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The pathogenesis of tendon degeneration and tendinopathy is still partially unclear.

However, an active role of metalloproteinases (MMP), growth factors, such as vascular

endothelial growth factor (VEGF) and a crucial role of inflammatory elements and

cytokines was demonstrated. Mechanical stimulation may play a role in regulation of

inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields

(PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression

of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT

increases the expression of growth factors, such as transforming growth factor β(TGF-β),

(VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers.

These pre-clinical results, in association with several clinical studies, suggest a potential

effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as

adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical

stimulation obtained using PEMFs may play a role for treatment of tendinopathy and

for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and

collagen I gene expression. In this manuscript the rational of mechanical stimulations

and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF

will be discussed. However, no clear evidence of a clinical value of ESW and PEMF

has been found in literature with regards to the treatment of tendinopathy in human,

so further clinical trials are needed to confirm the promising hypotheses concerning the

effectiveness of ESWT and PEMF mechanical stimulation.

Keywords: tendon, tendinopathy, mechanical stimulation, extracorporeal shockwaves therapy, pulsed

electromagnetic fields, tendon regeneration

INTRODUCTION

Tendon disorders include both acute and chronic diseases, such as tendinopathy. It is know that the
tendon tissue is poorly cellularized, with 5% of the normal tissue occupied by tenocytes that produce
the extracellular matrix (ECM), based on type I collagen. Furthermore, along with tenocytes, the
human tendons are also composed by tendon stem/progenitor cells (TSPCs), that guarantee to the
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tendon the ability to repair and regenerate and help in
maintaining the homeostasis (Bi et al., 2007).

There is a debate on the role of inflammation in the
production of degenerative changes in the tendon tissue (Abate
et al., 2009; Cook and Purdam, 2009). However, recent new
findings demonstrated the presence of inflammatory elements
in pathologic tendons, as well as the activation of matrix
metallo-proteinases, and the involvement of mediators such as
substance P, vascular endothelial growth factor (VEGF), and
cyclo-oxigenase type II (COX2; De Mattei et al., 2003). Tendon
healing normally occurs in three different phases: the acute
inflammatory phase, for up to 3–7 days, in which the neo-
angiogenesis occurs, followed by the proliferative phase, for
up to 21 days, when intrinsic cell proliferation of epitenon
and endotenon tenocytes and extrinsic invasion of cells from
the surrounding sheath and synovial occur, simultaneously
with collagen, fibronectin, and elastin production, and the
third remodeling phase, for up to 2 years (De Palma and
Rapali, 2006; Abate et al., 2009). Different studies evaluated the
molecular mechanisms that promote the healing process, such
as metalloproteinases (MMPs) and MMPs with thrombospondin
motifs (ADAMTs), in association with their tissue inhibitors
(TIMPs; Sharma and Maffulli, 2005). Particularly MMP-9 and
MMP-13 participate in collagen degradation only, while MMP-2,
MMP-3, and MMP-14 are involved in both collagen degradation
and remodeling (Riley et al., 2002). Indeed, different growth
factors may be involved in neo-vascularization and stimulation
of fibroblast and tenocytes, such as VEGF, TGF-β1, fibroblast
growth factors (FGFs), and Scleraxis (Scx; Sharma and Maffulli,
2006). Furthermore, Nitric Oxide (NO) may also be involved in
the healing process (Murrell, 2007).

In this scenario, different conservative treatments were
proposed to treat tendon degeneration and tendinopathy. In
this manuscript, we will analyze the rationale of mechanical
stimulation by Extracorporeal shock wave (ESW) and Pulsed
electromagnetic fields (PEMF) for tendon regeneration, and its
possible role in the treatment of different tendinopathies.

EXTRACORPOREAL SHOCK WAVE
THERAPY (ESWT) FOR TENDON’S
PATHOLOGY

Shock Waves’ Definition and Mechanism
of Action
A shock wave is a special, non-linear type of pressure wave
with a short rise time (around 10µs) and a frequency ranging
from 16 to 20 MHz (Ogden et al., 2001). These waves
have a positive and negative (low-pressure) phase. In the
first phase, ESW may hit an interface, with their reflection,
or may gradually pass and become absorbed. The second
phase causes cavitation at the tissue interfaces, with bubbles
formation that subsequently implode, generating a second wave
(Ogden et al., 2001). The propagating wave increase the tissue
density and, as a consequence, transmit direct mechanical
perturbations to the tissue with effects on cell membrane
polarization, radical formation, cell proliferation, and growth

factor production. Low energy ESW with a shock number
ranging from 200 to 300 impulses seemmost suited for enhancing
cell proliferation and metabolism and, subsequently, for clinical
applications.

There are two type of shockwave therapy: the focused
shockwave therapy (FSWT) and the radial shockwave therapy
(RSWT). Focused shockwaves are characterized by a pressure field
that converges at a selected depth in the body tissues, where
the maximal pressure is reached. FSWT can be generated using
three methods: electro hydraulic (EH), electromagnetic (EM),
and piezoelectric (PE). In all the cases the wave is generated in
water, because of the acoustic impedance of water and biologic
tissue are similar (van der Worp et al., 2013). The difference
between the three methods of generation is the time at which
the shockwave forms (Coleman and Saunders, 1989). RSWs are
characterized by a diverging pressure field, which reach the
maximal pressure at the source, and they are not generated in
water (van der Worp et al., 2013). A recent in vitro study of
Notarnicola et al. pointed out the negative effect of RWS on bone
metabolism (Notarnicola et al., 2012), while some evidences in
literature suggests a positive effect of RWS on the enthesis of
plantar fascia and on the degenerated areas of Achilles tendon
structure (van der Worp et al., 2013).

The supposed mechanism of action of ESW rely on
conformational changes in membrane proteins, such as the
integrins and, subsequently, on intracellular signal generation
that modify gene expression and release of growth factors.
Indeed, shock waves-induced repair phenomenon is observed in
presence of increased level of IL-6, which is able to stimulate
fibroblast production of collagen and ECM components (Waugh
et al., 2015). A transient increase of IL-1b expression and a
prolonged increase of IL-8 one was also described, consistent
with a modulation of initial inflammatory phase. Following these
observations, it is not surprising that ESW may stimulate matrix
metalloproteinase (MMP) activity. Specifically, an increased
expression of MMP-2 and the pro-MMP-9 was demonstrated.
Considering the well-known low level of basal repair and
MMP activity (i.e., MMP-9) in degenerative tendinopathy,
these concepts support the statement that ESWT may also
favor tendon repair by increasing pro-MMP forms availability,
allowing for greater pathological tendon remodeling by ECM-
degrading enzymes and, ultimately, favoring tendon tissue
regeneration. Indeed, MMPs are also capable to activate latent
TGF-β sequestered in the ECM. Nevertheless, a great inter-
individual variability in the response of MMP to ESW was
observed. This may represent a possible biological explanation
for the variations in clinical success rates of ESWT in
different tendinopathies and may be a clue for recognize and
identify the population of responders and non-responders to
ESWT.

Vetrano et al. demonstrated that ESWT up-regulates the
expression of collagen (mainly type I) and stimulate cell
proliferation in primary cultured human healthy tenocytes
(Vetrano et al., 2011). However, the same group compared
the results of ESWT (at the dose of 0.14mJ/mm2) in cultured
healthy and pathologic tenocytes, demonstrating that Scx and
collagen type I were significantly diminished in the pathologic
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tenocytes cultures. These results indicate that the natural trigger
for healing may be delayed by ESW treatment, in order to
promote cellular repair (Leone et al., 2012). Pre-clinical studies
showed that ESW are able to increase VEGF, VEGF receptor Flt-
1, endothelial nitric oxide synthase (eNOS), and proliferating cell
nuclear antigen (PCNA) expression, consistent with the initial
neo-vascularization process. Improved blood supply and early
vascularity is associated with the initial leukocyte infiltration
and the subsequent metabolism of the fibers in the putative
tendon pathological area by means of ECM-degrading enzymes
(Bosch et al., 2009). This early phase is followed by an ESW-
driven transitory increase in TGF-β1 expression, later followed by
persistent IGF-I expression, that leads to a controlled inhibition
of macrophages-induced ECM degradation and inflammation
and an enhanced ECM and collagen type I synthesis (Visco
et al., 2014). Tendon cells proliferation was also associated in
this repair sequence, as well as endogenous lubricin production
by fibroblasts and tenocytes following growth factors stimulation
(i.e., TGF-β1; Zhang, 2011). The ultimate result of ESWT is a
simulation of cell metabolism, which may induce healing process
in injured areas of the tendons (Chen et al., 2004).

Recently, soft-focused ESWT was proposed, in order to
deliver the energy in a larger area (Kuo et al., 2009). In the
in vitro study of, de Girolamo et al. the effect of soft-focused
ESWT were evaluated on a primary culture of healthy human
tendon cells in adherent monolayer culture. The rationale of the
study was to maintain cell-to-cell contacts and cell interactions
with the ECM during ESWT, as it is a crucial point in the
mechano-trasduction process. Furthermore, physical forces, such
as soft-focused ESWT, may influence conformational changes
in membrane proteins, such as integrines, resulting in an intra-
cellular signal with a modification of gene expression and growth
factors release (de Girolamo et al., 2014). At the molecular
level, the authors evaluated the relationship between IL-1β and
the production of MMPs, considered to be responsible for
ECM degradation and tendon degeneration (Clegg et al., 2007).
Both MMP-3 and 13 were not influenced by soft-focused ESW
exposure, suggesting that the increased levels of IL-1β were not
correlated with the ECM degradation. On the other hand, an
increased expression of SCX, collagen type I genes (regulated by
SCX expression), TGF-β, anti-inflammatory cytokines IL-6 and
Il-10 and VEGF (stimulated by IL-6 and IL-10) was observed
during the first 7 days after exposure to soft-focused ESW,
although SCX transcription decreased rapidly during the first
4 days. All these results suggest that soft-focused ESWT may
positively modulate the initial beneficial inflammatory phase of
the tendon healing process (Visco et al., 2014) and “normalize”
the anabolic activities of tendon cells.

Although the lack of sure evidence, ESWT may also be
efficient in reducing calcifications in tendon structure (van der
Worp et al., 2013).

Clinical Results of ESWT in Tendon’s
Pathology Treatment
ESWT is reported to be an effective treatment in different chronic
tendon pathologies.

Shoulder
In 2014 Bannuru et al. published a systematic review on 28
Randomized Controlled Trials (RCT) comparing high-energy
vs. low-energy ESWT or placebo for treatment of calcific or
non-calcific tendinitis of the shoulder. The authors concluded
that high-energy ESWT was significantly better than placebo in
reducing pain and improving function in calcific tendinopathy,
while no differences were detected between ESWT and placebo
in non-calcific tendinopathy (Bannuru et al., 2014).

Huisstede et al. in 2011, in a systematic review, included 17
RCTs about ESWT vs. placebo in calcific and non-calcific rotator
cuff tendinopathy. The authors concluded for strong evidence
toward the best effectiveness of high-ESWT in calcific rotator
cuff tendinopathy. Furthermore, no differences between the
treatments were found in non-calcific rotator cuff tendinopathy
(Huisstede et al., 2011). Similar results were reported in the
systematic review by Harniman et al. (2004). The single studies
are summarized in Table 1.

Patellar Tendinopathy
Van Leeuwen et al. in 2009 published a systematic review
describing the results of ESWT in patellar tendinopathy,
collecting seven RCTs on ESWT vs. placebo. The authors
concluded on positive results using ESWT in treating patellar
tendinopathy, but most of the studies had different frequency of
treatments, application, and shockwave generation, energy level
and method of localization (van Leeuwen et al., 2009). However,
Zwerver et al. in 2011 published a RCT on 62 symptomatic
athletes affected by patellar tendinopathy treated either with
ESWT or placebo, concluding for no beneficial effects of ESWT
(Zwerver et al., 2011). Due to these conflicting reports, further
studies are needed to clarify the value of ESWT for patellar
tendinopathy. Again, the most recent studies are summarized in
Table 1.

Elbow
Buchbinder et al. in 2005 published a systematic review regarding
the effectiveness and safety of ESWT for lateral elbow pain.
The authors included nine trials, randomizing 1006 participants
to ESWT or placebo and one trial including 93 participants
randomized into ESWT or steroid injection. They concluded
that steroid injections were more effective compared to ESWT
(Buchbinder et al., 2005). Recently, Trentini et al. reported the
results on 36 patients affected by lateral epicondylitis and treated
with focal ESWT. At a mean follow-up of 24.8 months, the
authors described a positive response to the treatment in 75.7%
of the patients (Trentini et al., 2015). These studies outlines that,
the clinical efficacy of ESWT for the treatment of medial and
lateral epycondylitis is still controversial, as shown in the papers
reported in Table 1.

Foot Pathology
In 2013 Al-Abbad et al. published a systematic review including
six studies (4 RCTs) and evaluating the efficacy of ESWT for
Achilles tendinitis treatment. The authors concluded that ESWT
was effective for Achilles tendinopathy at a minimum 3 months’
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TABLE 1 | Summary of literature studies on ESWT, Extra-corporeal Shock Waves Therapy; RSWT, radial shockwave therapy.

Authors and Year Pathology Number of patients Level Type ESWT Follow-up Outcomes

SHOULDER

Loew et al., 1999 Calcific

tendinitis of

the shoulder

195 (80 divided in 4

groups with different

regimens, 115 divided

into one or two session)

II - High-ESWT EFD: 0.30mJ/mm2

(high) one session—double

- Low-ESWT: 0.1mJ/mm2 (high)

one session—double

Control (no treatment; n = 20)

Not reported The results showed

energy-dependent success. With

58% of pain relief after two

high-energy session

Schmitt et al., 2001 Non-calcific

supraspinatus

tendinitis

40 II - High-ESWT

0.11mJ/mm2 (n = 20)

- Sham ESWT (n = 20)

12 weeks Increased function and a reduction of

pain in both groups (p < or = 0.001).

The authors did not recommend

ESWT for the treatment of tendinitis

of supraspinatus

Speed et al., 2002a Non-calcific

supraspinatus

tendinosis6

74 II - ESWT: 0.12mJ/mm2 (medium;

n = 34)

- ESWT: minimum: 0.04mJ/mm2

(low; n = 40)

Not reported No significant difference between the

treatments in terms of pain. The

authors concluded on no benefit of

ESWT in patients with non-calcific

tendonitis

Haake et al., 2002 Calcific

tendinitis of

the

supraspinatus

50 II - ESWT: focus on calcific deposit:

0.78mJ/mm2 (high; n = 25)

- ESWT: focused on tuberculum

majus: 0.78mJ/mm2 (high;

n = 25)

1 year Significantly better Constant and

Murley score in ESWT at the calcified

area under fluoroscopic control

Pan et al., 2003 Calcific

tendinitis of

the shoulder

63 II - High-ES WT 2Hz 2000 shock

waves, 2 sessions, 14 days apart

0.26–0.32mJ/mm2 (n = 33)

- TENS 3x/week 20min for 4

weeks (n = 30)

6 months Better outcomes VAS and Constant

score in the ESWT group compared

to TENS group

Gerdesmeyer et al.,

2003

Calcific

rotator cuff

tendinopathy

96 II - High-ESWT (1500 pulses

0.32mJ/mm2; n = 48)

- Sham ESWT (n = 48)

1 year High-ESWT and low-ESWT provided

a beneficial effect on pain, function

and calcifications’ size. However,

high-ESWT appeared to be superior

compared to low-ESWT

Perlick et al., 2003 Calcific

tendinitis of

the shoulder

80 II - ESWT: 0.23mJ/mm2 (medium;

n = 40)

- ESWT: 0.42mJ/mm2 (high;

n = 40)

1 year Improvement in Constant and Murley

scores. However, the disintegration of

calcific deposits is dose-dependent

Peters et al., 2004 Calcific

tendinosis of

the shoulder

61 II - High level ESWT: 0.44mJ/mm2

(n = 31)

- Medium level ESWT:

0.15mJ/mm2 (n = 30)

6 months ESWT in calcific tendinitis of the

shoulder is very effective, without

significant side effects at

0.44mJ/mm2

Cosentino et al., 2004 Chronic

calcific

tendinitis of

the shoulder

135 IV ESWT 0.03mJ/mm2 (4 sessions) 1 month Improvement in the Constant and

Murley score, with partial resorption

of the deposits in 44.5% of patients,

and complete resorption in 22.3% of

patients

Krasny et al., 2005 Calcific

supraspinatus

tendinitis

80 II - High-ESWT plus

Ultrasound-guided needling

(n = 40)

- High-ESWT only (200 impulses

followed by 2500 pulses,

0.36mJ/mm2 (n = 40)

4.1 months

(average)

Ultrasound-guided needling in

combination with high-ESWT is more

effective compared to ESWT alone,

with higher rates of deposits

elimination, better clinical results and

lower need for surgery

(Continued)
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TABLE 1 | Continued

Authors and Year Pathology Number of patients Level Type ESWT Follow-up Outcomes

Sabeti-Aschraf et al.,

2005

Calcific

tendinitis of

the shoulder

50 II - ESWT: 0.08mJ/mm2 Point of

max tenderness (n = 25)

- ESWT: 0.08mJ/mm2Point of

max tenderness by

computer-assisted navigation

device (n = 25)

12 weeks Both groups had significant

improvements in the Constant and

Murley score and VAS score.

However, the navigation group

showed better results

Moretti et al., 2005 Rotator cuff

calcifying

tendinitis

44 IV Four sessions of medium-ESWT

(0.11mJ/mm2 ) ESWT

administered with an

electromagnetic lithotripter

6 months 70% of satisfactory functional results.

Disappearance of the deposits in

50% of the cases

Cacchio et al., 2006 Calcific

tendinitis of

the shoulder

50 II - ESWT 4 sessions at 1-week

intervals, with 25,00 pulses per

session, 0.10mJ/mm2 (n = 25)

- ESWT 4 sessions at 1-week

intervals, total number of pulses:

25 (n = 25)

6 months Better functional results in the RSWT

group

Albert et al., 2007 Calcific

tendinitis of

the shoulder

80 II - ESWT: max 0.45mJ/mm2 (high;

n = 40)

- ESWT: 0.02-0.06mJ/mm2 (low;

n = 40)

110 days High-ESWT group had significant

better results, but with the calcific

deposit unchanged in size in the

majority of patients

Hsu et al., 2008 Calcific

tendinitis of

the shoulder

46 II - High-ESWT:

0.55mJ/mm2 (n = 33

- Sham ESWT (n = 13)

1 year No significant difference between

Gärtner type I and type II groups in

the Constant score (P >.05). ESWT

are effective in the treatment of calcific

tendinitis with negligible complication

Rebuzzi et al., 2008 Calcific

tendinitis of

the

supraspinatus

46 IV - Arthroscopic extirpation (n = 22)

- Low- ESWT (n = 24)

24 months No differences in UCLA scores.

ESWT have similar results compared

to arthroscopy

Schofer et al., 2009 Non-calcific

shoulder

tendinopathy

40 II - High-ESWT-1

0.78mJ/mm2 (n = 20)

- High-ESWT-2

0.33mJ/mm2 (n = 20)

12 weeks Statistically significant improvement in

both groups, without statistically

significant differences between

high-ESWT and low-ESWT

Ioppolo et al., 2012 Supraspinatus

Calcifying

Tendinitis

46 II - ESWT at an energy level of

0.20mJ/mm2

- ESWT at an energy level of

0.10mJ/mm2

6 months Better results in the first group of

treatment (Constant Murley

Scale=CMS)

Galasso et al., 2012 Non-calcifying

supraspinatus

tendinopathy

20 II - ESWT

- sham control group

12 weeks ESWT groups showed better CMS

score, without any side effect

PATELLAR TENDINOPATHY

Peers et al., 2003 Chronic

patellar

tendinopathy

27 III - Surgical treatment (n = 13)

- ESWT (n = 14)

6 months ESWT showed comparable

outcomes compared to surgery

Taunton and Khan, 2003 Chronic

patellar

tendinopathy

30 II - ESWT (n = 20)

- ESWT with energy-absorbing

pad (n = 10)

Not reported ESWT is effective in adjunction with

eccentric exercises in treating patellar

tendinopathy

Wang et al., 2007 Chronic

patellar

tendinopathy

50 II - ESWT (0.18mJ/mm2 energy

flux density; n = 27)

- Conservative treatment (n = 23)

2-3 years ESWT is more effective compared to

conservative treatment

(Continued)
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TABLE 1 | Continued

Authors and Year Pathology Number of patients Level Type ESWT Follow-up Outcomes

Vulpiani et al., 2007 Jumper’s

knee

73 IV - ESWT (4 sessions 1500–2500

impulses,energy varying

between 0.08 and

0.44mJ/mm2 )

Not reported Satisfactory outcomes in ESWT

treatment for jumper’s knee

Zwerver et al., 2010 Severe

patellar

tendinopathy

19 IV Patient guided Piezo-electric,

focused ESWT

3 months Patient guided Piezo-electric ESWT

without local anesthesia is a safe and

well-tolerated treatment for severe

patellar tendinopathy

Zwerver et al., 2011 Patellar

tendinopathy

in athletes

62 I - ESWT (n = 31)

- Sham ESWT (n = 31)

1 year No benefit of ESWT over placebo in

treatment of patellar tendinopathy in

in-season athletes

Furia et al., 2013 Chronic

patellar

tendinopathy

66 III - Radial low-ESWT (n = 33)

- Conservative treatment (n = 33)

1 year The percentage of “excellent”

functional outcomes was significantly

higher in the ESWT group

ELBOW PATHOLOGY

Rompe et al., 2001 Chronic

lateral

epicondylitis

of the elbow

30 II - ESWT (0.16mJ/mm2 )

- ESWT (0.16mJ/mm2 ) plus

cervical manual therapy

1 year Each group showed significant

improvement in the pain and

functional scores. The authors

concluded that ESWT may be an

effective conservative treatment

method for unilateral chronic tennis

elbow

Maier et al., 2001 Chronic

lateral tennis

elbow

42 IV ESWT 18.6 months Good clinical performances after

ESWT. Male patients performed

better than female ones. In female

patients, Magnetic Resonance

Imaging (MRI) may predict the results

of ESWT

Speed et al., 2002b Lateral

epicondylitis

75 II - ESWT at 0.12 mJ/ mm2

- Sham therapy

1 year No significant difference between the

groups, concluding that the placebo

effect of ESWT may be considerable

Melegati et al., 2004 Lateral

epicondylitis

41 II - ESWT (Lateral tangential

focusing)

- ESWT (tangential focusing)

Not reported No differences between the

techniques

Furia, 2005 Chronic

lateral

epicondylitis

36 IV ESWT Not reported 77.8% were rated excellent or good

on the Roles and Maudsley scale

Chung et al., 2005 Chronic

lateral

epicondylitis

60 II - ESWT + stretching program

- Sham therapy

1 year No differences in clinical outcomes

Staples et al., 2008 Lateral

epicondylitis

68 II - 3 ESWT treatments

- 3 treatments at a subtherapeutic

dose

6 months Little evidence in favor of ESWT in the

treatment of lateral epicondylitis

Radwan et al., 2008 Resistant

tennis elbow

46 II - high- ESWT (0.22mJ/mm2;

n = 29)

- Percutanous tenotomy (n = 27)

1 year Excellent and good results were

achieved in 65.5% of patients in

ESWT group and 74.1% in the

percutanous group

Gunduz et al., 2012 Lateral

epicondylitis

59 II - Physical therapy

- A single corticosteroid injection

- ESWT

6 months All the treatment had favorable effects

on pain and grip strength in the early

period

(Continued)
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TABLE 1 | Continued

Authors and Year Pathology Number of patients Level Type ESWT Follow-up Outcomes

Lee et al., 2012 Medial and

lateral

epicondylitis

22 III - ESWT group

(0.06–0.12mJ/mm2; n = 12)

- local steroid injection group

(n = 10)

8 weeks Both the treatments were effective for

medial and lateral epicondylitis

Notarnicola et al., 2014 Epicondylitis 26 IV ESWT Not reported Progressive improvement in pain

during the follow-up, with decrease in

grip strength, especially in the

dominant limb

Trentini et al., 2015 Lateral

epicondylitis

36 IV Focused ESWT 24.8 months 75.7% of positive response. Focal

ESWT is a valuable and safe solution

in case of lateral epicondylitis, both in

newly diagnosed and previously

treated cases

FOOT PATHOLOGY

Furia, 2006 Insertional

Achilles

tendinopathy

88 II - ESWT group; 0.21mJ/mm2;

total energy flux density,

604mJ/mm2 (n = 35)

- Non-operative therapy (n = 33)

1 year Better Roles and Maudsley results in

the ESWT group. NO differences if a

local anesthesia was performed or

not before the ESWT session

Rasmussen et al., 2008 Chronic

Achilles

tendinopathy

48 II - active ESWT

- sham ESWT

12 weeks Better results in the active ESWT

group

Vulpiani et al., 2009 Achilles

tendinopathy

115 IV ESWT (0.08 and 0.40mJ/mm2 ) 1 year 76% of satisfactory results at the last

follow-up

Saxena et al., 2011 Achilles

tendinopathy

74 IV ESWT 1 year 74.8% of patients improved 1 year

after surgery, with significant

improvement of the Roles and

Maudsley score

Kim et al., 2015 Plantar

fasciitis

10 IV ESWT 6 months Decreased plantar fascia thickness,

spasticity, and pain and increased

gait ability after ESWT

follow-up (Al-Abbad and Simon, 2013). Other studies pointed
out similar conclusions as shown in Table 1.

Recently, Kim et al. analyzed the efficacy of ESWT also for
plantar fasciitis in stroke patients, reporting on reduced tension
in the plantar fascia, and observing pain relief and improved gait
ability (Kim et al., 2015; Table 1). Their results are similar to
other recent studies (Park et al., 2014; Yin et al., 2014; Gollwitzer
et al., 2015; Konjen et al., 2015; Mardani-Kivi et al., 2015), and
allows for considering ESW a precious therapeutic modality for
treating acute or recalcitrant plantar fasciitis with acceptable
success rate ranging from 50% to 80%, at least at a short term
follow-up.

PULSED ELECTROMAGNETIC FIELDS
(PEMF) FOR TENDON’S PATHOLOGY

Pulsed Electromagnetic Fields (PEMF)
Definition and Mechanism of Action
PEMF are characterized by frequencies at the low end of
the electromagnetic spectrum, ranging between 6 and 500Hz

(Bassett, 1989). Another feature of PEMFwaveforms is the rate of
change: higher rate of changes (Tesla/seconds) are able to induce
biological currents in the tissue, with peculiar biological effects
(Juutilainen and Lang, 1997). Furthermore, it was demonstrated
that low-frequency fields are non-ionizing and athermal (Rubik,
1997).

Different types of waveforms were associated to PEMF:
asymmetric, biphasic, sinusoidal, quasi-rectangular, or quasi-
triangular in shape (Bassett, 1989). In 1979, the Food and
Drug Administration (FDA) approved both quasi-rectangular
and quasi-triangular PEMF as safe and effective for the treatment
of fractures and their sequelae (Bassett, 1989).

There are two methods in which PEMF can be applied to
biological tissues: capacitive or inductive coupling. Capacitive
coupling does not involve any contact with the body. However,
in direct capacitive coupling, an electrode has to be placed on the
skin of the opposite side (Trock, 2000). On contrary inductive
coupling does not require the electrodes to be in direct contact
with the skin, because themagnetic field produces an electric field
that, in turn, produces a current in the conductive tissues of the
body (Stiller et al., 1992; Trock, 2000).
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Similarly to ESW, PEMF are physical stimuli that produce
membrane disturbances and activation of multiple intracellular
pathways. Indeed, formation of lipidic “nanopores” in the
plasma membrane following PEMF exposure may explain the
conduction of ions into the cell from the extracellular space,
specifically Calcium ions (Ca). Furthermore, a direct effect of
PEMF on phospholipids within the plasma membrane has been
postulated, with a subsequent production of several second
messengers, initiating multiple intracellular signal transduction
pathways, as well as a further activation of protein kinase C
(Semenov et al., 2013; Tolstykh et al., 2013).

Nevertheless, PEMFs have been recently connected to other
cell activation pathways. In particular, the ligand-independent
activation of epidermal growth factor receptor (EGFR) and other
members of the receptor tyrosine kinase family were observed,
with subsequent stimulation of intracellular signaling as the
MAPK (mitogen-activated protein kinases)/ERK (extracellular
signal-regulated kinases) pathway, with subsequently activation
of intracellular mitogenic pathway (Wolf-Goldberg et al., 2013).

Recent studies outlined the expression of canonical Wnt
signaling proteins (Wnt1/ lipoprotein receptor-related protein 5
LRP5/beta-catenin) in cell derived from a mesenchymal lineage
and exposed to PEMF (Jing et al., 2013; Zhou et al., 2015). At this
regard, the presence of beta-catenin seems particularly important
with respect to other settings, in which this protein is linked
to cell plasticity and proliferation, as in the superficial zone of
articular cartilage (Yasuhara et al., 2011; Marmotti et al., 2013).

Finally, the exposure to PEMF induces early up-regulation of
adenosine receptor A2A and A3. Adenosine receptor A2A and A3

are able to reduce PGE2 and pro-inflammatory cytokine IL-6 and
IL-8 release and to inhibit the activation of transcription factor
NF-kB, a key regulator of inflammatory responses (Vincenzi
et al., 2013), as well as to positively interfere in several cell
activities as cell proliferation (Varani et al., 2008).

Taken together, all these observations suggest a possible
role of PEMF for “tenocyte activation” (Dingemanse et al.,
2014; de Girolamo et al., 2015). This may be achieved by
two main mechanisms: (i) limiting the catabolic effects of
pro-inflammatory cytokines such as IL-1, IL-6, and IL-8 and
(ii) increasing ECM production, cytokine release and cell
proliferation (De Mattei et al., 2003; Fassina et al., 2006; Ongaro
et al., 2012; de Girolamo et al., 2013). Recent studies of de
Girolamo et al. (de Girolamo et al., 2013, 2015) demonstrated
that human tendon cells proliferation was enhanced after PEMF
treatment, and in particular, that a 1.5 mT-PEMF treatment was
able to up-regulate SCX, VEGF-A, and COL1A1 gene expression.
Moreover, the treated tendon cells showed, after 2 days, a higher
release of IL-6, IL-10, and TGF-β. These effects are essential for
tendon metabolism, inducing increased elastin and fibronectin
production, increased cell proliferation and neo-angiogenesis.

Clinical Results of PEMF in Tendon’s
Pathology Treatment
Despite the lack of recent literature sustaining a long-term
positive effect of PEMF in treating shoulder and elbow tendon
disorders (Uzunca et al., 2007; Bisset et al., 2011; Dingemanse
et al., 2014), a positive effect of PEMF in reducing lateral

epicondylitis pain was described at a short term follow-up (3
months). Moreover, several reports back in the 80’s proposed a
putative role in the treatment of rotator cuff disease and lateral
epicondylitis (Binder et al., 1984; Devereaux et al., 1985). A very
recent study by Osti et al. described a possible role of PEMF after
rotator cuff repair as an adjuvant treatment, in order to reduce
local inflammation, post-operative joint swelling and stiffness,
and recovery time, as well as to induce pain relief. A significant
short term (up to 5months) positive effect was observed in PEMF
treated patients, but the authors did not observe any clinical and
functional improvement at a longer (2 years) follow-up (Osti
et al., 2015).

Some suggestions for the use of PEMF for treating human
Achilles tendon pathologies come only from preclinical animal
studies. Strauch et al. in 2006 analyzed the effect of PEMF on
the biomechanical strength of rat Achilles’ tendons at 3 weeks
after transection and surgical repair, with an increase in tensile
strength of up to 69% 3 weeks after the surgery (Strauch et al.,
2006). Previously, Lee et al. in 1997 analyzed the possible role of
pulsed magnetic fields (PMF) and (PEMF) in the healing process
of Achilles tendon inflammation in the rat (Lee et al., 1997).

CONCLUSION

Mechanical stimulation by means of ESW and PEMF seems to
be favorable for tendon regeneration in preclinical and in vitro
studies. Indeed, a beneficial effect has been demonstrated on
tendon resident cells at a cellular level. Increased cell proliferation
and the production of the immuno-regulatory cytokines and
growth and angiogenic factors was observed in vitro, consistent
with an overall “tenocyte activation” favoring tendon healing
process. Conversely, there is still a lack of strong evidences on
ESW and PEMF when dealing with clinical settings. The efficacy
of ESWT is demonstrated for the treatment of calcific rotator cuff
tendinopathy, while it is still debated its role in the treatment of
other tendon disorders, such as patellar tendinopathy and lateral
epicondylitis. PEMF seem to exert positive clinical effects toward
shoulder and elbow tendon disorders only at a short term follow
up. While basic science research continues to show encouraging
results, further in vivo human studies are undoubtedly necessary
to confirm the clinical efficacy of mechanical stimulation by
means of PEMF and ESW for the treatment of tendon disorders.
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