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Objective: The goal of this study was to compare the microRNA (miRNA) profile

of Parkinson’s disease (PD) frontal cortex with normal control brain, allowing for the

identification of PD specific signatures as well as study the disease-related phenotypes

of onset age and dementia.

Methods: Small RNA sequence analysis was performed from prefrontal cortex for 29 PD

samples and 33 control samples. After sample QC, normalization and batch correction,

linear regression was employed to identify miRNAs altered in PD, and a PD classifier was

developed using weighted voting class prediction. The relationship of miRNA levels to

onset age and PD with dementia (PDD) was also characterized in case-only analyses.

Results: One twenty five miRNAs were differentially expressed in PD at a genome-wide

level of significance (FDR q < 0.05). A set of 29 miRNAs classified PD from non-diseased

brain (93.9% specificity, 96.6% sensitivity). The majority of differentially expressed

miRNAs (105/125) showed an ordinal relationship from control, to PD without dementia

(PDN), to PDD. Among PD brains, 36 miRNAs classified PDD from PDN (sensitivity =

81.2%, specificity = 88.9%). Among differentially expressed miRNAs, miR-10b-5p had

a positive association with onset age (q = 4.7e-2).

Conclusions: Based on cortical miRNA levels, PD brains were accurately classified

from non-diseased brains. Additionally, the PDD miRNA profile exhibited a more severe

pattern of alteration among those differentially expressed in PD. To evaluate the clinical

utility of miRNAs as potential clinical biomarkers, further characterization and testing of

brain-related miRNA alterations in peripheral biofluids is warranted.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive movement disorder, characterized clinically by resting
tremor, rigidity, bradykinesia and postural instability (Parkinson, 2002). Motor symptoms are
accompanied by the loss of dopamine-producing neurons in the substantia nigra pars compacta,
and associated with widespread deposition of cytoplasmic protein inclusions, largely composed of
insoluble α-synuclein throughout the brain (Spillantini et al., 1998).
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While neuropathological hallmarks contribute to the
degeneration of the nigrostriatal dopaminergic system, the
etiology, clinical heterogeneity and fundamental pathological
mechanisms by which preferential neuronal loss occurs in PD
are largely unknown. Monogenic forms of PD represent only
a minority of cases (Hamza and Payami, 2010; Barrett et al.,
2015). The clinical manifestations of Parkinson’s disease (PD)
are highly heterogeneous. Approximately one-third of patients
experience dementia, which has significant ramifications for
quality of life and burden of care (Breteler et al., 1995; Edwards
et al., 2010). Additionally, there is wide variation in the age of
motor onset (ranging from age 20 to 90; Schrag et al., 1998), with
young-onset (before age 50) and representing 5–10% of PD cases
(Golbe, 1991).

The microRNA (miRNA) profile of PD brains may offer
insight into the molecular and pathological mechanisms that
occur in the disease. miRNAs are short, noncoding RNAs
that inhibit translation through sequence-specific binding of
the 3′-untranslated region of target messenger RNAs. miRNAs
post-transcriptionally regulate a set or multiple sets of genes
simultaneously, and in the brain, their regulatory effects have
profound effects on neuronal development, differentiation and
maturation (O’Carroll and Schaefer, 2013). Deregulation of
miRNAs has been implicated in neurodegenerative diseases
(Chan and Kocerha, 2012), and several studies suggest miRNAs
may impact PD pathogenesis (Kim et al., 2007; Gehrke et al.,
2010).

Although the substantia nigra (SN) is the most affected brain
region in PD, as many as 80% of dopaminergic neurons are
lost by the time of death (Cheng et al., 2010). Consequently,
expression analysis comparing PD to normal SN from post-
mortem brains may only highlight miRNAs associated with
changes in cellular composition rather than miRNAs related to
the disease process itself. For this study, we performed miRNA
sequence analysis of 29 PD and 33 neuropathologically-normal
control from post-mortem prefrontal cortex, a region which
contains both dopaminergic neuron projections and pathological
hallmarks (Beach et al., 2009; Ferrer et al., 2011), but does not
exhibit the extent of cell death observed in SN.

Sequence analysis allows for high-resolution, genome-wide
quantification of miRNA molecule abundance. We compared
miRNA levels between PD and controls to identify miRNA
alterations and based on their miRNA profile, classified PD
from non-diseased brains. Among the PD brains, we identified
miRNAs associated with the presence or absence of dementia and
age of motor onset, as well as identified a set of miRNAs altered
in both PD and Huntington’s disease, which may be relevant to
the pathological processes that occur broadly across age related
neurodegenerative diseases.

METHODS

Sample Information and Small RNA
Sequencing
Frozen brain tissue from prefrontal cortex Brodmann Area 9
(BA9) for 29 PD samples and 33 control samples was obtained

from the National Brain and Tissue Resource for Parkinson’s
Disease and Related Disorders at Banner Sun Health Research
Institute, Sun City, Arizona (Beach et al., 2008), Harvard
Brain and Tissue Resource Center McLean Hospital Belmont
MA, and Human Brain and Spinal Fluid Resource Center VA
West Los Angeles Healthcare Center, Los Angeles, CA. PD
samples had insufficient Alzheimer’s disease histopathology to
quality for National Institute of Aging/Reagan “intermediate”
or “high” probability (Hyman and Trojanowski, 1997). Sample
information can be found in Table S1 and summarized in
Table 1. The medical charts of all 29 PD samples were reviewed
to obtain information regarding clinical diagnoses of dementia
(PDD, n = 11), no evidence of dementia (PDN, n = 18).
Twenty one subjects had information on the age of onset ofmotor
symptoms. Family history information regarding PD was not
available for these samples, but all samples were negative for the
common known PD mutations in GBA and LRRK2. All samples
were male. Agilent’s BioAnalyzer 2100 system (or TapeStation
2200 equivalent) was used to determine RNA Integrity Number
for RNA quality assessment. Differences in covariates were
tested assuming unequal variance. No difference in postmortem
interval (p-value = 0.10) or RNA integrity number (p-value =

0.08) was observed between PD and controls. PD and controls
differed in ages at death (PD mean age = 77.6, control mean
age = 68.1; p-value = 3.2e-3). Potential confounding by age
at death was assessed in subsequent analyses. PDN and PDD
samples did not differ in postmortem interval (p-value = 0.62),
RNA integrity number (p-value = 0.27), age at onset (p-value =
0.24), duration (p-value= 0.44), or age at death (p-value= 0.28).

Total RNA was isolated using QIAzol Lysis Reagent and
purified using miRNeasy MinElute Cleanup columns. Samples
were prepared using Illumina’s TruSeq Small RNA Sample Prep
Kit, according to the manufacturer’s protocol, and sequenced on
Illumina’s HiSeq 2000 system with 1x51nt single-end reads at
Tufts University and the Michigan State sequencing core facility.

Statistical Analysis
Reads were processed and counted as described previously
(Hoss et al., 2015). R version 3.1.0, Bioconductor version 2.1.4,
and DESeq2 version 1.40.0 were used for variance stabilizing
transformation (VST) of count data. Batch correction was applied
using ComBat using sva 3.10 (Johnson et al., 2007) and LIMMA
version 3.20.8 (Smyth, 2005) was used for differential expression
analysis of PD cases and controls. All PD samples were from
a single batch, therefore DESeq2 normalized, VST counts from
PD samples without batch correction were used for the PD-only
analyses relating miRNA levels to clinical features. Differential
expression analysis was performed using LIMMA twice, once
including age of death as a covariate and once unadjusted.
The results of the models were compared to determine if
confounding by age of death (>10% effect change) was present.
To further assess any residual confounding, regression analysis
was performed, stratified by age. A cutoff based on the average
age of all samples (72.5 years) was used to produce two groups
of samples—one that contained 21 controls and 8 PD younger
than 72.5 years and another that contained 12 controls and 21
PD older than 72.5 years of age. After multiple comparisons
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TABLE 1 | Summarized sample information.

Type N Motor onset Disease duration Age at death Post mortem interval RNA integrity number

Control 33 – – 68.1 ± 14.8 15.0 ± 8.7 7.6 ± 0.7

All diagnosed PD 29 66.5 ± 9.8 10.5 ± 6.5 77.6 ± 9.0** 11.1 ± 9.7 7.3 ± 0.7

PD, Non demented 18 64.1 ± 7.2 11.5 ± 6.4 76.1 ± 8.9 11.9 ± 9.2 7.2 ± 0.8

PD with dementia 11 69.8 ± 12.2 9.2 ± 6.7 79.9 ± 9.0 9.9 ± 10.9 7.5 ± 0.5

Ages at death were significantly different between controls and PD, as indicated (**p < 0.01 compared to controls). No differences between PDN and PDD were observed.

correction using a false discovery rate (Benjamini and Hochberg,
1995), FDR-adjusted q-values< 0.05 were reported as significant.

To further evaluate the differential expression patterns
between PD cases and controls, unsupervised, Ward hierarchical
clustering by Euclidian distance was applied using the heatmap2
function in the gplots R package (Warnes et al., 2015).
Supervised, predictive modeling of case status was performed
using the GenePatterns WeightedXVoting module using 29 PD-
associated miRNAs with large effects (Reich et al., 2006).

To determine if miRNAs were associated with PD in the
presence or absence of dementia, VST counts for PDN and PDD
were compared using LIMMA, adjusting for age at death, and
p-values were FDR-adjusted for the number of comparisons.
miRNAs nominally associated with PDD were used to classify
PD patients with and without dementia, as described above,
using the weighted voting method. To determine beta estimates
relative to control samples, PDN and PDD were separately
compared to controls using LIMMA. In addition, cumulative
logit models using the “ordinal” package in R (Christensen,
2015), were applied to test whether an ordinal relationship existed
across control, PDN and PDD samples. FDR-corrected Chisq
likelihood-ratio tests were used to determine significant miRNA
associations.

Linear models were used to model the relationship between
age of motor onset and miRNA levels among the 21 PD
samples with onset data. Tests were performed genome-wide and
exclusively among the set of differentially expressed miRNAs.
FDR-adjusted q-values < 0.05 were reported. Models were run
with and without adjustment for age at death.

Finally, to determine whether overlap in miRNA alterations
exist between PD and HD brain, results from PD differential
expression analysis were compared to those of our previously
published Huntington’s disease (HD) study (Hoss et al.,
2015), which contain the same control brains. HD data
was accessed from NCBI’s Gene Expression Omnibus, series
accession number GSE64977 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE64977), and analyzed using the same
bioinformatics approach for differential expression analysis as
described above (Bioconductor version 2.1.4, DESeq2 version
1.40.0, ComBat sva 3.10, LIMMA version 3.20.8). The probability
of overlap of differentially expressed miRNA between the two
diseases was assessed using a hypergeometric test (phyper
function in the R package “stats”).

The miRNA sequence data analyzed here can be accessed
from NCBI’s Gene Expression Omnibus, series accession
number GSE72962 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE72962).

RESULTS

miRNA Levels are Altered in Parkinson’s
Disease Compared to Non-Disease Brains
To identify miRNA differences in PD vs. non-disease subjects,
miRNA sequence analysis was performed in prefrontal cortex
(Brodmann Area 9) for 33 controls and 29 idiopathic PD
samples (see Table 1). Results of differential expression analyses,
correcting for sequencing batch effects and with and without
adjustment for age at death are shown in Table S2. 125 miRNAs
were significantly altered in PD after adjusting for age at death
(FDR q-value < 0.05, see Table S2). Unadjusted results were
similar, but confounding by age of death was observed for
some miRNA, so adjusted results are reported here. Stratified
analyses did not show evidence of confounding by age driving
the results of the 125 reported miRNA. Most miRNA alterations
were moderate, with 77% of the differentially abundant miRNAs
(96/125) within a ±0.5 log fold change (LFC). The levels of 64
miRNAs were down-regulated, whereas the levels of 61 miRNAs
were up-regulated in PD relative to controls.

We used classification models to determine whether the levels
of PD-related miRNAs in brain could accurately assign disease
status. To select the most informative miRNAs, we filtered
on effect size (LFC > 0.5 or LFC < -0.5). After filtering, 29
PD-related miRNAs were used in an unsupervised hierarchical
cluster analysis. Samples clustered based on disease status with
the exception of five PD which clustered with the controls,
(see Figure 1A). To further assess whether miRNA levels could
differentiate PD and control samples, disease status was predicted
using a weighted voting classification with leave-one-out cross-
validation. This model is internally tested by iteratively leaving
one sample out, creating a trainingmodel by assigning a weighted
linear combination based on the levels of the 29 miRNAs, and
testing this model on the left out sample. Here, only three errors
were observed using 29 miRNAs (two Type I errors, one Type II
error), with 93.9% specificity, 96.6% sensitivity and an absolute
error rate of 4.8% (see Figure 1B). Both Type I errors were called
with low confidence (9.8–10.1%).

miRNA Alterations in Parkinson’s Disease
with Dementia
To assess whether miRNA differences specific to the PDD
subtype were distinguishable from a generalized PD response, we
performed a differential expression analysis comparing PDN to
PDD using normalized VST count data from 18 PDN and 11
PDD samples. We observed no genome-wide significant (q <

0.05) miRNAs associated with dementia in PD, with or without
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FIGURE 1 | miRNA changes related to Parkinson’s disease. (A) Heatmap

of 29 miRNAs differentially expressed between PD and control prefrontal

cortex samples with log fold changes (LFC) greater than 0.5 or less than −0.5.

Scaled level values are color-coded according to the legend on the right. The

dendrogram on the left depicts hierarchical clustering based on level. The top

dendrogram depicts clustering based on the miRNA signal from each sample.

The top bar indicates disease status [blue: control, yellow: PD, non-demented

(PDN), orange: PD with dementia (PDD)]. (B) Disease prediction using 29

miRNAs. Scores less than zero were called as non-diseased whereas scores

above zero were called as PD. Blue circles =control, yellow boxes =PD,

orange triangles = PDN.

adjustment for age or disease duration, after multiple correction
testing (see Table S2). Even when limiting to the 125 differential
expressed miRNAs we saw no significant differences between
PDN and PDD. We however noted stronger directions of effect
in PDDwhen separately comparing PDN vs. control and PDD vs.
control, suggesting PDD may represent a more severe version of
the PD miRNA profile spectrum.

To test whether PDD had increased miRNA alterations
in comparison to PDN, we created an ordered categorical
variable (controls, PDN, and PDD) and tested the association
of this variable to genome-wide miRNA levels. 105 of the
125 differentially expressed miRNAs had a significant ordinal
association (q < 0.05; see Table S2, Figure 2A), indicating that
in the majority of differentially expressed miRNAs in PD, PDD
samples exhibit larger differences than PDN cases as compared
to controls for the same miRNAs.

FIGURE 2 | miRNA profile for Parkinson’s disease with dementia. (A)

Line plot for the 125 DE miRNAs in PD. The counts were scaled using

Z-transformation, and the means were calculated for each miRNA for

each condition (control, PDN, PDD). The line colors correspond to the beta

estimates from the ordinal regression analysis, where blue=negative ordered

relationship and red=positive ordered relationship. (B) PDN/PDD class

prediction, using the 36 nominally significant miRNAs from PDN/PDD

differential expression analysis. Four errors were observed among the 29

samples studied which may reflect heterogeneity in the etiology of PD.

We further investigated the clinical utility of these miRNA
profiles for the assessment of dementia using classification
analyses (WeightedXVoting; Reich et al., 2006). The 36 nominally
significant miRNAs (p < 0.05) identified in the PDN/PDD
comparison from LIMMA were used to classify disease state (See
Figure 2B), though with more limited accuracy than the PD-
control model (absolute error rate =13.8%, sensitivity =81.2%,
specificity =88.9%). Four miRNA features overlap between the
control/PD and PDN/PDD models (miR-132-3p, hsa-miR-132-
5p, hsa-miR-145-5p, hsa-miR-212-5p).

miR-10b-5p Levels are Associated with the
Onset of Motor Symptoms in Both
Parkinson’s and Huntington’s Disease
To understand whether deregulated miRNAs were specific to
PD, or a general response to the neurodegenerative process, we
compared miRNA that were significantly altered in PD to those
significantly altered in Huntington’s disease (HD). Twenty one
miRNAs were found differentially expressed in both PD and HD
experiments and the probability of this overlap occurring was
more than that expected by chance (p = 5.4e-3). Importantly,
of these 21 miRNAs, only two miRNAs had opposite directions
of effect between diseases (miR-10b-5p, miR-320b).

Within the PD case sample, we tested the association of age
of motor onset of PD with miRNA levels. Although we did not
observe significance in a genome-wide analysis, restricting our
study to the 125 significantly differentially abundant PDmiRNAs
revealed miR-10b-5p to have a significant, positive association
to onset age (beta=0.040, q-value = 4.7e-2, model r2 = 0.49,
see Figure 3A). Adding death age increased the magnitude of the
effect estimate (death adjusted age of onset beta = 0.049, p-value
onset= 3.2e-3, p-value death= 0.40), although this did not stand
up to multiple comparisons corrections (q-value onset = 0.19).
While miR-10b-5p is significantly decreased in PD, miR-10b-5p
was observed in our previous HD cortical miRNA study (Hoss
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FIGURE 3 | miR-10b-5p levels are associated with motor onset age in

both Parkinson’s and Huntington’s disease. (A) Scatterplot of miR-10b-5p

levels to motor onset age in Parkinson’s disease (PD). In PD, miR-10b-5p

levels exhibit a positive association to onset. (B) Comparison of miR-10b-5p

level in PD and HD. *q < 0.05, ***q < 0.001, p-values adjusted for

genome-wide comparisons. (C) Scatterplot of miR-10b-5p levels to motor

onset age in Huntington’s disease (HD). In HD, miR-10b-5p levels exhibit a

negative association to onset.

et al., 2014) to be massively increased in HD in comparison to
controls (see Figure 3B). Intriguingly, PD and HD also exhibit
opposite effects with regard to onset age, where miR-10b-5p has
a strong, negative relationship to age of onset in HD (r2 = 0.64;
r2 = 0.39 after accounting for the contribution of HD gene repeat
length) and a strong, positive effect in PD (see Figure 3C).

DISCUSSION

Parkinson’s Disease Related miRNAS
In this study, we identified 125 miRNAs altered at genome-wide
levels in PD prefrontal cortex using next-generation sequencing.
This is the largest miRNA sequencing analysis performed in PD
vs. control brain samples (29 vs. 33, respectively), the first to
provide a detailed miRNA PD profile, classify brains by miRNA
levels and to evaluate the relationship of miRNA levels in brain
to relevant clinical features.

Reduced levels of miR-133b (Kim et al., 2007), miR-34b and
miR-34c (Miñones-Moyano et al., 2011), and elevated levels of
autophagy-related miRNAs, were previously reported (Alvarez-
Erviti et al., 2013), and while these miRNAs were detectable in
our study, we did not observe significant changes in their levels.
These discrepancies are likely a consequence of the different brain
regions that were studied (midbrain vs. prefrontal cortex), and
the assay technologies that were used to profile miRNA levels
(reverse transcriptase quantitative PCR Kim et al., 2007; Alvarez-
Erviti et al., 2013, and microarray Miñones-Moyano et al., 2011
vs. miRNA-sequencing).

Several miRNAs that we report altered in PD brain may
interact with PD-related genes. Monogenic forms of PD include
mutations within the alpha-synuclein gene (SNCA), Leucine-rich

Repeat Kinase 2 (LRRK2), one of the most common causes of
familial PD (Nalls et al., 2014) and glucocerebrosidase (GBA).
While we did not observe alterations of SNCA-targetingmiRNAs,
miR-7 and miR-153 (Junn et al., 2009; Doxakis, 2010), two
miRNAs shown be regulated by LRRK2 (let-7i-3p/5p and miR-
184 Gehrke et al., 2010) and one miRNA experimentally shown
to target LRRK2 expression (miR-1224 Sibley et al., 2012), were
observed to be down-regulated in PD.

Glucocerebrosidase (GBA) deficiency is associated with PD
(Aharon-Peretz et al., 2004).We observedmiR-127-5p, which has
been shown to reduce GBA activity (Siebert et al., 2014), down-
regulated in PD brains, and miR-16-5p which has been shown to
correspond to enhanced GBA protein levels (Siebert et al., 2014),
was found up-regulated in brain in our study. It is noteworthy to
observe LRRK2-related miRNAs, as none of the PD brains in our
study had LRRK2 mutations. This may support a role of LRRK2
and GBA in PD, independent of that produced by the known
mutations in these genes.

Classification Based on miRNA Abundance
We were able to classify PD based on the levels of 29 miRNAs
with less than a 5% error rate, although this require external
validation in an independent sample to confirm. While this
classification was performed using postmortem brain samples,
we believe this may be relevant for PD biomarker discovery,
particularly if these miRNAs are peripherally detectable. We
reasonably differentiated PD subtypes (PDN/PDD) based on
miRNA levels, and we observed a pattern of increased changes
in the PDD samples relative to the PDN samples in the set of
altered miRNAs. We observed that the majority of differentially
expressed miRNAs had an ordinal relationship to controls and
PD cases stratified by the presence or absence of dementia,
suggesting PDD may represent a more severe alteration of the
PD miRNA profile.

Circulating miRNAs Previously Reported in
PD
Our study in PD brains identified profiles of miRNAs that
distinguish PD from controls, which if also observed in
peripheral biofluids, such as blood or cerebrospinal fluid (CSF),
could be valuable in the evaluation of PD diagnosis, prognosis,
or progression. The small size (∼22 nucleotides) of miRNA may
allow for neuropathologically altered miRNA to cross the blood-
brain barrier in exosomes (Kalani et al., 2014) and circulate stably
in peripheral fluids as cell-free molecules (Mitchell et al., 2008).
Although there was no overlap of miRNAs in brain to changes
observed in most PD blood studies (Martins et al., 2011; Khoo
et al., 2012; Cardo et al., 2013; Soreq et al., 2013; Botta-Orfila
et al., 2014), we did observe increased levels in one (miR-29a-3p)
of three miRNAs previously reported as increased in blood of PD
patients after Levodopa treatment (Serafin et al., 2015). In Burgos
et al. (2014), small RNA sequencing was performed for blood
serum and CSF from 67 PD and 78 control subjects (Burgos et al.,
2014), five miRNAs were found significantly altered in PD serum
and 17 were significantly altered in CSF. Of these 22miRNAs, five
showed consistent overlap with our cortical findings, with one
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from serum (miR-1294) and four from CSF (miR-132-5p, miR-
127-3p, miR-212-3p, miR-1224-5p). Thus, miRNAs detected in
CSF may have a stronger relationship with brain miRNAs levels
than those detected in serum.

Common miRNA Changes in PD and HD
We previously reported 75 miRNAs altered in HD prefrontal
cortex (Hoss et al., 2015), and when comparing miRNAs altered
in both PD and HD, 21 miRNAs were observed deregulated in
both diseases. Among the miRNAs with concordant changes in
PD and HD, several miRNAs correlated with various HD clinical
features, such as the extent of striatal degeneration and duration
of the disease (Hoss et al., 2015). These miRNAs may represent a
generalized, neurodegenerative response in the prefrontal cortex,
which relate to severity and/or progression across these diseases.
However, it is important to recognize that the results from the PD
and HD studies are not independent, as they were both analyzed
using the same 33 control brains.

Of the two miRNAs with discordance between PD and
HD, miR-10b-5p emerged due its relationship to onset in both
diseases. miR-10b-5p is markedly increased in HD in comparison
to controls, and has a negative association to age of onset
for HD, with higher levels of miR-10b-5p corresponding early
onset age. In contrast, miR-10b-5p is significantly decreased in
PD, and has a positive association to onset age, where higher
miRNA levels correspond to later onset ages. In a separate
Alzheimer’s disease (AD) study, examining miRNA levels in
prefrontal cortex, miR-10b-5p levels were significantly reduced
in AD (Lau et al., 2013). However, at the very earliest stages
of AD, miR-10b-5p levels clustered with up-regulated miRNAs
whereas at early to middle stages, miR-10b-5p levels appeared
to decline (Lau et al., 2013). The relationship of miR-10b-5p
to these three age-related, neurodegenerative diseases suggests
a complicated pattern of miR-10b-5p alteration in response
to the neurodegenerative or pathologic protein aggregation
processes.

CONCLUSION

This study provides evidence that miRNA levels are altered in PD
prefrontal cortex. These changes are sufficiently consistent that
diseased brains can be discriminated with high confidence from
non-diseased brains based on the level of 29 miRNAs. PDD may
represent a more severe profile of PD related miRNAs than PDN.
21 miRNAs changes were similar between PD and HD, with the
exception of miR-10b-5p, which had opposite direction of effects
to disease association and to motor onset age in the two diseases.

Further characterization of miR-10b-5p in the neurodegenerative
disease context is warranted to better understand if it has clinical
potential as a biomarker for disease progress or to identify
potential therapeutic targets.
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