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Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous
neurodegenerative diseases which includes tauopathies. In the central nervous
system (CNS) tau is the major microtubule-associated protein (MAP) of neurons,
promoting assembly and stabilization of microtubules (MTs) required for morphogenesis
and axonal transport. Primary tauopathies are characterized by deposition of abnormal
fibrils of tau in neuronal and glial cells, leading to neuronal death, brain atrophy and
eventually dementia. In genetic tauopathies mutations of tau gene impair the ability of
tau to bind to MTs, alter the normal ratio among tau isoforms and favor fibril formation.
Recently, additional functions have been ascribed to tau and different pathogenetic
mechanisms are then emerging. In fact, a role of tau in DNA protection and genome
stability has been reported and chromosome aberrations have been found associated
with tau mutations. Furthermore, newly structurally and functionally characterized
mutations have suggested novel pathological features, such as a tendency to form
oligomeric rather than fibrillar aggregates. Tau mutations affecting axonal transport and
plasma membrane interaction have also been described. In this article, we will review
the pathogenetic mechanisms underlying tau mutations, focusing in particular on the
less common aspects, so far poorly investigated.
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Introduction

Alzheimer (1907) described the existence in brain tissue of intracellular neurofibrillary tangles
associated with extracellular plaques and only a few years later the presence of intracellular
inclusions alone in a different case of dementia (Alzheimer, 1911).

It was not until the 1980s that the protein constituting these deposits was identified as the
microtubule-associated tau protein (Goedert et al., 1988; Wischik et al., 1988). Tau protein had
been previously identified in 1975 as a new microtubule-associated protein (MAP) with a relatively
low molecular weight with respect to high molecular weight MAP-1 andMAP-2 (Weingarten et al.,
1975).

Primary tauopathies belong to the frontotemporal lobar degeneration (FTLD) group of
degenerative diseases. FTLD are heterogeneous from a clinical, pathological and genetic point
of view. Clinically, they are characterized by behavior, executive and language impairment,
giving rise to behavioral variant of frontotemporal dementia (bvFTD), semantic dementia
(SD) and progressive non-fluent aphasia (PNFA), often associated with parkinsonism or motor
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neuron disease (MND). Pathologically, deposits of different
misfolded proteins are found in brain tissue: tau, transactive
response DNA binding protein 43, fused-in-sarcoma, and
dipeptide-repeat proteins. The main mendelian genes so
far linked to FTLD include genes coding for microtubule-
associated protein tau (MAPT) and progranulin (GRN),
and Chromosome 9 Open Reading Frame 72 (C9ORF72)
gene, with other genes being more rarely associated
(Rademakers et al., 2012; Mori et al., 2013).

Primary tauopathies are defined by the presence in
neuronal and glial cells of deposits of misfolded, insoluble
and hyperphosphorylated tau proteins. Clinically, they fall
into the spectrum of FTLD, presenting with bvFTD, SD and
PNFA; in addition they also can present with progressive
supranuclear palsy (PSP) and corticobasal syndrome (CBS).
Tauopathies can be sporadic or familiar, genetically determined
by mutations in MAPT. As a MAP, the role of tau is to promote
microtubule (MT) assembly and stabilization and regulate MT
dynamics (Goode and Feinstein, 1994; Gustke et al., 1994;
Trinczek et al., 1995). A single MAPT gene gives rise to six
tau isoforms by alternative RNA splicing of exons 2, 3 and
10. The binding region to MT (microtubule-binding domain,
MBD) is in the C-terminal half of tau and is constituted by
either 3 repeats (3R tau) or, if exon 10 is included, 4 repeats
(4R tau) of 31–32 aminoacids. Alternative splicing of tau
is developmentally regulated and in the adult human brain
all the six isoforms are expressed, with 3R tau and 4R tau
represented at about the same level (4R/3R ratio ∼= 1; Goedert
et al., 1989a,b). Since 4R and 3R tau isoforms assume complex
and distinct MT binding structures (Goode et al., 2000) and
regulate dynamic instability of MT in different ways (Levy et al.,
2005), with 4R tau isoforms having a higher ability to promote
MT polymerization (Goedert and Jakes, 1990), any imbalance
of the 4R/3R ratio is supposed to cause MT misregulation
and a tendency of the isoforms in excess to produce fibrillar
aggregation.

While in Alzheimer’s disease (AD) tau fibrils are made of all
six isoforms (Goedert et al., 1992), in primary tauopathies some
isoforms predominate, depending on the neuropathological
phenotype. In Pick’s disease (PiD) 3R tau isoforms are present,
while in PSP and corticobasal degeneration (CBD) 4R tau
isoforms are found. In genetic tauopathies, 4R, 3R or a
combinations of 4R and 3R tau isoforms are present (Dickson
et al., 2011).

Tau is a highly phosphorylated protein: there are 79
putative phosphorylation sites on the protein and at least 30
have been demonstrated to be actually phosphorylated. The
phosphorylation state is the main system which regulates tau
binding to MT: non phosphorylated sites lead to a stronger
binding, whereas phosphorylation decreases the binding, making
MT more unstable (Buée et al., 2000). Hyperphosphorylation
characterizes abnormal tau present in all the taupathies (Buée
et al., 2000; Spires-Jones et al., 2009).

Although tau is abundantly expressed in central nervous
system and is the major MAP of neurons, it is also present in
several non-neural tissues, such as fibroblasts and lymphocytes
(Ingelson et al., 1996; Thurston et al., 1996; Rossi et al., 2008a).

In 1990s, linkage analysis in families affected by
frontotemporal dementia with parkinsonism (FTDP) and
pathologically characterized by tau deposits in neuronal and
glial cells indicated that the candidate gene lied at 17q21–22,
where MAPT is located, and in 1998 sequencing analysis finally
revealed pathological mutations of MAPT (FTDP linked to
chromosome 17-tau, FTDP-17T). Some missense mutations
were recognized as causative based on the highly conserved site,
the absence in control subjects and the segregation with the
disease in the FTDP-17T families: G272V, P301L and R406W
mutations (Hutton et al., 1998). A different kind of mutations
was also found in other families: base pair substitutions in the
5′ splice site of exon 10 (intron 10). They segregated with the
disease and were not present in control subjects (Hutton et al.,
1998; Spillantini et al., 1998). Several further missense and
splice-site mutations, as well as in-frame small deletions, were
later found. All the mutations are transmitted with a dominant
pattern of inheritance, with rare exceptions. Penetrance is
usually complete, with a few exceptions (van Herpen et al., 2003;
Rossi et al., 2008b). Afterwards, different kinds of mutations,
such as gross deletions or insertions, regulatory and risk
factors have been found. Complete mutation databases to refer
to are the Human Gene Mutation Database (Stenson et al.,
2014) and the AD&FTD Mutation Database (Cruts et al.,
2012).

We present here an overview of all tau mutations so
far described and the underlying pathological mechanisms.
Figure 1 represents an overall view of all tau mutations
whose pathogenicity is definite/probable by means of genetic,
neuropathological or functional data; mutations with peculiar
features, mutations uncharacterized but present only in affected
subjects and mutations considered as risk factors are also
indicated.

Mutations Affecting MT Polymerization
and/or Fibrillar Aggregation

Mutations Within or near the MBD and in
C-Terminal Domain
Missense Mutations
The MBD (exons 9–12; aminoacid 244–368; Mukrasch et al.,
2005) is the region essential for the primary function of
tau, that is MT binding, polymerization and dynamics
regulation. By means of in vitro affinity or polymerization
assays of recombinant tau protein with monomeric tubulin,
most of missense mutations localized in MBD have been
demonstrated to confer a reduced ability to interact with
tubulin, slowing and decreasing MT formation (Hasegawa
et al., 1998; Hong et al., 1998; Figure 2A). This ‘‘loss of
function’’ pathological mechanism can lead to cytoskeleton
disruption, affecting physiological cell functions (Iqbal et al.,
2009).

G389R and N410H mutations have a reduced ability to
promote MT polymerization (Murrell et al., 1999; Pickering-
Brown et al., 2000; Kouri et al., 2014) although localized outside
the repeats of MBD, in the C-terminal domain (exon 13).
However, this region is highly conserved across species, is close to
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FIGURE 1 | Tau mutations. Exons expressed in central nervous system (CNS), producing the longest 441 aa 2N4R tau isoform, are represented as boxes roughly
proportional to their relative sizes; introns are represented as horizontal lines and are not proportional to their sizes. Exons subjected to alternative splicing are in
green. Brackets include the region of microtubule binding domain (MBD). Above the exon boxes are reported the mutations pathogenic by genetic or
neuropathological or functional evidence [reducing microtubule (MT) polymerization or increasing fibril formation]. Below the exon boxes, the mutations are classified
by different colors: bold black: displaying unusual pathogenetic mechanisms; red: affecting MT polymerization or fibril formation in uncommon ways; blue:
uncharacterized found in frontotemporal lobar degeneration (FTLD) or Alzheimer’s disease (AD) patients; green: atypical by clinical, neuropathological or transmission
pattern features; italic: risk factors for tauopathy when associated with mutations in other genes; underlined: risk factors for tauopathy (FTLD or AD). A single
mutation can have different features and be reported more than once in the figure.

MDB and, most importantly, intramolecular interactions among
different tau regions, including C-terminal and N-terminal
domains and MBD, have been reported (Jeganathan et al., 2006;
Mukrasch et al., 2009). Thus, mutations in C-terminal domain
may influence MT formation.

MBD contains two short sequences responsible for the
acquisition of β-structure necessary for tau aggregation into
pathological fibrils (Mukrasch et al., 2005). Thus, several
missense mutations, depending on their position, also increase
the propensity of tau to aggregate into fibrils (Barghorn et al.,
2000; von Bergen et al., 2001) (Figure 2B), although some
pathogenic mutations did not show this effect (Neumann et al.,
2001; Yoshida et al., 2002; Rossi et al., 2012). Fibrillar burden
represents a ‘‘gain of function’’ pathological mechanism, with
aggregated tau being detrimental to cell function (Spillantini and
Goedert, 2013).

Some mutations (V337M, G272V and P301L) have
been shown to make tau a more favorable substrate for
phosphorylation by brain protein kinases (Alonso et al.,
2004). This in turn promotes the reduced binding to
MT and the self-aggregation (Alonso et al., 2010). In
fact V337M, G272V and P301L have both a reduced
binding to MT an increased propensity to aggregation

(Hasegawa et al., 1998; Barghorn et al., 2000; Chang et al.,
2008).

R406W mutation, in the C-terminal domain, showed
contradictory features: it appeared to have a reduced ability to
promote MT binding in in vitro assays (Hasegawa et al., 1998;
Hong et al., 1998) but non in amicroinjected-cell system (Bunker
et al., 2006). It was reported to favor tau phosphorylation in an in
vitro system (Alonso et al., 2004) and to decrease it in cellular
systems (Vogelsberg-Ragaglia et al., 2000). It has an ability to
aggregation similar to wt tau (Chang et al., 2008). Anyway, this
mutation showed peculiar pathological mechanisms (see below)
that are perhaps the most relevant to neurodegeneration.

Intron 10 Splicing Mutations
These mutations are located at the 5′ splice site of exon 10, that
is within the first bases of intron 10. A RNA stem-loop structure
possibly involved in regulating the alternative splicing of exon10
was predicted (Hutton et al., 1998) and afterwards the three-
dimensional structure of this region was determined (Varani
et al., 1999), showing an upper and lower stem with an apical
loop. This structure is involved in regulating alternative splicing
of exon 10 presumably by hampering the U1 snRNP binding
to the site. Blocking U1 snRNP binding would result in failure
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FIGURE 2 | Mutations affecting MT polymerization and/or fibrillar aggregation. Pathogenetic mechanisms underlying tau mutations are depicted. Most of tau
mutations reduce the protein ability to promote MT polymerization (A) and/or increase the propensity to aggregate into fibrils (B) (“Common pathological
mechanisms”). However, a few tau mutations act in the opposite way, increasing MT polymerization (C) and/or decreasing the propensity to aggregate
(D) (“Uncommon pathological mechanisms”). Alterations of MT dynamics, both as destabilization or over-stabilization, may anyway lead to cell degeneration.
Oligomer toxicity (interaction with cell membrane, calcium uptake, mithocondrial dysfunction) is now widely confirmed; fibrillar aggregation, even if it might be
considered as an attempt by the cell to sequester and neutralize oligomer toxicity, is however a structural and functional burden to cell.

to include exon 10 and lead to skipping of this exon (Hutton
et al., 1998). The splicing mutations, located in the upper stem
(Spillantini and Goedert, 2000), destabilize the structure, causing
a more frequent usage of the 5′ splice site and an increased
inclusion of exon 10 in the mRNA, with an overproduction of
4R tau transcripts and the imbalance of 4R/3R tau isoforms ratio.
The excess of 4R tau isoforms leads to their accumulation in the
cytoplasm followed by formation of fibrillar deposits (Buée et al.,
2000).

Silent Mutations and Missense Mutations Affecting
Exon 10 Splicing
These mutations can be located either in the stem-loop structure
(S305S, S305N, S305I), producing the same effect as the intron 10
splicing mutations (Hasegawa et al., 1999; Stanford et al., 2000;

Kovacs et al., 2008), or within regulatory elements (enhancers or
silencers) in exon 10 (L284L, N286N, N296N; N279K, N296H)
affecting exon 10 splicing in a cys-acting manner.

N279K and L284L mutations strenghten two different regions
of an enhancer, both resulting in an increased inclusion of exon
10 that is an increase of 4R tau transcripts (D’Souza et al.,
1999; Hasegawa et al., 1999; D’Souza and Schellenberg, 2002).
N296N and N296H mutations are supposed to disrupt a silencer
(D’Souza and Schellenberg, 2002) or, alternatively, to create a
new enhancer (Grover et al., 2002), with the same result of
increasing 4R tau transcripts. N286N mutation was supposed to
be pathological in the same way (Rohrer et al., 2009).

Some of the missense mutations were also reported to affect
protein function. N279K mutation was described to reduce
MT polymerization by some authors (Barghorn et al., 2000)
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but not by others (D’Souza et al., 1999; Hasegawa et al.,
1999) and to increase the self-aggregation into fibrils (Barghorn
et al., 2000). N296H mutation was described to reduce MT
polymerization (Grover et al., 2002); the increase of fibril
formation is controversial (Grover et al., 2002; Yoshida et al.,
2002).

Recently, N410H mutation in exon 13 was reported to
increase the 4R/3R tau mRNA ratio. The increase of 4R tau
mRNA had also been previously reported for the E342V tau
mutation in exon 12 (Lippa et al., 2000). This raises the
question of how mutations localized outside exon 10/intron 10
can alter the exon 10 splicing. Unknown regulatory elements
(enhancers/silencers) may possibly exist in different regions of
MAPT gene.

Microdeletions
Two in-frame microdeletions involving each a single codon
have been described: ∆N296 e ∆K280. ∆N296 mutation
was consistently reported to reduce MT polymerization, while
increasing of fibril formation and effect on exon 10 splicing
were controversial (Grover et al., 2002; Yoshida et al.,
2002).

Thus, it has to be taken into account the fact that some
mutations (N279K, N296H and ∆N296) can lead to an
overproduction of tau 4R transcripts that however, because of
the presence of the mutation, has a lower ability to promote MT
polimerization.

∆K280 is a very peculiar and puzzling mutation. This deletion
(the deletion is of an AAG that actually can be either at codon
280 or 281, thus the mutation may be named ∆K280 or ∆K281)
in exon 10 was first described by Rizzu et al. (1999) in a
patient affected by FTD. They also showed that recombinant
mutated protein had a dramatically reduced ability to promote
MT assembly. The relevance of this codon to MT affinity and
dynamic instability had already been reported in in vitro studies
some years before (Goode and Feinstein, 1994; Trinczek et al.,
1995).

Furthermore, tau carrying ∆K280 mutation is highly
fibrillogenic and has been used as a model of tau aggregation,
even in absence of aggregation inducers such as heparin
(Barghorn et al., 2000; von Bergen et al., 2001; Larini et al., 2013).

However, in addition, ∆K280 mutation nearly abolished
the exon 10 splicing in vitro, leading to an overproduction of
3R tau isoforms (D’Souza et al., 1999), presumably disrupting
an enhancer element (D’Souza and Schellenberg, 2002). The
preponderance of 3R tau was confirmed by neuropathological
examination (van Swieten et al., 2007; Momeni et al., 2009). Since
all the others pathogenic tau mutations affecting exon 10 splicing
increase 4R tau, ∆K280 is a rather peculiar mutation. It can
only be present in 4R tau, being in exon 10. Thus, the in vitro
described pathological effects on MT and tau aggregation can
only be accomplished bymutated 4R tau. However in vivomostly
3R tau is present, raising some doubts about the pathogenicity of
this mutation. Possible explanations of its pathogenicity may be
that: (i) even the very small amount of highly fibrillogenic∆K280
4R tau is sufficient to begin tau deposition and sequester wt 3R or

4R tau, altering MT dynamics and (ii) overproduction of 3R tau
leads to accumulation of this isoform into fibrillar deposits.

Mutations Atypical by Clinical, Neuropathological or
Transmission Pattern Features
A family affected by lower MND and respiratory failure was
described (Di Fonzo et al., 2014) in which D348Gmutation (exon
12) segregated with the disease with a dominant pattern.

Neuropathological examination disclosed pathological tau
deposits in hippocampus and motor neurons. D348G mutation
seemed not to alter the ability of tau to bind to MT, at variance
with the majority of the other mutations localized in the MBD.
However this result is based on the evaluation of relative amounts
of acetylated/tyrosinated tubulin and on a MT-binding assay in
transfected cells which may not be comparable to the in vitro
MT polymerization assay used to study the other mutations.
The latter assay may in fact be more sensitive and reveal minor
differences (Hasegawa et al., 1998; Hong et al., 1998).

A mutation very near to D348G was reported, S352L,
interestingly displaying a similar clinical phenotype of
respiratory failure, despite the different age of onset, and
an atypical neuropathological phenotype (Nicholl et al., 2003).
Mutated protein showed a reduced ability to promote MT
polymerization and an increased propensity to aggregate. This
mutation was transmitted with a recessive pattern of inheritance,
the only example for MAPT and one of the very few cases in
neurodegenerative diseases.

Another unique case in MAPT genetics was the finding of a
family with compound heterozygous mutations I10 + 4 A > C;
I9 – 15 T > C (Anfossi et al., 2011). The heterozygous condition
was associated with normal phenotype and did not alter the
R4/R3 tau ratio, while the compound heterozygous state was
linked to FTD and increased R3 tau isoforms both in vitro and
at neuropathological examination, where a Pick-like picture was
shown.

I10 + 4 A > C mutation may be in a position not so
critical to strongly influence exon 10 splicing; similarly, although
the I9 – 10 G > T mutation was reported, segregating with
FTD and increasing 4R tau isoforms (Malkani et al., 2006),
I9 – 15 T > C mutation may be in a less critical position
and have scarce effect. Only the contemporary presence of the
two mutations surrounding exon 10 could significantly alter its
splicing, supposing trans-acting effects on splicing machinery.

The increase of 3R tau isoforms in association with tau
mutations is not frequent: to date, only ∆K280, I10 + 19
C > G (Stanford et al., 2003) and this compound heterozygous
mutations showed this effect. Most of splicing affecting
mutations, in contrast, produce an increase of 4R tau isoforms.
However, the imbalance between 4R and 3R tau isoforms appears
to be pathological in any case.

K317M is the only tau mutation so far reported causing
FTLD and MND (Zarranz et al., 2005). In fact, FTLD-MND
is mostly associated with mutations in C9ORF72 gene (Rohrer
and Warren, 2011). K317N is the first mutation to date reported
associated with the recently defined pathological entity globular
glial tauopathy (GGT; Tacik et al., 2015). After reviewing the
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neuropathological study, the Authors suggest that K317M also
may be classified as GGT.

R221Q mutation was identified in a sporadic patient
diagnosed with Dementia with Lewy bodies (DLB): this is the
first case of probable DLB carrying a MAPT mutation (Meeus
et al., 2012). However, the mutation is outside the MBD, and
no functional studies were performed, thus its pathogenetic
character is so far not proven.

Missense Mutations in the N-Terminal Domain
R5L and R5H mutations (exon 1) were detected in patients
affected by PSP and late-onset frontotempral dementia,
respectively (Hayashi et al., 2002; Poorkaj et al., 2002). Both
mutations affected MT assembly and R5H, in addition, showed
an increased propensity to aggregation. G55R is the first
mutation found in the alternatively spliced exon 2. Similarly to
R5L and R5H mutations, it affects MT assembly, although with a
unusual mechanism (see below).

How a mutation in N-terminal domain may affect the
functionality and aggregation properties of the MBD can be
speculated. While it has been showed that flanking regions of
MBD act as ‘‘targeting’’ domains and the 3 or 4 repeats act
as ‘‘catalytic’’ domains for MT polymerization (Trinczek et al.,
1995), the N-terminal domain did not appear to contribute.
However, as already discussed for C-terminal mutations,
intramolecular interactions among C-terminal and N-terminal
domains and MBD have been reported (Jeganathan et al.,
2006; Mukrasch et al., 2009). Thus, these N-terminal mutations
may affect MBD properties. Additional hypotheses about the
pathological effects of R5L and R5H mutations have been
advanced after the interaction of tau with the dynactin complex
was demonstrated (Magnani et al., 2007; see below).

Mutations Affecting MT Polymerization and/or
Fibrillar Aggregation in an Uncommon Way
Usually, tau mutations affecting the interaction with MT cause
a reduced ability to promote MT polymerization and the
mutations affecting tau self-aggregation lead to fibril formation.
However a few mutations showed different abnormal features
(Figures 2C,D).

V363I mutation has been associated with several FTLD
clinical phenotypes and also with an uncommon phenotype
such as posterior cortical atrophy (Rossi et al., 2014a).
Neuropathological examination is unfortunately missing, but in
vitro functional and structural analysis revealed peculiar and very
likely pathological features. V363I mutation showed a greater
ability to promote MT polymerization, consisting in both a
higher polymerization rate and the formation of longer tubulin
polymers (Rossi et al., 2014a; Figure 2C). The increased ability of
tau to induce MT polymerization had been previously reported
for Q336R and S305N tau mutations (Pickering-Brown et al.,
2004), but the effect was small or unclear and not further
investigated. G55R mutation was recently described to increase
MT polymerization, although MT length was smaller than for
wt tau (Iyer et al., 2013). Increased MT polymerization can
be considered as a ‘‘gain of function’’ pathological mechanism
altering the tightly regulated MT dynamics, which is necessary

for physiological neuronal functions such as axonal transport and
synapse plasticity. In fact, excessiveMT polymerization, although
due to excess of wt tau rather than to mutated tau, produced
axonal dilations and motor impairment in a transgenic mouse
model (Spittaels et al., 1999), which could be rescued by reducing
the ability of tau to bind to and promote MT polymerization
(Spittaels et al., 2000).

V363I mutation showed a dramatically reduced tendency
to fibrillogenesis, producing instead oligomers that persist over
long incubation times without any fibrils production; similar
properties were shown by V363A mutation (Rossi et al., 2014a;
Figure 2D). Other two taumutations previously showed a similar
behavior: K369I mutation and the risk factor A152T, which
however caused the formation of shorter than wt fibrils and not
merely oligomers (Neumann et al., 2001; Coppola et al., 2012).
Toxicity of tau oligomers rather than, or in addition to, tau fibrils
is now emergin. Both extracellular (Gómez-Ramos et al., 2008;
Lasagna-Reeves et al., 2010) and intracellular (Iliev et al., 2006)
tau oligomers were toxic to neuroblastoma cells. Tau oligomers
have been isolated from brains affected with AD (Maeda et al.,
2006) and a correlation between the presence of tau oligomers
and memory loss was described in animal models (Berger et al.,
2007). In addition, tau oligomers are considered as responsible
for the spread of tau pathology (Gerson and Kayed, 2013). Thus,
tau oligomer formation and persistence may be considered a
pathological feature of mutated tau protein.

Genetic Risk Factors for Tauopathies

Genetic risk factors are sequence variations that can be
present both in healthy controls and affected subjects but
with significantly different proportions, reflecting their character
predisposing to disease. They can be localized in coding regions
or in regulatory regions, affecting different features of a gene.

H1/H2 MAPT Haplotypes
After the first identification of the significant allelic association
of a MAPT polymorphism with PSP (Conrad et al., 1997),
the allelic association was subsequently extended to a series
of polymorphisms covering the entire MAPT coding region,
allowing the definition of the haplotypes H1/H2 (Baker et al.,
1999). A more extended haplotype spanning promoter, intronic
and coding regions of MAPT was then described and H1
haplotype was found associated with PSP and CBD (Pittman
et al., 2005; Cruchaga et al., 2009). Chromosome 17q21, where
MAPT is located, is characterized by a peculiar genomic
architecture. In fact, the presence of low-copy repeats is at the
basis of the 900 kb inversion that resulted in the formation of
common H1 and H2 haplotypes (Cruts et al., 2005; Stefansson
et al., 2005).

Some of the haplotype polymorphisms were characterized for
their possible functional significance in the context of the disease
(Figure 3A).

– H1c sub-haplotype apparently gives rise to an increased
expression of tau, mostly 4R tau transcripts (Myers et al.,
2007). Notably, H1c haplotype was associated with increased
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FIGURE 3 | Genetic risk factors. Polymorphisms in regulatory regions (A) as well as Tau gene duplication (C) may account for an increased tau expression. This is
considered a disease risk factor because of the possible tendency of tau molecules in excess to aggregate into oligomers and fibrils. Some apparently benign tau
polymorphisms (B) can produce an overt tau pathology only in association with mutations present in other genes relevant to neurodegenerative diseases (C9ORF72
is an example).

risk for PSP (Pittman et al., 2005), in which 4R tau deposits are
present, although these results were not replicated (Cruchaga
et al., 2009).

– The 5′-upstream variant rs1880753, localized at 160 Kb from
transcription start site of MAPT, is associated with PSP and
CBD; this variant is in a conserved sequence across mammals
which is a potential binding site for YY1 and BNCF/BNC
transcription factors (Cruchaga et al., 2009). Similarly, the
−221 C > G and −44 A > G polymorphisms in the promoter
region, associated with PSP, could affect binding sites for
transcription factors (de Silva et al., 2001).

– The +347 G > C polymorphism in the promoter
up-regulates MAPT expression in an in vitro assay
(Sun and Jia, 2009).

Deregulated and in particular increased expression of tau may
lead to the risk of a pathological accumulation and deposition of
the protein in its fibrillar form, as confirmed by several studies
on animal models of tauopathies in which tau is over-expressed
(Götz et al., 2007).

Missense Mutations
Nearly all missense mutations inside or near the MBD have
been demonstrated to be pathogenic and benign polymorphisms

in this region of MAPT are so far absent, with the exception
of V300I (exon 10). This is the only polymorphism described
in MBD (Guerreiro et al., 2010); however it can not be
excluded that the subject in whom it was detected could be
a presymptomatic case, as no details about this individual
are available. All the remaining missense mutations in this
region must be considered risk factors or mutations not well
characterized.

A239T mutation (exon 9) is a very peculiar case. It
was first described in a patient affected by FTD with tau-
negative neuropathology (Pickering-Brown et al., 2002).
The finding in the same patient of a null mutation in GRN
suggested A239T to be a very rare benign variant (Pickering-
Brown et al., 2006). However, the possible pathological
role of A239T was raised again by the interesting finding
that another patient carrying the C9ORF72 expansion
and the A239T had, at neuropathological examination,
a tauopathy overhanging p62 and TDP-43 pathology
(King et al., 2013). Thus, A239T mutation may be a risk
factor for tauopathy appearing preferably in association
with other pathogenetic mutations (Figure 3B). Similar
considerations can be made about the Q124E mutation
(exon 4), associated with a LRRK2 mutation (Ling et al.,
2013).
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A152T mutation (exon 7) has been demonstrated to be
a risk factor for tauopathies, both FTLD and AD, based on
neuropathological, association and functional studies (Kovacs
et al., 2011; Coppola et al., 2012; Jin et al., 2012; Kara et al., 2012).
Although this mutation is far from the MBD, it decreased the
binding of tau to MT and their polymerization and showed a
tendency to form oligomeric aggregates instead of fibrils, raising
the hypothesis that other not well characterized regions of tau
may be involved in regulating protein function.

Several missense mutations have been exclusively detected in
patients affected by FTLD or AD and not in control subjects;
some of them are at same codons where different pathogenic
mutations had been previously reported (L284R, P301T, N296D).
However segregation, neuropathological or functional studies
were not performed, so that their pathogenicity was not proven:
V75A, A91V (one case of Parkinson disease), D177V, A178T,
G201S, T263P, G273R, L284R, N286N, V287I, N296D, P301T,
G304S, Q351R, D418N (one case with ataxia and cognitive
impairment), Q424K, T427M (Stenson et al., 2014; Cruts et al.,
2012; Jin et al., 2012; Kim et al., 2014). Clinical phenotypes
other than FTLD, in particular AD phenotype, were sometimes
associated with tau mutations. However it was recognized that
this was most likely due to misdiagnosis (Cruchaga et al.,
2012).

Intronic Mutations
A few intronic mutations were found whose pathogenicity is
uncertain.

I10 + 29 G > A segregated with the FTLD phenotype in
one family but no tauopathy was present in brain tissue. This
mutation had been detected at low frequency in control subjects
and later a null GRN gene mutation was found in this family,
suggesting I10 + 29 G > A to be a benign polymorphism
(Stanford et al., 2003; Pickering-Brown et al., 2006). I10 + 19 C
> G was found in two cases (Stanford et al., 2003; Rohrer et al.,
2009) and I9 + 33 G > A in one case (Rizzu et al., 1999) of FTLD;
however, they have not been definitely characterized. I10 + 25
C > T was detected both in affected and control subjects (Roks
et al., 1999).

I11 + 34 A > G was reported to increase risk factor for AD
when associated with ApoE 4 allele (Bullido et al., 2000).

Gross Deletions or Duplications

The only gross deletion involving a part of MAPT and giving
rise to a FTLD phenotype was reported by Rovelet-Lecrux
et al. (2009). The deletion spanned exons 6–9 and produced
a truncated tau devoid of its first MBD. This tau showed
pathological features such as a decreased binding to MT and the
ability to sequester other MAPs, both impairing MT dynamics.

All the other deletions so far described are in fact
deletions spanning large chromosome regions including
MAPT and adjacent genes, that caused the so-called
microdeletion syndromes, mostly characterized by mental
retardation, developmental delay and dysmorphisms
(Koolen et al., 2006; Sharp et al., 2006; Varela et al.,
2006; Dubourg et al., 2011; Asadollahi et al., 2014).

In these cases the contributions of the single genes,
such as MAPT, to the syndrome are not clearly
understood.

Duplication cases are more interesting (Figure 3C). In
the first case, following a screening of FTLD patients, a
duplication was found, spanning four genes, including MAPT
(Rovelet-Lecrux et al., 2010). In the second case, following
a screening of familial AD cases, a duplication of the solely
MAPT was discovered (Hooli et al., 2014). Unfortunately,
neuropathological examination was not available in either cases;
however the phenotype of dementia (FTLD or AD) seems to
indicate a detrimental role of tau overexpression, accordingly
to data from animal models (Spittaels et al., 1999; Andorfer
et al., 2003). More recently, a very young case carrying a
triplication of MAPT gene together with other genes was
described to have moderate intellectual disability (Gregor et al.,
2012).

These rearrangements are thought to be fostered by the
genomic structure itself of this region containing the low-copy
repeats and the inversion polymorphism (Cruts et al., 2005, 2012;
Sharp et al., 2006).

Unusual Pathogenetic Mechanisms
Underlying Tau Mutations

In addition to the role of MAP, other functions are ascribed
to tau, which is presently considered a multifunctional protein
(Morris et al., 2011) and a number of tau binding partners have
been reported, including proteins, nucleic acids and organelles
(Mandelkow and Mandelkow, 2012). Here, we only describe the
functions that have been demonstrated to be compromised by
a tau mutation. Mutations altering these various functions may
sustain pathogenetic mechanisms different from the usual ones.

Tau can Regulate Axonal Transport
Tau can affect the binding of both dynein and kinesin motor
proteins to MT, based on the distribution of tau along MT and
the sensitivity of motor proteins to presence of tau (Dixit et al.,
2008).

It has been demonstrated that the N-terminal projection
domain of tau binds to the p150 subunit of the dynactin
complex, which has an essential role in axonal transport,
and the attachment of the dynactin to MTs is enhanced by
tau (Magnani et al., 2007). R5L and R5H mutations, found
in patients with FTLD, affected in vitro tau binding to dynactin
(Figure 4A). These findings suggest an involvement of tau
in axonal transport and imply a subsequent pathogenetic role of
tau mutations.

In an in vitro system, tau isoforms carrying P301L, ∆N296,
and R406W mutations were found to cause a slower kinesin
translocation along MT with respect to wt tau (Yu et al.,
2014; Figure 4A). As P301L and ∆N296 are localized in the
MBD, it was hypothesized that MT assembled and stabilized
by mutant tau are structurally and functionally distinct from
MT assembled by wt tau, leading to the slowing of kinesin
velocities. R406W maps outside the MBD, in the C-terminal
region of tau; however, there are evidences that this region
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FIGURE 4 | Unusual pathogenetic mechanisms underlying tau mutations. Additional functions have been attributed to tau besides its role as a
microtubule-associated protein (MAP). Mutations can affect all tau functions, disclosing new pathogenetic mechanisms. Impaired axonal transport (A) and interaction
with plasma membarne (B) can lead to neuronal dysfunction and death. Mutated tau dysfunction as a mitotic spindle MAP may give rise to aneuploidy, while
dysfunction as a chaperon protein protecting DNA may result in chromosome aberrations, both different aspects of genome instability (C).

influences the MT binding activity of tau (Jeganathan et al.,
2006; Mukrasch et al., 2009). These findings provide support
to the notion that tau-mediated aberrant modulation of
kinesin translocation may lead to neuronal cell death and
dementia.

Tau Interacts with Plasma Membrane
Binding of tau N-terminal projection domain to neuronal plasma
membrane had been demonstrated years ago (Brandt et al.,
1995). Recent work showed that R406W mutation abolishes tau-
membrane binding (Figure 4B), leading to a decreased presence
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of tau at the tip of neuritis (‘‘loss of function’’ mechanism;
Gauthier-Kemper et al., 2011). Tau-membrane interaction seems
to support neurite extension, presumably by bridging the
growingMTs to the membrane in the growth cone. This bridging
appears to be mediated by annexin A2, an interaction partner
of tau. Thus, R406W mutation would compromise tau-annexin
A2 interaction, although an influence on tau N-terminal domain
cannot be ruled out (Gauthier-Kemper et al., 2011).

Missorting of tau from neurites to somatodendritic
compartment is a pathological condition that characterizes
neurodegenerative diseases (Zempel and Mandelkow, 2014).
R406W mutation thus appears to contribute to this pathological
aspect.

Tau has Nuclear Functions and is Involved in
Genome Stability
Tau is localized not only in cytoskeleton, centrosome, andmitotic
spindle MT but also in the nucleus (Sjöberg et al., 2006; Rossi
et al., 2008a) and has the ability to bind to DNA and protect
it from damage in a chaperon-like manner (Hua and He, 2003;
Wei et al., 2008). In neuronal cultures, tau can translocate from
cytoplasm to nucleus during heath shock, to prevent damage to
DNA (Sultan et al., 2011) and a major role for tau in neuronal
DNA and RNA protection in vivo under physiological and
hyperthermic conditions was observed (Violet et al., 2014). In
absence of tau, tau knock-out mice exhibited DNA damages such
as chromosome missegregation and aneuploidy (Granic et al.,
2010).

Tau can be involved in control of chromosome stability based
on two different roles (Figure 4C). First, the well-known function
as a MAP that regulates spindle MT dynamics. The dysfunction
of a MAP can lead to genomic instability (Lengauer et al., 1998)
and in fact a mutated tau was demonstrated to produce an
unstable and overly dynamic spindle (Alonso et al., 2004; Bunker
et al., 2006), which can cause chromosome missegregation and
aneuploidy. Second, the interaction of tau with chromatin within
the nucleus, that contributes to DNA stabilization and repair. A
mutated dysfunctional tau may fail to protect DNA and enhance
its damage. In both cases a ‘‘loss of function’’ mechanism can be
envisaged.

According to these findings and hypotheses, we found that
tau mutations are associated with genome and chromosome
instability in peripheral cells of patients affected by FTLD.
Cytogenetic analysis of peripheral blood lymphocytes and skin
fibroblasts from patients carrying P301L, ∆N296, I10 + 3 G >

A; I10 + 16 C > T, G335S, V363I, P364S, G366R, G389R and
D418N revealed the presence of several chromosome aberrations
such as gaps, breaks, deletions, translocations, aneuploidies,
and chromatin anomalies (Rossi et al., 2013). We observed
different kinds of aberrations among patients and also between
lymphocytes and fibroblasts of the same patient. Thus, mutated
tau can be regarded as a predisposing factor to chromosome
instability, which appears to be stochastic and involving the
whole genome. By in depth analysis of DNA copy number
variations through molecular karyotyping, we detected a higher
tendency to non-allelic homologous recombination in cells
carrying a tau mutation than in cells with wt tau; this suggests

a role of mutated tau in this abnormal recombination activity,
probably due to its dysfunction as chromatin-associated protein
(‘‘gain of function’’?; Rossi et al., 2013).

Searching for a confirmation of these results in animal models
of genetic tauopathies, we demonstrated that mice expressing
P301L and P301S tau mutations have higher aneuploidy levels in
their lymphocytes than wt mice (Rossi et al., 2014b). Of course,
the cytogenetic study should be extended to CNS, to reveal the
presence of chromosome aberrations and to investigate their
involvement in neurodegeneration. We hope this investigation
will be performed in the future.

Clinical Features and Diagnostic
Implications

Clinical phenotypes of genetic tauopathies are the same as
sporadic tauopathies, that is bvFTD, SD, PNFA, PSP and CBS:
in fact, tau mutations lead to heterogeneous phenotypes. A high
clinical variability is also found both among and within families
carrying the same mutation. P301S mutation gave rise to bvFTD
in a father and CBD in his son (Bugiani et al., 1999); G389R
mutation presented both as bvFTD or CBS (Rossi et al., 2008b);
V363I led to bvFTD, SD, PNFA, as well as an atypical phenotype
such as posterior cortical atrophy, in some unrelated cases
(Rossi et al., 2014a). Thus, to establish a genotype-phenotype
correlation within tauopathies is not possible. Moreover, due
to clinical overlap between tauopathies and other diseases
belonging to FTLD group, which is characterized by genetic
heterogeneity, such a correlation is very difficult also in the whole
clinical spectrum of FTDL.

When a new tau mutation is found and segregation analysis
is not feasible and neuropathological study is not available, a
hint about its pathogenicity may come from its position within
the protein and comparison to similar previously characterized
mutations; however, if possible, an in vitro structural and
biochemical characterization should be performed to give better
indications (Rossi et al., 2012). This would allow to provide
affected families with a genetic counseling in which mutations
can be attributed at least a likely benign or pathological nature.

A karyotype study on peripheral blood cells may suggest
genomic instability; however, as the extent of this phenomenon
in CNS in so far unknown, it has not a diagnostic nor
prognostic value. We think that the pathological aspect of tau
mutations involving DNA damage and chromosome instability
should be further investigated for its implication not only in
neurodegeneration but also in different diseases associated with
genome instability, such as cancer.

Conclusions

Taumutations usually alter the primary physiological function of
tau as aMAP, that is to promoteMT polymerization: in fact, most
of missense mutations decrease this ability. This can destabilize
the cytoskeleton and its functions in neurons. Mutated tau
isoforms show often an increased tendency to self-aggregate into
fibrillar deposits and this happens also in the case of mutations
causing an imbalance between 3R and 4R tau isoforms. A
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mass of insoluble, hyperphosphorylated tau thus accumulates
within neurons. Cytoskeleton disruption and fibrillar burden
are the resulting damages to neuronal cells, leading finally to
death.

MAP function of tau can be affected in an opposite way by
a small group of mutations that increase the ability of tau to
promote MT polymerization. The deriving overstabilization of
MT can be detrimental to neuronal function such as axonal
transport and synaptic plasticity.

Although fibrillar deposits are usually considered the tau
harmful species to neurons, oligomeric tau aggregates have also
toxic potential and some rare mutations leading to oligomer
formation can explain their pathological effect in this way.

Tau is now more properly considered a multifunctional
protein and mutations affecting some roles different from MAP
function are emerging: in fact, some mutations were shown to
alter dynein and/or kinesin motor proteins activity on MT, being
able to slow the axonal flux.

Tau appears also to be involved in genome stability, due
to its functions as a MAP and nuclear chromatin-associated
protein. Several mutations have in fact been demonstrated
to be associated with chromosome structural and numerical
aberrations.

Very interestingly, some mutations were investigated for
and attributed different pathological features. For example,
P301L is a well-known mutation reducing MT polymerization
and displaying a great self-aggregation ability; furthermore, it
reduced kinesin translocation along MT and was associated

with several chromosome aberrations in human and animal
cells. Thus, because of the recognized role of tau as a
multifunctional protein, a mutation should in turn be considered
as potentially having pleiotropic effects disclosing the complex
neurodegenerative processes leading to cell death and eventually
dementia.

Depending upon the function of tau that is affected and the
way it is affected, a tau mutation can cause either a ‘‘gain of
function’’ or a ‘‘loss of function’’ condition. A ‘‘gain of function’’
is present in association with fibrillar and/or oligomeric
aggregates and in case of MT overstabilization. A ‘‘loss of
function’’ possibly occurs in cases of MT destabilization, loss of
tau-partner protein interaction, DNA damage and chromosome
instability. Complex pathological mechanisms must then be
considered when investigating tau-driven neurodegeneration.

Accordingly, therapeutic strategies for tauopathies should
take into account all the possibly compromised functions
of tau to be successful, targeting tau phosphorylation
features and aggregation tendency, oligomer toxicity, MT
destabilization/overstabilization (for review, see Boxer et al.,
2013; Spillantini and Goedert, 2013; Gerson et al., 2014), as well
as DNA and chromosome damage (Rossi et al., 2013, 2014b;
Violet et al., 2014), a pathological aspect until now neglected.
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