking Trail Making B minus Trail Making A. The bold value in the table reflect

p-value that is statistically significant.

Table 5B | Partial correlations of connectivity and cognitive outcome

measures.

Variables DMN connectivity during finger tapping

Partial r p-value

Digit span test at 12-month 0.30 0.02

Stroop test at 12-month −0.02 0.87

Trail making test at 12-month 0.15 0.25

Controlled for baseline FCI, baseline age, sex, and baseline cognitive performance. Digit

Span Test score was calculated by taking Digit Span Forward minus Digit Span Backward;

Stroop Test score was calculated by taking Stroop 3minus Stroop 2; Trail Making score

was calculated by taking Trail Making B minus Trail Making A. The bold value in the table

reflect p-value that is statistically significant.

light of the fact that the total effect of BMI on Digit Span
Test performance at 12-month (Path C) was not significant
(β = −0.02, p = 0.90), this significant indirect effect
suggests that decreased task-related DMN connectivity is a
pathway by which obese older adults maintain working memory
performance over time equal to their lean counterparts. Detailed
results are shown in Figure 6.

Discussion

At baseline, we found a significant difference in functional
connectivity within the DMN between obese older adults and
their normal weight peers. Specifically, obese older adults
showed lower DMN connectivity during finger tapping as
compared with those with normal BMI. Moreover, lower task-
related connectivity in the DMN at baseline was significantly
associated with better working memory at 12-months. Finally,
our mediation analysis revealed that lower DMN connectivity
may an underlyingmechanism by which higher BMI is associated
with better cognitive performance among older adults. That is,
we found a significant indirect effect from baseline BMI to DMN
connectivity to 12-month working memory. To our knowledge,
this is the first study to explore the functional neural correlates by
which higher BMI might be neuroprotective among older adults
without frank dementia.

Our mediation results concur and extend existing
literature. As described previously, DMN is susceptible to
age-related disruption and is associated with a broad range of
neuropsychological or neurodegenerative diseases (Buckner
et al., 2008; Greicius, 2008). Often discussed as a task-negative
network, the DMN is characterized by task-induced deactivation,

FIGURE 5 | Final proposed mediation model. ‘C” represents the total

effect; “C”’ represent the direct effect; “A and B” in conjunction represents the

indirect effect.

a process that is believed to be related to allocation of neural
resources relative to task demand (Hu et al., 2013). Although
the connectivity of regions within this network remains during
task-state, the strength of these region-to-region connections is
attenuated (Fransson, 2006). Thus, greater task-related DMN
deactivation may indicate better DMN integrity.

Why might a higher BMI be associated with greater DMN
integrity in older adults? While more research is needed in
this area, there is evidence to suggest amyloid deposition as a
contributing factor. First, in a cross-sectional analysis of data
from the Alzheimer’s Disease Neuroimaging Initiative, Vidoni
et al. (2011) found that overweight non-demented older adults
had higher CSF ß-amyloid, less CSF tau and global PiB uptake
than their normal weight counterparts. These results suggest that
lower BMI among older adults without cognitive or functional
impairment is associated with higher AD pathophysiology.
Second, Mormino et al. (2011) showed that amyloid deposition
spatially overlaps the DMN, thereby inducing aberrant DMN
connectivity patterns (Sperling et al., 2009; Koch et al., 2014).
Thus, higher BMI may be associated with DMN integrity because
it is a biomarker of reduced AD pathophysiology, which has
shown to directly impact the DMN.

Our data also suggest that the association between BMI
and cognitive function may vary between cross-sectional
observations and prospective observations, and thus, contribute
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FIGURE 6 | Direct and indirect effects of the proposed mediation

model. *Digit Span Test score is calculated as Digit Span Forward-Backward;

therefore, lower value describes higher performance. The indirect effect (Path

A* Path B) was −0.155, 95%CI (−0.313, −0.053). Standardized coefficients

(β) are shown.

to the current uncertainty in the literature. Specifically, we
observed a significant difference between the three BMI groups
at baseline in MoCA performance. However, this difference was
no longer apparent 12-months later. Descriptively, over the 12-
month study period we observed a one point decline in the
mean MOCA score for among older adults with normal BMI
while those who were overweight demonstrated maintenance of
MoCA performance. Thus, our prospective results align with
previous evidence that suggests low BMI is associated with
greater cognitive decline over time (Grundman et al., 1996; Hu
et al., 2002; Han et al., 2009). For example, Han et al. (2009)
reported that increased body weight over time in older men who
were initially obese at baseline was associated with improved
cognitive function, whereas reduced waist-to-hip ratio over time
was associated with reduced cognitive function.

There are several limitations that should be considered.
First, we were unable to explore other biological and genetic
factors, such as white matter lesion volumes, ß-amyloid, tau,
and ApoE4 genotype, which could potentially also affect brain
functional connectivity. Also, between-group differences in
functional connectivity may be dependent on the specific
task imposed. Thus, the generalizability of our findings to
other task states will be an important direction of future
research. Recruitment method for study participants was entirely

volunteer-based; hence our study participants were likely
more motivated and thus may not be representative of the
community-dwelling older adults. In addition, our study sample
consisted exclusively of older adults without significant cognitive
or physical impairments; therefore our results may not be
generalizable beyond the current population. Moreover, BMI
may not accurately reflect obesity. For example, in individuals
with greater muscle mass, higher BMI is not representative
of elevated percent body fat. In terms of the neuroimaging
procedure, the design of our motor task (interleaving blocks
of finger tapping and rest) may have reduced our ability to
accurately investigate the functional network connectivity during
rest as neural activity during the finger tapping block may “bleed”
into the immediate subsequent resting block. Lastly, we had a
relatively small sample size of 66 individuals, which limits our
power to detect small effects. Thus, future studies with larger
samples sizes are required to confirm our current findings.

Conclusion

Obesity is an increasingly prevalent global healthcare issue due
to its clinical relevance to various clinical conditions including
cardiovascular diseases and dementia. Current knowledge in
obesity-related research identified elevated BMI is correlated
with cognitive decline in younger adults; nevertheless, the
relationship between increased BMI and cognitive function
remain equivocal in older adults. Our study presents novel
evidence that higher BMI may be cognitive beneficial in the older
adult population through a mediated relationship with brain
function, and contributes to our current understanding of the
interplay between BMI and cognitive function in late life.
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