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Although research on the effects of mindfulness meditation (MM) is increasing, still very
little has been done to address its influence on the white matter (WM) of the brain. We
hypothesized that the practice of MM might affect the WM microstructure adjacent to
five brain regions of interest associated with mindfulness. Diffusion tensor imaging was
employed on samples of meditators and non-meditators (n = 64) in order to investigate
the effects of MM on group difference and aging. Tract-Based Spatial Statistics was used
to estimate the fractional anisotrophy of the WM connected to the thalamus, insula,
amygdala, hippocampus, and anterior cingulate cortex. The subsequent generalized
linear model analysis revealed group differences and a group-by-age interaction in all
five selected regions. These data provide preliminary indications that the practice of MM
might result in WM connectivity change and might provide evidence on its ability to help
diminish age-related WM degeneration in key regions which participate in processes of
mindfulness.
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INTRODUCTION

Although mindfulness meditation (MM) was born as one of the main aspects of the Buddhist
tradition, in recent years it has been generally taught in Western countries independently of any
religion. A modern definition of mindfulness recently formulated by Kabat-zinn (2003), states
that the practice of mindfulness involves the purposeful focusing of one’s attention in the present
moment with a nonjudgmental attitude. In the last few years there has been an increasing interest
in meditation and mindfulness in various fields. Latest clinical studies, for example, have largely
focused on MM for the treatment of patients with depression, anxiety, stress, or pain, (Chiesa and
Serretti, 2009, 2010, 2011; Hofmann et al., 2010; Keng et al., 2011; Cramer et al., 2012; Eberth and
Sedlmeier, 2012; Mitchell et al., 2013; Goyal et al., 2014). Moreover, it has been shown that MM may
contribute to improve cognitive performances such as attention, memory, and concentration (Jha
et al., 2007; Tang et al., 2007; Lutz et al., 2009; MacLean et al., 2010; Chiesa et al., 2011; Greenberg
et al., 2012; Mrazek et al., 2013). Furthermore, there is a growing body of evidence demonstrating
how mindfulness and meditation affect physiological and biological body and brain properties
such as telomere elongation, hemodynamics, and cerebral blood flow (Solberg et al., 2004; Khalsa
et al., 2009; Newberg et al., 2010; Hoge et al., 2013; Jacobs et al., 2013). When considering the
results of these studies, it comes almost naturally to ask whether MM also has an impact on the
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structure of the brain. The utilization of magnetic resonance
imaging (MRI) techniques has provided some evidence in this
regard. In a recent meta-analysis Fox et al. (2014) carried out
a systematic review and meta-analysis of 21 morphometric
neuroimaging studies in meditation practitioners. They found
eight brain regions consistently altered in meditators. Seventeen
of the 21 articles reviewed, investigated the effects of MM on
gray matter (GM) macrostructure. Most of them utilized voxel
based morphometry (VBM) and demonstrated that meditators,
compared with non-meditators, show increased regional GM
volumes and thicker cortical areas. For instance, Lazar et al.
(2005) observed that meditators had a thicker prefrontal
cortex as well as a thicker anterior insula. Moreover, Luders
et al. (2009) found larger GM density in the orbitofrontal
cortex and in the right hippocampus. Holzel et al. (2008)
detected higher GM matter concentration for meditators in
the right anterior insula, left inferior temporal gyrus and right
hippocampus. In addition, Hoélzel et al. (2011) also found
increased GM concentration within the left hippocampus,
the posterior cingulate cortex, the temporo-parietal junction
and the cerebellum after 8 weeks of mindfulness meditation
practice.

However, these studies only focused on GM differences,
lacking insight into the impact of MM on white matter (WM)
microstructure. Only a very small number of diffusion tensor
imaging (DTI) studies exist which have demonstrated how the
practice of meditation may be responsible for an increase of
WM connectivity and integrity parameters, such as fractional
anisotropy (FA) and mean diffusivity (MD), in several white
matter tracts (Tang et al., 2010, 2012a; Luders et al, 2011,
2012b; Fayed et al., 2013; Kang et al,, 2013). Although reporting
promising results, these studies suffer from several shortcomings.
They have either only carried out a whole brain analysis (Tang
etal., 2010, 2012a; Kang et al., 2013), only investigated structural
changes of main tracts of the WM (Luders et al., 2011, 2012b)
or their focus was not primarily on DTI (Fayed et al., 2013;
for an overview see Fox et al.,, 2014). However, none of these
studies have examined whether the WM directly connected
to specific brain areas which are related to mindfulness show
differences in fiber structure. In the present study, the regions
of interest (ROI) were selected according to previous results
from structural and functional studies in which FA values,
brain regions volume or activation was found to be altered
for meditation practitioners (Lazar et al., 2005; Holzel et al,
2008, 2010, 2011; Luders et al., 2009, 2012a, 2013a,b; Chiesa and
Serretti, 2010; Grant et al., 2010; Newberg et al., 2010; Murakami
etal., 2012; Tang et al., 2012b; Fayed et al., 2013; Lutz et al., 2013a;
Mascaro et al., 2013; Taren et al., 2013). Specifically, the anterior
cingulate cortex (ACC), the insula, the amygdala, the thalamus,
and the hippocampus were chosen based on previous results
which suggest their significant influence in emotion regulation,
attention, self awareness, pain regulation, and perspective taking.
In Fox et al. (2014) for example, all the above mentioned ROIs or
the WM connecting them are included in the results of several
of the selected morphometric studies. They often also appear
to be part of functional meditation studies outcomes displaying
different activation patterns in meditators (Farb et al., 2007, 2012;

TABLE 1 | Socio-demographic characteristics of both meditators (MED)
and non-meditators (CON).

MED (n = 33) CON (n = 31) Statistic P
M (SD) M (SD)
Age 51.42 (7.64) 50.09 (5.63) t=0.79 0.44
Gender (m/f) 22/11 19/12 x2 =0.20 0.65
Estimated 1Q&-P 33.43 (1.86) 33.53 (2.02) t=0.12 0.84
Handedness (r/]) 30/3 30/1 x2 =0.16 0.69
Meditation Exp. (yrs) 17.27 (9.79) - - -

M, mean; SD, standard deviation. @Assessed with a multiple vocabulary test (Lehrl et al.,
1995). b Available for n = 62.

TABLE 2 | Age interaction 1: MED > CON.

Anatomical region Coordinates Cluster
X y z No. voxels P-Value
THALAMUS
Left -9 -2 9 51 0.017
-16 -8 16 1Al 0.024
Right 15 -9 16 73 0.002
17 -13 10 31 0.001
5 —17 -8 12 0.027
INSULA
Left -29 3 14 202 0.003
-26 11 -12 102 0.007
Right - - - - -
AMYGDALA
Left -12 -10 -12 13 0.027
Right 12 -10 -12 13 0.033
HIPPOCAMPUS
Left —21 —41 -5 32 0.028
Right 9 -37 9 66 0.014
22 —42 -1 22 0.036
ACC
Left - - - - -
Right 10 37 -17 13 0.016

Group-by-age interaction in which meditators exhibit a weaker slope in the relationship
between FA and age compared to controls (MED > CON) in left and right thalamus,
left insula, left and right amygdala, left and right hippocampus and right ACC (p < 0.05,
uncorrected).

Goldin and Gross, 2010; Taylor et al,, 2011; Zeidan et al., 2011,
2014; Desbordes et al., 2012; Gard et al., 2012; Pickut et al., 2013;
Lutz et al., 2014).

In addition, not much has been done in order to ascertain
the impact of mindfulness on the decline of structural WM
parameters due to aging. To our knowledge, only three studies
and one recent meta-analysis (which has reviewed their findings)
have addressed this topic (Lazar et al., 2005; Pagnoni and
Cekic, 2007; Luders et al., 2011; Luders, 2014). Considering that
brain volume, density and integrity generally decrease and brain
atrophy generally increases with age (Michielse et al., 2010; Lebel
et al.,, 2012; Sala et al., 2012; Voineskos et al., 2012), it seems
appropriate to further investigate whether MM contributes to a

Frontiers in Aging Neuroscience | www.frontiersin.org

January 2016 | Volume 7 | Article 254


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Laneri et al.

Long-Term Mindfulness Meditation and Aging

slowing down or whether it even protects the brain, or some of
its regions, from the aging process.

The purpose of this cross-sectional study was to compare MM
practitioners with controls in order to investigate differences in
WM integrity and age-related decline.

First we employed a DTT approach on specific ROIs to analyze
the WM microstructure directly connected to MM related areas.
Secondly, we investigated whether meditators differed from non-
meditators with respect to the effect of aging on the WM
connected to the selected ROIs. Based on the aforementioned
studies we expected MM to influence the age-related decline of
brain WM parameters and plasticity by slowing down the natural
decrease of FA measures in the WM adjacent to the thalamus,
insula, amygdala, hippocampus, and ACC. We also expected to
observe structural differences between groups in the WM around
the selected ROIs.

METHODS

Participants

Thirty-three healthy subjects who regularly practice meditation
(“meditators”), recruited from Buddhist and Zen centers all
over Germany, were included in the final analysis of this study.

Meditators reported to live an ordinary life involving family,
career and other common activities. Meditation experience
among meditators ranged between 5 and 38 years. All meditators
reported a regular practice of MM styles such as Vipassana,
Shamatha, and Zazen. For the control group, thirty-one healthy
subjects with no meditation experience (“non-meditators”) were
included. Both groups did not differ in terms of sex, age,
handedness, and IQ (see Table1). Exclusion criteria were
identified as follows: diagnosed neurological or psychiatric
disorders (present and past); current alcohol or drug abuse, use
of psychiatric medications (present and past); anatomical brain
abnormalities (e.g., lesions, strokes etc.). This study was carried
out in accordance with the recommendations of the Declaration
of Helsinki, and the experimental protocol was approved by
the ethical committee of the University of Marburg (Faculty of
Medicine). All subjects gave written informed consent.

Data Acquisition

DTI measurements were performed on a 3-T MRI (Tim Trio;
Siemens, Erlangen, Germany) for all participants. All diffusion-
weighted images were acquired using a singleshot echo-planar
imaging sequence (repetition time, 7300 ms; echo time, 90 ms;
field of view, 256 mm; matrix, 128 x 128; slice thickness, 2.5 mm;
numbers of excitations, 1; b = 1000s/mm?; 30 noncollinear

FIGURE 1 | Group-by-age interaction: Thalamus. A significant group interaction effect between fractional anisotropy and age was detected in the white matter
adjacent to the left (MNI coordinates: x = =9,y = =2, Z = 9; Pyncorrected = 0.017) and right (MNI coordinates: x = 15, y = =9, z = 16; Pyncorrected = 0.002)
thalamie. Coordinates (x,y, and z) are given according to the MNI coordinate system. The red and yellow areas represent the group-by-age results for the left
thalamus. The green areas represent the WM skeleton of all participants. Broken regression line represents controls.
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diffusion-encoding gradients; voxel size, 2 x 2 x 2.5 mm?).
Two consequent sets of 30 gradients diffusion-weighted images
were acquired for each participant. Acquisition time for each
participant was 17 min including anatomical imaging (4 min) and
diffusion weighted imaging (2 x 5min).

Data for all participants were visually inspected for artifacts in
order to identify and discard images containing subject motion.
For one meditator and for one control one set of DTI data had
to be discarded and for three meditators one diffusion weighted
image (DWI) had to be discarded due to motion artifacts. For
these participants the estimation of the diffusion tensor was based
on 30 or 59, respectively, instead of 60 DWTs.

Two meditators, out of 35 initially recruited, and 1 non-
meditator, out of 32 initially recruited, had to be excluded from
analysis due to brain abnormalities (lesions and dissection).

The selection of candidate ROIs was based on previous
findings regarding brain regions relevant to the scientific bases of
mindfulness: for the thalamus (Luders et al., 2009; Newberg et al.,
2010; Fayed et al., 2013; Pickut et al., 2013); for the insula, (Lazar
et al., 2005; Holzel et al., 2008, 2011; Luders et al., 2012a; Lutz
etal., 2013a; Mascaro et al., 2013); for the amygdala (Holzel et al.,
2010; Desbordes et al., 2012; Murakami et al., 2012; Taren et al.,
2013); for the hippocampus (Holzel et al., 2008, 2011; Luders
etal.,, 2009, 2013a,b); and for the ACC (Chiesa and Serretti, 2010;
Grant et al., 2010; Tang et al., 2012b).

The five ROIs (all including left and right hemispheres)
were extracted from the Harvard-Oxford cortical and subcortical
structural atlases, which are distributed with the FSL software
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and are composed
of well-defined brain anatomical regions. The DTI analysis was
then performed on white matter areas adjacent to these regions.
The investigation was not performed on separate regions, but
instead the 5 ROIs were combined together to form a single mask
composed of 8323 voxels used for the statistical analysis.

Data Processing

Analysis of DTT data was performed using the FMRIB Software
Library (FSL) v5.02 (Smith et al., 2004) and its FMRIB’s Diffusion
Toolbox v3.0. Pre-processing of diffusion weighted data was
performed as follows: (i) motion and eddy current corrections,
(ii) removal of non-brain tissue from an image of the whole head,
and (iii) fitting of diffusion tensor model at each voxel. Voxel-
wise statistical analysis was performed using tract-based spatial
statistics (TBSS; Smith et al., 2006) according to the following
steps: (i) apply nonlinear registration of all FA images to 1
x1 x 1 mm> MNI152 standard space, (ii) creation of the mean
FA image of all participants and skeletonize it, (iii) projection
of all subjects’ FA data onto the mean FA skeleton, setting a
nonmaximum-suppression FA threshold to 0.3. The statistical
analysis of the two groups was done with Randomize, also part

FIGURE 2 | Group-by-age interaction: Insula. A significant group interaction effect between fractional anisotropy and age was detected in the white matter
adjacent to the left insula (MNI coordinates: x = —29, y = 3, z = 14; P_ncorrected = 0-003). The red and yellow areas represent the group-by-age results for the left
insula. The green areas represent the WM skeleton of all participants. Broken regression line represents controls.
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of FSL, which enables modeling and inference using standard
general linear model (GLM) design (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Randomise).

The GLM model, used for the statistical analysis, included six
contrasts (details in Supplementary Material).

For group difference, we controlled the analysis for
handedness and sex, and included them in the model as
variables of no interest.

A GLM analysis was carried out to study group-by-age
interactions, i.e., to explore whether the slopes between FA values
in the selected ROIs and age were stronger for the meditators
than for controls and vice versa.

The analysis was performed using 10,000 random
permutations and threshold-free cluster enhancement (TFCE;
Smith and Nichols, 2009).

RESULTS

Results for the analysis of the two main effects (group difference
and age) were corrected for multiple comparisons [familywise
error rate (FWE)-corrected].

No regions/voxels from the analysis of group-by-age
interaction survived FWE-corrections. Given that a regular
decline in WM with age is considered to be a normal process

in healthy subjects (meditators and controls both consisted of
healthy individuals), interaction effects are expected to be much
subtler than groups main effects differences. Group-by-age
interaction analysis was therefore repeated excluding the rather
conservative FWE correction for multiple comparisons.

For the purpose of this study we only considered clusters with
a minimum size of eight voxels.

Results for group difference are reported only if their clusters
do not overlap with those of group-by-age interaction (e.g.,
with same coordinates). Overlapping voxels would clearly be a
function of age.

Group-By-Age Interaction

In all ROIs, apart from right insula and left ACC, the relationship
between FA, and age in non-meditators demonstrates a natural
FA decline in aging adults which could not be detected in
meditators (see Table 2). Two of the five ROIs that provided the
strongest results are shown in Figures 1, 2.

For the group-by-age interaction, an opposite trend was
observed in the right thalamus, the right amygdala and the
right hippocampus. In the WM of these regions the expected
age-related decline in FA during adulthood in the relationship
between FA and age was detected in the meditators but not in
the controls’ group (Tables in Supplementary Material). These

Yellow: hippocampus mask from Harvard-Oxford Atlas.

FIGURE 3 | Group-by-age interaction: Hippocampus. Group-by-age interaction results for the hippocampus show a clear differentiation between the ventral part
(red), in which meditators display a weaker negative slope, and the dorsal part (green) in which controls display a weaker negative slope (o < 0.05, uncorrected).
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three ROIs therefore possess clusters in which group-by-age
interaction shows both weaker and stronger slopes for the two
groups. For a visual illustration of ROIs featuring both trends,
see Figure 3 in which the right hippocampus was chosen as an
example.

Main Effect Group Difference
In the right and left insula, the right thalamus and right amygdala,
corrected results showed significant higher FA in meditators
compared with their control group (p < 0.05, FWE corrected).
A clear trend in the same direction was displayed by the left
thalamus and right hippocampus (p < 0.1, FWE corrected).
Uncorrected results for the left amygdala, left hippocampus
and right ACC also showed a tendency toward a higher FA in
meditators (p < 0.05, uncorrected; see Table 3). No significant
clusters were found in which FA values of non-meditators were
higher than FA values of meditators.

Thalamus and insula, which showed the most robust results
illustrate the outcome of the group difference analysis in
Figures 4, 5.

Main Effect Age

The results for the main effect age revealed significant clusters
only in the right thalamus, in the left insula (p < 0.05, FWE

TABLE 3 | FA group difference MED > CON.

Anatomical region Coordinates Cluster
X y z No. voxels P-Value

THALAMUS

Left -6 —4 6 23 0.075¢

Right 6 —-12 -2 92 0.009¢
16 -13 14 51 0.005¢

9 —6 —1 22 0.04°

INSULA

Left —-25 19 -5 158 0.005¢

Right 30 14 —4 206 0.006°

AMYGDALA

Left —26 -1 —-10 113 0.0014¢

Right 33 2 -1 8 0.028°

HIPPOCAMPUS

Left —26 -1 —-10 172 0.0014¢

-18 -32 3 33 0.0044¢

Right 32 17 -9 11 0.096°t

ACC

Left - - - - -

Right 21 36 17 29 0.0054¢
20 43 4 23 0.0084Y¢
19 45 -3 9 0.0184¢

Group difference in FA between meditators and controls in selected ROIs. All regions
except for the ACC showed statistically significant results (p < 0.05, FWE corrected) or
a clear trend (p < 0.1, FWE corrected). Uncorrected trends in the left amygdala, right
hippocampus and in the right ACC are also reported (p < 0.05, uncorrected). ¢, corrected
(p < 0.05); ct, corrected trend (p < 0.1); uc, uncorrected.

corrected) and a notable trend in the right insula (p = 0.052,
power = 0.742, FWE corrected; power calculated using G-Power
Faul et al., 2009). Uncorrected results on the other hand show
a negative age effect in all five ROIs (Tables in Supplementary
Material).

FA Whole Brain Analysis

A subsequent whole brain analysis revealed a clear and
substantial decline of FA measures with age for the main effect age
(p < 0.05, FWE corrected; see Figure 6). No other statistically
significant results were found for group-by-age interaction and
group difference.

DISCUSSION

In order to investigate FA group differences and the group-by-age
interaction between experienced meditators and non-meditators,
we employed diffusion tensor imaging on WM adjacent to five
key brain regions.

We expected to find higher FA values in the WM connected
to the thalamus, insula, amygdala, hippocampus, and ACC and a
lower age-related FA decline for the meditators’ group.

For the group contrast we found FWE-corrected, significantly
higher FA values for four of the five a priori selected ROIs
(thalamus, insula, amygdala, hippocampus) in the meditators
compared with controls. The ACC also showed the same trend
but the results are reported without correction for multiple
comparisons. For the group-by-age interaction meditators did
not display the typical natural FA decline which was found in
non-meditators across all ROIs. This may suggest a tendency for
the practitioners of MM to maintain a higher level of FA values
in these areas. However, an opposite trend was found in the right
thalamus, right amygdala, and right hippocampus.

Although a direct relationship between FA and WM structure
is difficult to prove, FA alterations are believed to reflect a
change in the diffusion of water molecules along fiber bundles.
Generally, water molecules display a better diffusivity coefficient
in the presence of a greater axon density, enhanced axonal
membrane integrity, larger axonal diameter, greater myelination
and a more coherent orientation (Thomason and Thompson,
2011). A higher FA value in a specific WM tract is, therefore,
commonly interpreted as an indication of increased connectivity.

In contrast, reduced FA has been found in the regular aging
process (Bennett et al., 2010; Burzynska et al., 2010; Michielse
etal., 2010; Westlye et al., 2010; Lebel et al., 2012; Sala et al., 2012)
and in several neurological or psychiatric disorders (Mueller
etal., 2012a,b).

Our results suggest that the regular and prolonged practice
of MM may have an impact on the structure of WM fibers
adjacent to the thalamus due to the increased activation of this
region during meditation. Among other functions the thalamus
is considered to play a part in relaying sensory information
to the cerebral cortex. This appears to be consistent with the
fact that the practice of MM places a particular focus on
moment to moment sensory perception although whether the
MM practitioner actually increases sensory sensitivity during
meditation needs to be objectively measured. Our findings

Frontiers in Aging Neuroscience | www.frontiersin.org

January 2016 | Volume 7 | Article 254


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Laneri et al.

Long-Term Mindfulness Meditation and Aging

therefore support previous studies such as (Luders et al., 2009)
that reported an increased GM in this region and (Newberg et al.,
2001, 2010) in which a significant increase in regional cerebral
blood flow was observed in the thalamus.

The insula has been found to be highly involved in body
awareness, which, in turn, is considered to be a relevant aspect
of MM. Holzel et al. (2008), for instance, have found a greater
GM concentration in the right anterior insula, which the authors
consider to have an influence on interoceptive awareness. The
involvement of this region in meditation is also supported by
Lazar et al. (2005) in which the right anterior insula was found
to be thicker in meditation participants. A recent study has
provided some evidence in which the insular cortex also appears
to play a role in emotional awareness (Gu et al., 2013). The
authors propose a model in which the insular cortex is essential
for integrating bottom-up interoceptive signals with top-down
predictions in order to generate an awareness state and provides
a point of reference for autonomic reflexes. The DTI results of
our group difference analysis seem to extend previous functional
MRI and VBM findings to the microstructure of the WM around
the insula, suggesting that this region may also be affected by the
practice of MM.

It has been shown that the amygdala and the ACC are
involved in emotion regulation. Holzel et al. (2007) suggested

that mindfulness meditators facilitate the regulation of their
emotions by increasing the activation of the rostral ACC and the
dorso-medial prefrontal cortex. In addition, Holzel et al. (2010)
observed a decrease in right basolateral amygdala GM density in
stressed individuals in a longitudinal study. Various other studies
have reported that the deactivation of the amygdala is associated
with emotion regulation (Beauregard et al., 2001; Schaefer et al.,
2002). Our results demonstrate significantly higher FA values in
the amygdala, and a statistical trend for the ACC. If we assume
that the downregulating effect of the ACC on the activation of
the amygdala is increased by the practice of MM (Holzel et al.,
2013), the results may suggest an impact on the WM fibers
connecting the two regions for which axonal membrane integrity,
axonal diameter, level of myelination, and orientation might be
positively affected.

The ACC and amygdala, in combination with the insula are
also considered to play a role in the regulation of pain (Grant
et al., 2011; Duerden and Albanese, 2013). Studies like (Morone
et al., 2008; Grant and Rainville, 2009) have likewise produced
some evidence that the practice of meditation could influence the
perception and the acceptance of pain. Moreover, Grant et al.
(2010), Gard et al. (2012), and Zeidan et al. (2012) suggested
that meditators are able to apply unique brain mechanisms which
help pain regulation. Grant et al. (2011) observed that ACC,

thalamus. The green areas represent the WM skeleton of all participants.

FIGURE 4 | Group difference: Thalamus. A significant FA group difference in which the meditators displayed higher FA values was detected in the white matter
adjacent to the left (MNI coordinates: x = —6, y = —4, z = 6; PFWE-corrected = 0.075) and right (MNI coordinates: x = 6, y = —12, z = —2; PFWE-corrected
= 0.004) thalami. Coordinates (x, y, and z) are given according to the MNI coordinate system. The red and yellow areas represent the group difference results for the
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thalamus, and insula, showed a stronger activation in meditators
than in controls and activity during pain was reduced in the
prefrontal cortex, amygdala, and hippocampus areas. The results
of our study therefore appear to support the hypothesis that the
training of the mind with MM has an effect on pain regulating
mechanisms. This in turn may result in an alteration of the WM
and the connectivity in the involved regions.

In the group-by-age interaction, the areas of the right
hippocampus, right amygdala, and right thalamus exhibited
distinct clusters in which meditators and controls displayed both
weaker and stronger slopes, suggesting that different parts of
these regions are influenced in different ways. One plausible
explanation for these results could be the functionally distinct
structures of these ROIs. Previous findings support this view
with regard to the hippocampus and have demonstrated that its
ventral and dorsal parts have different functions (Fanselow and
Dong, 2010). Fanselow and Dong (2010) suggest that the dorsal
hippocampus performs primarily cognitive functions, while the
ventral part relates to stress, emotion, and affect. Our results seem
to support this theory showing that meditators display a stronger
slope in the dorsal hippocampus (cognitive functions) and non-
meditators display a stronger slope in the ventral part (stress,
emotion, affect functions; see Figure 3).

Similarly, the literature describes the amygdala as a brain
region composed of several nuclei which relate to different

functions (Sah et al., 2003; Pabba, 2013). In our results, the
cluster in the right amygdala of the control group, which displays
a weaker negative slope for FA measures in the group-by-age
interaction, could point to the differentiation in functionality of
the various nuclei which meditation may only be able to influence
selectively.

The thalamus also incorporates several nuclei with distinct
functions which range over motor control, sensory relaying
to the cerebral cortex, sleep and awake state control and
consciousness (Morel et al.,, 1997; Van der Werf et al., 2002;
Jang et al., 2014). As with the amygdala and hippocampus, the
practice of MM may affect different nuclei of the thalamus in
distinct ways.

LIMITATIONS

Although all meditators reported to practice MM, meditation
styles, and meditation routines varied greatly. Many experienced
meditators combine meditation techniques in their regular
practices and throughout their lifetime. It was therefore not
possible in this study to test for structural heterogeneities of a
specific meditation technique.

Meditation experience is an additional important factor which
is undoubtedly very difficult to control. Although participants
stated their experience in terms of years of practice, this indicator

FIGURE 5 | Goup difference: Insula. A significant FA group difference in which the meditators displayed higher FA values was detected in the white matter adjacent
to the left (MNI coordinates: x = —25, y = 19, z = —5; PFWE-corrected = 0.005) and right (MNI coordinates: x = 30, y = 14, z = —4; PFWE-corrected = 0.006) insula.
The red and yellow areas represent the group difference results for the insula. The green areas represent the WM skeleton of all participants.
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represent the WM skeleton of all participants.

FIGURE 6 | Whole brain main effect age. For results of the whole brain analysis a significant and extensive main effect age was observed in a large part of the
white matter (WM) (MNI coordinates: x =9,y = =7, z = 12; PrwE_corrected = 0-05). The red area represents the results for main effect age. The green areas

is not very accurate in determining the real extent of each
participant’s meditation training. Daily length and intensity of
practice tend to be subjective measures and vary over time.
These factors may have, therefore, affected the outcome of
the investigation. Moreover, as the design of this study was
cross-sectional in nature, it was not possible to determine the
causal relationship between the practice of MM and brain WM
microstructure. The possibility that the brain of meditators was
different before meditation cannot be excluded. Longitudinal
studies will therefore be necessary to determine causation.

In order to confirm the results of this study and demonstrate
their behavioral and clinical relevance, additional WM
investigations are required. A tractography analysis could
provide supplementary information about connectivity between
these ROL. Future research should also include neurocognitive
measures in order to determine whether preservation of WM
microstructure in meditators correlates with the preservation of
mental abilities, altered behaviors, and subjective well-being.

CONCLUSIONS

This study concludes, as was hypothesized, that apart from
the right amygdala, right hippocampus, and right thalamus
which showed an opposite trend in the group-by-age interaction
(probably due to their nuclei subdivision), meditators showed a
weaker negative slope for FA values compared to non-meditators.

This could be an indication that the regular practice of MM
may contribute to the preservation of fiber integrity in the WM
around the selected ROIs. This stands in contrast to a natural
steady age-related decline which occurred in the control group.
The group difference results present a consistent picture in one-
direction (MED>CON) and thus express a clear indication of
a probable MM effect on the microstructure of the WM. These
results are in line with our expectations and mostly support
previous findings. The current data suggest that the greater FA
values displayed by meditators in the group comparison could
be associated with the practice of MM and might be a sign
of WM fiber integrity. Further research is needed to elucidate
possible neuroplastic changes and training effects that could be
responsible for these findings.
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