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In cognitively normal (CN) elderly individuals, white matter hyperintensities (WMH) are
commonly viewed as a marker of cerebral small vessel disease (SVD). SVD is due to
exposure to systemic vascular injury processes associated with highly prevalent vascular
risk factors (VRFs) such as hypertension, high cholesterol, and diabetes. However,
cerebral amyloid accumulation is also prevalent in this population and is associated with
WMH accrual. Therefore, we examined the independent associations of amyloid burden
and VRFs with WMH burden in CN elderly individuals with low to moderate vascular
risk. Participants (n = 150) in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
received fluid attenuated inversion recovery (FLAIR) MRI at study entry. Total WMH
volume was calculated from FLAIR images co-registered with structural MRI. Amyloid
burden was determined by cerebrospinal fluid Aβ1 42 levels. Clinical histories of VRFs,−
as well as current measurements of vascular status, were recorded during a baseline
clinical evaluation. We tested ridge regression models for independent associations
and interactions of elevated blood pressure (BP) and amyloid to total WMH volume.
We found that greater amyloid burden and a clinical history of hypertension were
independently associated with greater WMH volume. In addition, elevated BP modified
the association between amyloid and WMH, such that those with either current or past
evidence of elevated BP had greater WMH volumes at a given burden of amyloid. These
findings are consistent with the hypothesis that cerebral amyloid accumulation and VRFs
are independently associated with clinically latent white matter damage represented by
WMHs. The potential contribution of amyloid to WMHs should be further explored, even
among elderly individuals without cognitive impairment and with limited VRF exposure.

Keywords: hypertension, amyloid, FLAIR, MRI, normal aging, ADNI

INTRODUCTION

White matter hyperintensities (WMH) on fluid attenuation inversion recovery (FLAIR) magnetic
resonance imaging (MRI) scans of the brain are commonly observed in elderly individuals, even
in those without cognitive impairment (Yoshita et al., 2006; Brickman, 2013). Epidemiological
studies have identified greater burden of WMHs as a risk factor for a variety of adverse outcomes,
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including dementia. Biological pathways leading to WMHs, and
prevention or amelioration of WMH burden are therefore of
major scientific interest.

Evidence suggests that several brain injury processes,
including chronic hypoperfusion of tissues, impaired
autoregulation of cerebral blood flow, venous collagenosis,
and reactive gliosis contribute to WMHs in the elderly (Black
et al., 2009; Gouw et al., 2011). Further evidence suggests
that systemic vascular processes including arterial stiffness,
atherosclerotic plaque deposition, and chronic inflammation
contribute to these brain injury processes (Gouw et al., 2011).
A substantial body of epidemiology research supports the
pathway from systemic vascular factors to WMHs by identifying
associations between indicators of systemic vascular injury
(including prevalent clinically identified vascular risk factors
(VRFs), clinically diagnosed vascular diseases, and biomarkers of
vascular status) and presence of WMHs both contemporaneously
and in the future (Bots et al., 1993; Swan et al., 1998; Romero
et al., 2009; Debette et al., 2011). Basic science research further
supports this association (Cognat et al., 2014). Following this
evidence, reduction in systemic vascular injury (e.g., reduction
in prevalence of VRFs) is frequently proposed as a means for
preventing or lessening WMH accrual and thus reducing risks of
adverse late life outcomes (Launer et al., 2010; Godin et al., 2011;
Baumgart et al., 2015).

However, prior epidemiological studies of the association
between systemic vascular injury and WMHs largely did
not measure cerebral amyloid, which is known to be highly
prevalent among elderly individuals, including those lacking
clinically significant cognitive impairment (Price and Morris,
1999; Pike et al., 2007). Amyloid accumulation within blood
vessels (i.e., cerebral amyloid angiopathy, CAA) could exacerbate
cerebrovascular injury processes that contribute to WMHs;
cerebrovascular dysfunction associated with systemic vascular
injury could conversely exacerbate amyloid accrual by disrupting
amyloid clearance via perivascular spaces (Preston et al., 2003;
Snyder et al., 2015). In addition, amyloid deposition could
contribute to WMHs by promoting injury processes that are
not necessarily vascular in nature, including neuroinflammation,
oxidative stress, and reactive oxygen species production (Yamada
and Naiki, 2012; Snyder et al., 2015). To date, however, it is
unclear which (if any) of these hypothetical scenarios commonly
occurs in elderly individuals, and in particular there has been
very little study of the association between cerebral amyloid
and WMHs independent of systemic vascular injury processes
(Brickman et al., 2015). Understanding whether cerebral amyloid
is associated with WMH independent of systemic vascular
processes is critically important to clarify the viability of proposed
efforts to preventWMHs through prevention of systemic vascular
injury (Launer et al., 2010; Godin et al., 2011; Baumgart
et al., 2015). In particular, an independent association between
amyloid and WMH would leave open the possibility that
amyloid accumulation could foil such WMH prevention efforts
by promoting WMHs on its own.

This study investigates whether amyloid burden and VRFs
are independently associated with WMH burden in cognitively
normal (CN) elderly individuals. Using data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), which includes
individuals with low to moderate levels of VRF exposure, we
used FLAIR to measure WMHs, positron emission tomography
(PET) and cerebrospinal fluid (CSF) assays to measure cerebral
amyloid burden, and clinical histories of VRF exposure and
conventional clinical measurements to characterize systemic
vascular injury. We used this data to assess amyloid and systemic
vascular indicators as independent predictors of WMH burden.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained from
the ADNI database1. The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California
at San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the US and Canada. The initial goal of ADNI was
to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55 to 90, to participate in the research, consisting
of cognitively normal older individuals, people with early or late
MCI, and people with early AD. The follow up duration of each
group is specified in the protocols for ADNI-1, ADNI-2, and
ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-
GO had the option to be followed in ADNI-2. For up-to-date
information2.

The principles of informed consent in the current edition
of the Declaration of Helsinki and applicable HIPAA privacy
notifications was implemented before protocol procedures were
carried out. Informed consent was obtained in accordance with
US 21 CFR 50.25. Information was given in both oral and
written form to subjects, their relatives, guardians or authorized
representatives and study partners as deemed appropriate by
the sites’ IRB. The consent form generated by the investigator
with the assistance of the ADNI coordinating committee (ADNI-
CC) was approved, along with the protocol, and HIPAA privacy
notifications by the IRB and were acceptable to the ADNI-CC.

1www.adni.loni.usc.edu
2www.adni-info.org
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HIPAA privacy requirements were met by either inclusion of
required HIPAA text within the IRB-approved consent document
or by separate HIPAA research authorization, pursuant to local
regulations.

An inclusion criterion of a modified Hachniski score of
4 or lower excluded people with probable dementia due to
cerebrovascular disease. Elderly individuals were recruited from
over 50 sites across the US and Canada across multiple phases
(1, GO, 2). Subjects recruited for ADNI-1 and ADNI-GO had
the option to be followed in ADNI-2. Data used here were
obtained from 150 CN ADNI-GO and ADNI-2 participants. CN
was determined by absence of memory complaint, normal daily
functioning, normal memory function measured on theWechsler
Memory Scale, a Mini-Mental State Exam score between 24
and 30, and a Clinical Dementia Rating of 0. Of these, 150
participants had data for all variables analyzed. Group clinical
and demographic data are reported in Table 1. Baseline data—
i.e., data associated with the participant’s first FLAIR scan—were
analyzed in this cross-sectional study.

MRI Protocol and WMH Measurement
Magnetic resonance imaging acquisition: 3D Axial T2-weighted
FLAIR and T1-weighted MRI sequences were collected at each
site. Exact protocols varied by scanner type. General FLAIR
sequence characteristics were as follows: FoV read 280mm; FoV
phase 100.0%; slice thickness 8.0 mm; TR 20 ms; TE 5 ms;
flip angle, 40◦. Standard 3D T1-weighted MPRAGE sequence
characteristics were as follows: TE 4 ms; TR 9 ms; voxel
dimensions 1.1 mm × 1.1 mm 1.2 mm.

The WMH measurement approach is detailed in
Supplementary Materials. Briefly, non-brain tissues were
removed from T1-weighted and FLAIR images, the two images
were spatially aligned, and MRI field artifacts were removed.
Images were warped to a standard template space. In a Bayesian
approach, the likelihood of WMH was estimated from FLAIR
signal characteristics, the prior probability of WMH occurrence
was calculated from previous supervised segmentations of
independent FLAIR images, and additional constraints were
applied at every voxel.

Micro-hemorrhage (MCH) assessment methods may be
obtained from the ADNI database (ADNI_Methods_MCH_
20121213.pdf). T2*-weighted GRE images (TE, 20 ms; TR,
650 ms; flip angle, 20◦; section thickness, 4 mm; section gap,
0 mm) were used to identify presence and location of MCH and
other medical findings. In this study, we used the presence of
definite lobar MCH as a categorical predictor of interest in our
models. Lobar MCH is an imaging indicator of CAA; we used
this predictor to test whether associations between amyloid and
WMHwere accounted for simply by the presence of CAA.

PET Imaging and Analysis
Positron emission tomography scans were acquired using
a standardized protocol, which can be obtained from the
ADNI database (ADNIGO_PET_Tech_Manual_01142011.pdf).
Detailed PET analytical methods can be obtained from the
ADNI web site and prior publications (ADNI_AV45_Methods_
JagustLab_04-29-14.pdf) (Landau et al., 2013). Briefly, averaged

TABLE 1 | Study demographics, vascular parameters, cerebrospinal fluid
(CSF) immunoassays, and imaging metrics.

Cognitively normal (CN)

Participants 150

Sex (male) 51.3%

Age (yr) 73.7 (6.3)

Education (yr) 16.6 (2.5)

White–not Hispanic/Latino 89.3%

APOE e4 carriage 28.7%

White matter hyperintensity volume (ln) 1.18 (1.16)

Intracranial volume (ICV) (cm3) 1,486 (158)

PET AV45 (SUVR) 1.11 (0.18)

CSF A1−42 (pg/ml) 194.4 (50.4)

CSF t-tau (pg/ml) 65.9 (31.7)

CSF p-tau181 (pg/ml) 33.2 (15.9)

Current vascular status

Body mass index (BMI) 27.2 (4.3)

Systolic blood pressure (mm Hg) 136 (16)

Diastolic blood pressure (mm Hg) 75 (10)

Fasting blood glucose (mg/dl) 99 (18)

Total serum cholesterol (mg/dl) 189 (37)

Vascular history index

0 24.7%

1 40.7%

2 24.0%

3 10.0%

4 0.7%

Vascular history

Hypertensiona 44.0%

Dyslipidemia 14.0%

Diabetes mellitus 9.3%

Smoking 18.0%

MI/CVA/AFb 4.0%

Micro-hemorrhage 14.0%

All numerical entries mean (standard deviation).
aTwo participants had past, but not current hypertension.
bMyocardial Infarction/Stroke/Atrial Fibrillation.

and smoothed florbetapir image data was coregistered to the
corresponding T1 structural image to define cortical regions. In
this study, we used florbetapir (AV45) cortical standard uptake
volume ratio (SUVR) normalized by whole cerebellum as our
summary measure of interest.

CSF
Cerebrospinal fluid collection procedures can be
obtained from the ADNI database and prior publications
(ADNI_Methods_UPENN_Biomarker_20120710.pdf) (Shaw
et al., 2011). The xMAP Luminex platform (flow cytometric
method) and Innogenetics/Fujirebio AlzBio3 immunoassay
kits (monoclonal assay) were used following procedures in
place at the UPenn/ADNI Biomarker Laboratory, according
to the kit manufacturer’s instructions and as described in
previous publications (Shaw et al., 2011). These assays produced
measurements for Aβ1−42, total tau, and p-tau181. In this study,
we used total CSF Aβ1−42 as a variable of interest.
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Vascular History
We calculated a vascular history index (Table 1) by screening
the database of participant medical histories (Provenzano et al.,
2013). Each participant received one point for history of each
of the following conditions: hypertension, dyslipidemia (high
lipids or cholesterol), smoking, type II diabetes mellitus, atrial
fibrillation, myocardial infarction, or stroke. The potential range
is 0 to 7. As a consequence of screens with the Hachinski scale
at study entry, the effective range in this study was 0 to 4. The
vascular history index is redundant with the Hachinski scale
for history of hypertension and stroke. Otherwise, the scales
document different items. Vascular history index was used to
determine the proportion of the sample that had multiple VRF
(34.7%).

Current Vascular Status
Current vascular status was determined clinically using
conventional methods. We report body mass index (BMI),
systolic and diastolic BP, total fasting serum cholesterol, and
fasting blood glucose. Only systolic and diastolic BP, cholesterol,
and glucose were used as independent variables of interest in
statistical analyses.

Statistical Analyses
The aim of this study was to model amyloid burden and VRF
as predictors of WMH volume. Predictors of interest were CSF
Aβ1−42, hypertension history, hyperlipidemia history, diabetes
history, systolic BP, diastolic BP, pulse pressure, fasting serum
cholesterol, fasting blood glucose, and MCH. Nuisance variables
were age, intracranial volume (ICV), sex, years of education, and
APOE e4 carrier status.

Several of these predictors were highly correlated with each
other. We used linear ridge regression to produce valid parameter
estimates in the presence of such correlations. Traditional linear
regression is known to produce unstable parameter estimates
in the presence of highly inter-correlated variables, thus leading
to regression findings that fail to generalize well to new data
sets (Belsley et al., 1980; van der Kooij, 2007). Ridge regression
reduces this instability by pushing regression parameter estimates
closer to zero, thus resulting in more conservative parameter
estimates. In addition, this conservative parameter biasing
obviates the need for multiple comparison correction (van der
Kooij, 2007). All predictors and the WMH outcome variable in
ridge regression models were standardized by subtracting the
mean and dividing by the standard deviation. Thus the ridge
regression model did not require an intercept term. Missing
data was excluded listwise, such that an individual was excluded
from the model if it lacked data for any of the predictors. The
model was resampled 250 times by bootstrapping to ensure stable
parameter estimates.

In a separate ridge regression model, we determined whether
the association between cerebral amyloid and WMH volume
differed according to exposure to elevated BP. To do so, we
categorized subjects into current systolic BP status groups
according to whether their current systolic BPwas below or above
140 mm Hg. We then categorized subjects into two BP exposure

groups: (1) normal current systolic BP and negative history of
hypertension and (2) either high current systolic BP or positive
history of hypertension, or both. Then a ridge regression model
was run with WMH volume as the outcome variable, and age,
ICV, hypertension history, current BP status, CSF amyloid, BP
exposure group, and BP exposure by CSF amyloid interaction.

All statistical models were estimated in SPSS v.21 with
the CATREG algorithm. These analyses were replicated with
PET AV45, in place of CSF Aβ1−42, as the measurement of
cerebral amyloid burden. Results of these models are reported in
Supplementary Materials.

RESULTS

The characteristics of this sample of 150 CN participants are
similar to other ADNI study samples (Table 1). Mean CSF
Aβ1−42 and PET AV45 were close to the associated thresholds for
positive categorization (192 pg/ml and 1.11 SUVR, respectively);
thus a portion of this CN group showed evidence of cerebral
amyloidosis. This group had low to moderate vascular risk
based on vascular history index and only one subject had a
VRF score of 4. The most common VRF was hypertension. On
average, current vascular status indicators were near threshold for
abnormally high (systolic BP, glucose, and cholesterol).

Amyloid Burden and Hypertension are
Associated with WMH Volume
In CN, greater age (β = 0.127, p = 0.001) and ICV (β = 0.114,
p = 0.002), lesser Aβ1−42 (β = -0.135, p < 0.001), and positive
hypertension history (β = 0.074, p = 0.032) were associated
with greater WMH volume (adjusted R2 = 0.154, p = 0.013,
see Table 2). Note that lesser Aβ1−42 indicates greater cerebral
amyloid burden. All other independent variables were not
significant. Substituting PET AV45 for CSF Aβ1−42 resulted in
a highly similar model with the same significant associations
(Supplementary Material). Because hypertension was the only
VRF associated with WMH volume in this model, subsequent
analyses focused on associations between BP and WMH volume.

Amyloid Burden Association with WMH
Differs by Exposure to Elevated BP
In the second model, greater age, greater ICV, lesser CSF Aβ1−42,
high BP exposure, and CSF Aβ1−42 by BP exposure group were
significantly associated with greater WMH volume (Table 3).
The BP exposure group significantly modified the association
between CSF Aβ1−42 and WMH volume (Table 3; Figure 1).
Specifically, among those who showed evidence of exposure to
elevated BP, a low CSF Aβ1−42 (i.e., higher cerebral Aβ1−42) was
associated with a greater WMH volume than in the normal BP
group. Quantitatively, in the elevated BP group, each standard
deviation decrease in CSF Aβ1−42 was associated with an 0.18-
fold standard deviation increase in WMH; meanwhile in the
normal BP group, each standard deviation decrease in CSF
Aβ1−42 was only associated with an 0.01-fold standard deviation
increase in WMH.
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Figure 2 gives an illustrative example of model-predicted
WMH volumes for the population average ICV by age, exposure
to elevated BP, and CSF Aβ1−42 burden. As expected, WMH
volume is predicted to increase with age, and at each age WMH
volume is predicted to be greater in those exposed to elevated BP.
However, in individuals with high CSF Aβ1−42 burden and no
evidence of elevated BP exposure, WMH burden is predicted to
be about as high as in those exposed to elevated BP. Finally, the
highest WMH burdens are predicted for those individuals who
were both exposed to elevated BP and carry high CSF Aβ1−42
burden (Table 4).

DISCUSSION

There are several possible biological models for the relationships
among amyloid accumulation, systemic vascular injury processes,
and WMHs. In this study of cognitively healthy elderly
individuals with low to moderate levels of vascular risk, we
found that greater cerebral amyloid burden and exposure to

TABLE 2 | White matter hyperintensity volume regression model for all
independent variables.

CNa

Beta p CC

Age (years) 0.127 0.001 0.219

ICV (cm3) 0.114 0.002 0.254

CSF A1−42 (pg/ml) – 0.135 0.0002 – 0.299

Hypertension history 0.017 0.134

Negative – 0.066

Positive 0.083

Hyperlipidemia history 0.626 −0.009

Negative −0.003

Positive 0.020

Diabetes history 0.609 0.028

Negative −0.0003

Positive 0.003

Micro-hemorrhage 0.633 0.045

Negative −0.004

Positive 0.025

Sex 0.817 −0.073

Male 0.004

Female −0.004

Education (years) −0.039 0.290 −0.071

APOE e4 carriage 0.174 0.129

Negative 0.027

Positive −0.066

Systolic blood pressure (mm Hg) 0.006 0.828 −0.034

Diastolic blood pressure (mm Hg) 0.017 0.603 0.039

Pulse pressure (mm Hg) 0.007 0.826 0.026

Fasting serum total cholesterol (mg/dL) 0.020 0.561 0.085

Fasting serum glucose (mg/dL) −0.050 0.150 −0.082

aParameter estimate, p-value, partial correlation; model statistics: adjusted
R2 = 0.154, F = 2.113, p = 0.013. Bold values indicates significant after multiple
comparisons correction.

TABLE 3 | White matter hyperintensity volume regression model with
elevated blood pressure and amyloid interaction.

CNa

Beta p CC

Age (years) 0.109 0.003 0.212

ICV (cm3) 0.116 0.003 0.248

Hypertension history 0.074 – 0.039

Negative – 0.048

Positive 0.061

Systolic blood pressure (SBP)b 0.636 – 0.107

Normal – 0.008

High 0.013

CSF A1−42 (pg/ml) – 0.086 0.001 – 0.019

Blood pressure exposure group 0.001 0.178

Normal – 0.115

High 0.070

CSF A1−42 by exposure group –0.097 0.0002 –0.097

aParameter estimate, p-value, partial correlation; model statistics: adjusted
R2 = 0.196, F = 5.244, p < 0.001.
bSBP at or above 140 mm Hg. Bold values indicates significant after multiple
comparisons correction.

FIGURE 1 | Lesser CSF Aβ1−42 was associated with greater white
matter hyperintensities (WMH) volume across all participants,
adjusting for age and intracranial volume (Table 2). This association was
driven by the high blood pressure (BP) group (red, β = –0.356, p < 0.001).
CSF Aβ1−42 was not significantly associated with WMH volume in the Normal
BP group (blue, β = – 0.102, p = 0.429).

elevated BP were independently associated with greater WMH
volume, and that those with both elevated cerebral amyloid
and exposure to elevated BP had greater WMH volume than
could be accounted for by either of these factors in isolation.
These results are consistent with multiple biological models: both
amyloid and systemic vascular processes may be independently
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FIGURE 2 | Using parameter estimates from Table 3, estimated trends
of WMH volume as a function of age, is shown for prototype
individuals with mean ICV and normal BP/negative amyloid (blue,
dashed), normal BP/positive amyloid (blue, solid), high BP/negative
amyloid (red, dashed), and high BP/positive amyloid (red, solid).
Amyloid positive threshold was CSF Aβ1−42 ≤ 192 pg/ml; the amyloid level
used in these calculations is the mean for each category.

exacerbating WMH accrual; or systemic vascular processes may
have accelerated both the deposition of amyloid and accrual of
WMHs, leading to a downstream association betweenWMH and
amyloid. Note that the presence of micro-hemorrhage was not
a significant predictor of WMH, and thus we lack convincing
evidence that CAA is the primary driver of associations between
amyloid and WMH. The key implication of this finding is that
both amyloidosis and prevalent VRFs should be considered
as possible contributors to the loss of white matter health in
cognitively normal individuals. More intense study of how the
biological processes underlying systemic vascular injury and
amyloid accrual independently or jointly contribute to WMH is
needed to determine optimal strategies to arrest them and thus
preserve white matter health late in life. For example, knowledge

TABLE 4 | White matter hyperintensities (WMH) volume by CSF amyloid
and systolic blood pressure/hypertension group.

CSF amyloid

Negative Positivea

WMH volume
(ln)b

WMH volume
(ln)b

Percent amyloid
positive (total)

Normal blood
pressure

0.74 (0.94) 0.95 (1.51) 33.3% (57)

High blood
pressure

0.98 (1.07) 1.79(1.01)c,d 52.7% (93)

aAmyloid positive defined by CSF Aβ1−42 < 192 pg/ml.
bMean (standard deviation).
cAmyloid positive significantly greater than amyloid negative (p < 0.01).
dSignificantly greater than low SBP and negative history of hypertension (p < 0.01).

of these processes could clarify whether aggressive VRF control
has the potential to preserve white matter health in the elderly or
whether such an approach could be foiled by amyloidosis.

Of particular interest is the interaction between elevated
BP and cerebral amyloid burden. Two earlier studies in non-
demented elderly individuals have suggested that greater amyloid
burden is associated with greater WMH burden (Stenset et al.,
2006), or greater WMH accrual (Kaffashian et al., 2014), while
adjusting for specific VRFs. Through path analysis, Stenset
et al. (2006) demonstrated significant associations between
hypertension and grade of WM lesion and then WM lesion and
CSF amyloid. The recent Three-City Dijon study found that
lower plasma amyloid was associated with greater WMH accrual,
but did not find a significant interaction with hypertension or
current BP (Kaffashian et al., 2014). To our knowledge, no
other study to date has suggested that the relationship between
cerebral amyloid andWMHs ismodified by exposure to prevalent
VRFs in cognitively normal elderly. If confirmed, this finding
supports a mechanism in which long-term exposure to elevated
BP and other vascular risks weakens the integrity of the cerebral
vasculature, leaving it less well equipped to facilitate the clearance
of amyloid as its production accelerates later in life (Thomas
et al., 1996). In addition, the finding is consistent with a scenario
in which systemic vascular injury processes and amyloid-related
processes have a synergistic relationship, reinforcing each other
to produce super-additive effects on white matter health (van
Norden et al., 2012). Understanding these interactions will be
important to understand how best to prevent the negative effects
of these processes on white matter health.

Our ADNI-2 results mirror what was observed in ADNI-1 in
a key way, in that VRFs and greater age were associated with
greater WMH volume (Carmichael et al., 2010). That said, one
prior ADNI-1 study did not find an association between WMH
volume and CSF Aβ1−42, nor did it find an association between
WMH volume and a vascular risk summary score in cognitively
normal individuals (Lo et al., 2012). Methodological differences
between the two studies may have driven these discrepancies.
Although ADNI-1 collected measurements of amyloid, WMH,
and vascular risk similar to ADNI-2, comparisons between the
two studies are difficult for several reasons. First, past ADNI-
1 studies modeled WMH as a predictor of various outcomes,
while this study modeled WMH as the outcome (Lo et al., 2012;
Barnes et al., 2013; Guzman et al., 2013; Haight et al., 2013;
Nettiksimmons et al., 2013; Provenzano et al., 2013). Second,
because amyloid measurement (via CSF) was optional in ADNI-
1, the proportion of individuals in ADNI-1 with both WMH and
amyloid measurements is far smaller than in ADNI-2. Third,
WMH measurement techniques differed: ADNI-1 used less-
sensitive PD- and T2-weighted imaging and 1.5T field strength,
while ADNI-2 used more-sensitive FLAIR and 3T field strength
(Wardlaw et al., 2013). In the study by Lo et al. (2012), the
Framingham CVD Risk Score utilized in the prior ADNI-1 study
includes age, gender, BMI, current BP, smoking history, and
diabetes (D’Agostino et al., 2008). In our analysis, only age and
positive history of hypertension, which is not part of CVD risk
score, were associated with WMH volume, while current BP,
smoking, diabetes, BMI, and gender did not. Further, the WMH
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volumes in the sample of ADNI-1 cognitively normal participants
were on average much lower than those in the current ADNI-2
sample. These substantially lower WMH volumes may either be
due to the lower sensitivity of imaging method or characteristic
differences in the prevalence of white matter damage.

Our findings agree with those of prior studies outside of
ADNI. History of hypertension was associated with greater
WMH volume in our study, in agreement with findings from
large epidemiological samples (Dufouil et al., 2005; Allan et al.,
2014; Rosano et al., 2014). In contrast, current BP did not
have an independent effect on WMH burden. Previous studies
have also shown a more reliable association between WMH and
hypertension history compared to that with current BP (de Leeuw
et al., 1999; Verhaaren et al., 2013; Rosano et al., 2014). The
hypothesis arising from this repeated finding is that the critical
vascular determinant of WMH is the cumulative exposure to
elevatedBP over a prolonged period as reflected in clinical history
of hypertension. Further, we showed that those with current or
past hypertension had a stronger association between cerebral
amyloid burden and total WMH volume.

The key strength of this study is that vascular factors,
cerebral amyloid, and WMHs were measured in a large group
of cognitively normal elderly individuals, using standardized
methods. The key limitation of the study was that the depth
of vascular ascertainment was shallow. ADNI does not actively
recruit participants with high vascular risk burden, so we did
not have the statistical power to detect effects of vascular risk
as other studies with larger sampling of these conditions have
demonstrated (Hughes et al., 2012; de Bruijn et al., 2014; Willey
et al., 2014; Geijselaers et al., 2015). Advanced assays and more
in-depth documentation of vascular history would provide a
more precise characterization of current vascular status and
may have provided a clearer picture of which specific processes
may be involved in the development of WMHs. For example,
comprehensive assessment of the lipid profile may elucidate a
relationship between types of cholesterol andWMH that has been
observed (Schmidt et al., 1996; de Bruijn et al., 2014; Willey et al.,
2014). Since our study only included individuals whose burden
of systemic vascular injury was low to moderate compared
to typical epidemiological studies of aging, how relationships
between cerebral amyloid and WMH extend to populations with
a relatively high vascular injury burden needs to be studied.

CONCLUSION

In conclusion, both amyloid burden and history of hypertension
are independently associated with WMH burden in a cognitively
normal subgroup of ADNI-2, a studywith a relativelymild overall
burden of vascular risk. Further, these two factors interacted,
such that greater amyloid burden was associated with even more
severe WMH accrual in the context of elevated BP exposure.
Though the present analysis cannot determine the directionality
of the relationship between WMH, cerebral amyloid, and VRFs,
the significant associations emphasize the importance of better
understanding how amyloid pathology and cardiovascular health
affect brain health and function as we age.
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