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Neuroimaging studies have documented that aging can disrupt certain higher cognitive
systems such as the default mode network (DMN), the salience network and the
central executive network (CEN). The effect of cognitive training on higher cognitive
systems remains unclear. This study used a 1-year longitudinal design to explore the
cognitive training effect on three higher cognitive networks in healthy older adults.
The community-living healthy older adults were divided into two groups: the multi-
domain cognitive training group (24 sessions of cognitive training over a 3-months
period) and the wait-list control group. All subjects underwent cognitive measurements
and resting-state functional magnetic resonance imaging scanning at baseline and at
1 year after the training ended. We examined training-related changes in functional
connectivity (FC) within and between three networks. Compared with the baseline,
we observed maintained or increased FC within all three networks after training.
The scans after training also showed maintained anti-correlation of FC between the
DMN and CEN compared to the baseline. These findings demonstrated that cognitive
training maintained or improved the functional integration within networks and the
coupling between the DMN and CEN in older adults. Our findings suggested that multi-
domain cognitive training can mitigate the aging-related dysfunction of higher cognitive
networks.

Keywords: aging, cognitive training, resting-state fMRI, functional connectivity, brain network

INTRODUCTION

As people age, they experience cognitive decline, which involves working memory, executive
function and attention, among other functions, and this occurs with particular frequency in late
life, resulting in an increasingly poor quality of life (Hedden and Gabrieli, 2004; Grady, 2012). To
postpone the cognitive decline associated with aging, increasing numbers of studies have conducted
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interventions with older adults, focusing on cognitive training
and physical exercise (Park and Bischof, 2013; Tanigawa et al.,
2014). Results of neuropsychological studies have demonstrated
benefits of cognitive functions after interventions in old adults,
including improvements in working memory capacity, reasoning,
and processing speed (Neely and Backman, 1995; Oswald et al.,
2006; Bamidis et al., 2015; Leung et al., 2015). Our previous
study has also demonstrated that the effects of interventions
on cognition are maintained at 1 year after the training
ended (Cheng et al,, 2012). On the other hand, neuroimaging
studies have proved that multi-domain training affects the
spontaneous brain activity in healthy older adults, for example,
altered regional homogeneity of spontaneous fluctuations in
temporal gyrus and cerebellum, enhanced amplitude of low
frequency fluctuations in frontal gyrus and cerebellum (Yin
et al, 2014; Zheng et al., 2015). In another study, improved
memory performance during memory task after training has
been shown to associate with increased brain activation in
the prefrontal, temporal, and parietal area in older adults
(Kirchhoff et al, 2012). Also, the reduction in functional
connection (FC) between the superior parietal cortex and inferior
temporal lobe is observed after training in older adults, which
is associated with training success (Strenziok et al, 2014).
These findings suggest that the interventions bring about not
only enhanced behavioral outcomes but improvement of the
brain function in older adults (Kraft, 2012; Bamidis et al,
2014).

Recent studies suggest that functional brain networks, a
higher level of organization of brain regions, are needed to
better understand improved cognitive function after intervention
(Langer et al,, 2013; Bamidis et al,, 2014). Using functional
magnetic resonance imaging (fMRI), more than ten functional
brain networks constituted of spatially distinct brain regions have
been identified either at specific tasks (Calhoun et al., 2009) or
at rest, including the default mode network (DMN)), the salience
network (SN) and the central executive network (CEN; Smith
etal.,, 2009; Luo et al., 2012). Three (DMN, SN, and CEN) of these
stable networks have been considered the ‘core’ neurocognitive
networks for understanding higher cognitive functions and have
received the most attention in cognitive studies (Sridharan et al.,
2008; Bressler and Menon, 2010; Luo et al., 2011, 2014b). The
DMN, which includes mainly the posterior cingulate cortex
(PCC), medial prefrontal cortex (MPFC) and inferior parietal
lobe (IPL), is involved in self-referential and autobiographical
memory functions (Raichle et al., 2001; Buckner et al., 2008). The
SN includes the bilateral anterior insula (AI) and dorsal anterior
cingulate cortex, and it is associated with detecting internal and
external events salient to homeostasis. In contrast, the CEN,
composed of the dorsolateral frontal and parietal neocortices, is
engaged in cognitively demanding tasks, such as decision making
and working memory (Seeley et al., 2007). Many studies have
indicated that these three networks, along with the disruption of
FC within network and the anti-correlation between the DMN
and CEN, are strongly affected by normal aging and Alzheimer’s
disease, which is associated with cognitive impairments (Meunier
et al,, 2009; Wu et al.,, 2011; Onoda et al., 2012; Tomasi and
Volkow, 2012; Cao et al., 2014).

Previous studies have shown that brain networks are affected
by interventions, such as the DMN and CEN, associated with
improved behavioral outcomes and cognitive performances
(Patel et al., 2013; Bamidis et al., 2014; Luo et al., 2014a; Tang and
Posner, 2014). For instance, intervention studies, including either
cognitive or physical training, reveal changes in the resting-state
FC within the DMN and CEN in healthy adults (Voss et al., 2010,
2013; Taylor et al., 2013). Interventions have also been conducted
on older adults to investigate the changes in brain networks that
subserve cognitive function (Voss et al., 2010; Bamidis et al.,
2014; Luo et al.,, 2016). A study of multimodal intervention in
older adults has shown improved resting-state FC between the
MPFC and medial temporal lobe in the DMN after training,
suggesting an association with better cognitive performance (Li
et al., 2014). Increases in cerebral blood flow and resting-state
FC within the DMN and CEN are also observed after complex
cognitive training in healthy seniors (Chapman et al.,, 2015). In
addition, a study also demonstrated the decreased FC between
the DMN and CEN after working memory training in health
adults (Takeuchi et al., 2013). These findings suggest that training
can affect FC of certain brain networks, such as DMN, CEN.
However, no study has investigated the effects of multi-domain
cognitive training on resting-state FC within and among the three
networks (DMN, SN, and CEN) in older adults.

The purpose of this study is to explore the effects of cognitive
training on resting-state FCs within and between the three
networks in old adults. We hypothesized that multi-domain
cognitive training would result in changes of resting-state FC
within and among the three networks in healthy older adults,
which might be beneficial for counteracting decreased integration
within network and impaired coupling between networks with
aging. In our work, we investigated the resting-state FC of
three networks using seed-based FC analysis at baseline and at
1 year after training ended. The relationship between cognitive
improvements and the changes of FC was also analyzed.

MATERIALS AND METHODS

Participants

The current work included 40 healthy older adults from
two randomized groups [the multi-domain training group
(n = 23) and the control group (n = 17)], who were recruited
through a dispatched notice/broadcasting by the local institute
of community service in three community centers around
Tongji Hospital in Shanghai from March 2008 to April 2008.
After a personal interview with professional interviewers, all
participants then underwent cognitive measurements and fMRI
scanning. The inclusion criteria included the following: age
(65-75 years); educational year (more than 1 year); normal
hearing, vision, or communication status; normal functional
capacity; living independently in the community; score on the
Chinese version of the Mini-Mental State Examination (MMSE)
of 19 or above [the lower cut-off point of the MMSE score is
due to the lower educational level in China (Li et al., 2006)];
and being free of neurological or psychiatric disorders and of
brain injury. Exclusion criteria included the following: obvious
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cognitive decline, a diagnosis of AD; serious neurological or
psychiatric disorders such as major depressive disorder, brain
cancer, and schizophrenia. One left-handed subject in the
multi-domain training group was included due to the absence
of a relationship between the training-related changes and
handedness (Mackey et al., 2013). This study was approved by
the Ethical Committee of the East China Normal University. All
participants gave written informed consent, and they were not
provided monetary compensation for their participation in this
study.

Neuropsychological Measurements
Interventions

Cognitive training employed a randomized, controlled design.
The multi-domain training group was divided into a small
group, and the training procedure took place in a classroom in
Tongji Hospital. All participants received 24 sessions of cognitive
training over a 3-months period at a frequency of twice a
week. The multi-domain cognitive training targeted memory,
reasoning, and problem-solving strategies using approaches such
as visual-spatial map reading, handcraft making, healthy living,
and physical exercise. Each session lasted 60 min. A lecture
about a common disease in aging people was presented during
the first 15 min of each session. Then, the trainer taught the
participants about a special cognitive strategy or technique via
slide lecture during the second 30 min. The newly practiced skills
were consolidated by dealing with some real-life problems during
the last 15 min. The wait-list control group served as a match for
the social contact associated with cognitive training. The multi-
domain training group and the control group attended a lecture
about healthy living every 2 months. More details about the
training are provided in our previous study (Cheng et al., 2012).

Cognitive Measurements

To evaluate the effects of intervention on cognitive function,
composite outcome measurements were created, including the
Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS, Form A), which shows good validity and
reliability in a Chinese community-living elderly sample (Lim
et al., 2010; Cheng et al.,, 2011), the trail-making test (TMT;
Ashendorfetal., 2008), the visual reasoning test (Xiao et al., 2002)
and the Color Word Stroop test (CWST; van Boxtel et al., 2001).
All measurements were conducted at baseline and at 1 year after
training.

To examine the effect of cognitive training on cognition,
we compared the pre- and post-training changes between the
multi-domain cognitive group and the control group using one-
way analyses of covariance (ANCOVAs) with the differences
between the 1-year post-test and baseline measurements as
dependent variables and scores at baseline as covariates to
exclude the possibility that any pre-existing difference in the
measures between the groups affected the results of each measure
(p < 0.05). In addition, two-sample t-tests were applied to
investigate the differences in cognition measurements at baseline
between the two groups. The confounding covariates, including
age, gender and education years, were regressed in all statistical
analyses.

Data Acquisition

All functional and structural imaging data were acquired using
a Siemens 3T MRI scanner (Erlangen, Germany) at East China
Normal University, Shanghai, China. All participants underwent
scanning twice, at baseline and at 1 year after training. To
minimize head motion, we fixed the subjects’ heads using
foam pads. Resting-state functional images were collected using
a single-shot, gradient-recalled echo planar imaging sequence
[repetition time (TR) = 2000 ms, echo time (TE) = 25 ms and
flip angle (FA) = 90°, field of view (FOV) = 240 mm x 240 mm,
in-plane matrix = 64 x 64, slice thickness = 5 mm, voxel
size = 3.75 mm x 3.75 mm X 5 mm)], generating 32 slices.
The functional scanning lasted for 310 s, yielding a total of 155
volumes. To ensure magnetic field stabilization, the first five
volumes were discarded. During the resting-state scanning, the
subjects were asked to lie with their eyes closed, not to fall asleep,
and not to think of anything in particular. Axial T1-weighted
anatomical images were acquired using a magnetisation-
prepared rapid gradient-echo sequence, generating 160 slices
(TR = 1900 ms, TE = 3.43 ms, FA = 90°, matrix size = 256 x 256,
FOV = 240 mm X 240 mm, slice thickness = 1 mm, voxel
size = 0.9375 mm X 0.9375 mm x 1 mm).

Data Preprocessing

Resting-State fMRI Data

Imaging data preprocessing was performed using the SPMS$
software package'. First, all imaging data were corrected for
the slice-timing and realigned for head movement correction.
Accounting for the effect of head motion on the FC analysis,
we excluded all the participants whose head movement exceeded
1 mm or 1°. Furthermore, we also calculated the framewise
displacement (FD) given by

FD; = [Adi| + |Ady| + |Adi| + |Aail + [ABi1 + |Ayil, (1)

where i is the i-th time point and

Adiy = d(i—1)x — dix(similarlyford;y, diz, a;, pi, yi).  (2)

The FDy was set to zero and rotational displacements were
converted from degrees to millimeters (Power et al., 2012). Then,
the resulting functional data were normalized to the Montreal
Neurological Institute (MNI) template using a 12-parameter
affine transformation (resampled to 3 mm X 3 mm X 3 mm).
Finally, the imaging data were spatially smoothed with a 6-
mm full-width at half maximum (FWHM) Gaussian kernel. We
applied a temporal band-pass filter (the frequency range of 0.01
and 0.08 Hz) to reduce the low frequency drift and high frequency
physiological noise (Fox et al., 2005; Jiang et al., 2015; Luo et al,,
2015). Several nuisance covariates including white matter (WM)
signal, cerebrospinal fluid (CSF) signal, global signal, and six head
motion parameters were also removed from the time course of all
brain voxels using a multiple linear regression analysis.

'http://www.filion.ucl.ac.uk/spm/
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Preprocessing of T1-Weighted Images

Previous studies provided the evidence of the loss of gray
matter volume (GMV) with aging and of the potential effects
on the functional results (Damoiseaux et al., 2008). In the
present study, we increased the reliability of resting-state fMRI
analysis by controlling for the GMV. The T1-weighted images
were preprocessed using the voxel-based morphometry (VBM8?)
toolbox in SPM8. The native T1-weighted image was normalized
to MNI space using an exponentiated lie algebra (DARTEL)
approach. The resulting images were then segmented into gray
matter (GM), WM and CSF. For each subject, the GMV of the
whole brain was calculated.

Functional Connectivity Analysis

To evaluate our hypothesis, a seed-based FC analysis was
performed to examine the training effect on FC within and
between the DMN, SN, and CEN. Three seeds were selected
based on previous studies: the PCC (0, —52, 20), the right Al
(38, 26, —10) and the right dorsolateral prefrontal cortex [right
DLPFC (44, 36, 20)] to constitute the DMN, SN, and CEN,
respectively (Fransson, 2006; Seeley et al., 2007; Luo et al., 2011).
The average signal of spherical regions with nine-millimeter
diameter centered at the three seeds was extracted. The FC map
for each network was obtained by calculating Pearson correlation
coeflicient between the average time course of seed and each voxel
in the whole brain for each subject. A Fisher z-transformation
was used to convert the correlation coefficient of each voxel to a
normal distribution (Shao et al., 2012; Chen et al., 2015). Thus,
the individual z-score maps were obtained for each seed and
subject. A one-sample t-test was used to identify the within-
group FC map for each network. The significance level was set
at p < 0.05 (FDR-corrected, cluster size > 621 mm?).

Statistical Analysis

To evaluate the training effect on FC within and between the
three networks, a whole-brain voxel-wise 2 (between-subject
factor: training and control groups) x 2 (within-subject factor:
baseline and 1-year after training ending) repeated analysis of
variance (ANOVA) was performed using the explicit mask from
the union set of the one-sample ¢-test results of three networks,
by controlling for the whole brain GMYV, as well as age, gender,
education years and FD as confounding covariates. This analysis
was performed using SPM8, and the significance level was set at
P < 0.05 (cluster size > 621 mm?). Post hoc comparisons (paired
t-tests) were carried out for each significant interaction effect to
clarify the effect of training on FC for each group.

Neural Correlate Analysis

To explore the relationship between FC and cognitive
measurements, z-transformed connectivity values were extracted
from regions that showed significant training-related effect, and
the difference between the baseline and post-test was computed.
Partial correlations were performed between the changes of
resting-state FC and the pre- and post-training differences in
the scores on the cognitive measures, while controlling for age,
gender, and education years.

Zhttp://dbm.neuro.uni-jena.de/

RESULTS

Demographic and Neuropsychological

Tests

At baseline, 23 subjects (one left-handed) from the multi-
domain training group and 17 subjects from the control group
underwent cognitive measurements and the fMRI scanning.
Eighteen subjects in the multi-domain training group and 14
in the control group finished both the cognitive measurements
and the fMRI scanning at 1 year after the intervention, and they
were involved in the final analysis. A total of eight participants
withdrew (one death, two cancers, one operation, and four
rejecting scanning). No significant differences in age, gender,
education years, FD and MMSE score were found between the
multi-domain training group and the control group (p > 0.05;
Table 1).

No significant differences in all cognitive measurements were
found at baseline between the two groups (p > 0.05; Table 2).
However, the multi-domain training group showed significant
improvements in performance on language (p = 0.036) and
delayed memory (p = 0.027) and marginally significant
improvement on the RBANS total score (p = 0.058) at 1-year after
training compared to the baseline (Table 2).

The Effect of Cognitive Training on

Networks

Three networks were constituted by seed-based FC analysis,
seeding at the PCC for the DMN, at the right AI for the SN
and at the right DLPFC for the CEN. The DMN mainly involved
the PCC/precuneus, VMPFC, DMPFC, bilateral IPL, bilateral
temporal lobe, cerebellar lobule IX and crus II (Supplementary
Figure S1). The SN mainly included the bilateral AI, DMPFC,
dACC, and bilateral TPJ (Supplementary Figure S2), and the CEN
was composed of the DLPFC, DMPFC, and IPL, all bilaterally
(Supplementary Figure S3).

TABLE 1 | Demographic information about the subjects at different
timepoints.

Multi-domain Control P
training group group
Age (year) Baseline 70.61 £ 3.29 68.59+3.24 0.838
(mean + SD) One-year post-test 72.39 £+ 3.43 70.85+4.05 0.782
Gender Baseline 23 (16) 17 (9) 0.283
(male)
One-year post-test 18 (13) 14(9) 0.631
Education Baseline 10.91 £ 3.65 10.64 +£3.06 0.452
(yearn)
(mean + SD) One-year post-test 11.11 £ 4.25 10.09+3.34 0.383
MMSE Baseline 27.57 £ 2.57 28.17+1.94 0.505
(mean + SD) One-year post-test 27.72 £ 2.16 27.85+2.31 0.900
FD Baseline 0.12 £ 0.04 0.14+£0.05 0.448
(mean + SD) One-year post-test 0.12 £ 0.04 0.16+£0.07 0.068

FD, Framewise displacement; MMSE, the Mini-Mental State Examination; SD,
standard deviation.

Frontiers in Aging Neuroscience | www.frontiersin.org

April 2016 | Volume 8 | Article 70


http://dbm.neuro.uni-jena.de/
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Cao et al.

Training Effects on Brain Networks

TABLE 2 | Baseline and 1-year post-test scores for psychological measures (mean =+ SD).

Multi-domain training Contorl
Baseline One-year Post-test Baseline One-year Post-test P2 P®

RBANS total score 93.17 + 16.10 106.94 £+ 12.90 93.07 + 15.00 99.57 + 13.75 0.058 0.971

Immediate memory 86.22 + 16.45 103.17 £ 23.35 84.00 + 14.34 100.5 + 14.33 0.695 0.694

Visuospatial 106.78 + 12.86 103.9 £ 11.56 106.86 + 19.05 103.00 £ 16.81 0.981 0.922

Language 92.44 + 12.92 101.00 + 8.39 93.29 +7.12 95.86 + 5.86 0.036* 0.861

Attention 90.67 + 19.39 94.94 + 1517 91.5+15.25 88.93 + 15.24 0.22 0.776

Delayed memory 98.28 + 18.86 118.50 £ 12.41 99.00 + 13.13 110.21 £ 14.80 0.027* 0.999
The CWST

Color interfere 20.16 + 13.95 27.33 £ 17.01 14.57 £7.62 23.85 + 14.33 0.884 0.125

Word interfere 38.61 + 15.56 39.89 + 17.35 39.71 £ 14.10 42.00 + 19.00 0.669 0.642
The Visual Reasoning Test 578 £1.35 6.56 + 1.89 5.86 +£2.74 5.93 £+ 2.46 0.169 0.894
The TMT

Trail A complete time 79.50 £ 23.60 73.72 £ 33.93 87.21 £ 37.37 77.07 £29.22 0.739 0.381

Trail B complete time 157.89 £ 55.41 138.5 £ 48.27 1563.5 + 68.11 142.57 + 49.6 0.634 0.830

*p<0.05. CWST, Color Word Stroop test; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; TMT, Trail Making test. 20One-way ANCOVAs
with differences between 1-year post-test and baseline in psychological measures as dependent variables, by controlling for scores of the psychological measures at
baseline, age, gender and education years as covariates. 5Tiwo sample t-test with scores of the psychological measures at baseline as dependent variables, by controlling

for age, gender, and education years as covariates.

The 2 x 2 repeated measure ANOVA revealed significant
interactions (p < 0.05) for FC within and between networks. In
this study, this analysis was performed for the FCs that showed no
significant difference between the training and control groups at
baseline, because a training-related effect was the only possibility.

The ANOVA revealed the significant interactions for the FC
within the DMN [PCC - left superior frontal gyrus (SFG) and
PCC - cerebellar lobule IX]; within the SN (right AI - right
middle/posterior insula, and right Al - left frontoinsula) and
within the CEN (right DLPFC - bilateral DLPFC and right
DLPFC - right SFG). Post hoc comparison demonstrated that
some connections showed increased or maintained FC in the
training group but decreased FC in the control group, including
those between the PCC and the left SFG and between the PCC
and cerebellar lobule IX within the DMN, between the right
Al and left frontoinsula within the SN, and between the right
DLPFC and the bilateral DLPFC and between the right DLPFC
and the right SFG within the CEN (Figure 1; Table 3). In
addition, we observed increased FC between the right AI and
right middle/posterior insula in the control group but maintained
FC after training in the training group (Figure 1; Table 3).

Our results also revealed significant interactions in the FCs
between networks, including between DMN and CEN and
between DMN and SN. Post hoc comparisons showed that the
anti-correlations between the DMN and CEN were maintained
or increased after training, including an increase in the anti-
correlation between the PCC and the left DLPFC in the training
group, while this correlation was maintained in control group;
meanwhile, the anti-correlation between the PCC and the right
DLPFC was maintained in training group and decreased in
the control group. For the seed at the right DLPFC, the anti-
correlation between the right DLPFC and left IPL was maintained
in the training group and increased in the control group. For
the connection between the DMN and SN, the connectivity

between the PCC and the right putamen was maintained in the
training group and decreased in the control group (Figure 2;
Table 3).

The Correlation between Cognitive
Measures and Resting-State fMRI

We found a significant relationship between the changes in
FC (between the two fMRI sessions) and the improvements in
cognitive performances (p < 0.05, uncorrected). As shown in
Figure 3, the increased FC between the right DLPFC and the
right SFG had a slim positive correlation with the RBANS test
scores in the multi-domain training group (Figure 3A). The
increased FC between the right Al and the right middle/posterior
insula predicted poorer delayed memory and RBANS scores in
the control group (Figures 3B,C).

DISCUSSION

In the present study, we used resting-state fMRI analysis
to examine the effects of multi-domain cognitive training
on FC within and among three networks (DMN, SN, and
CEN). Consistent with our a priori hypothesis, changes in
resting-state FC within and among the three networks were
found at the 1-year after multi-domain cognitive training
ended in training group compared to the wait-list control
group. After training, the maintained or increased anterior-
posterior and interhemispheric FCs within network, including
PCC - left SFG (DMN), PCC - cerebellar lobule IX (DMN),
right Al - left AI (SN), and right DLPFC - left DLPFC
(CEN), were observed in the training group, while these FCs
decreased in the control group. Compared to the control
group, the training group showed increased or maintained
anti-correlated FC between DMN and CEN (PCC - DLPFC
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FIGURE 1 | Results of Resting-state functional connectivity (FC) within the DMN (top), within the SN (middle) and within the CEN (bottom) using a
voxel-based 2 x 2 repeated ANOVA analysis (p < 0.05, cluster size > 621 mm3). Bars at the right show the mean correlation coefficient of significantly altered
FC within networks in training and control groups at the baseline (blue) and 1-year after training ended (red). CEN, Central executive network; DMN, default mode
network; DLPFC, dorsolateral prefrontal cortex; Fl, frontoinsula; PCC, posterior cingulate cortex; SFG, superior frontal gyrus; SN, salience network. The left side of

TABLE 3 | Brain areas showing significant interactions for resting-state functional connectivity using a 2 (between-subject factor: training and control
groups) x 2 (within-subject factor: baseline and 1-year after training ended) repeated ANOVA.

Seed Brain region BA MNI coordinate F-score Cluster size (mm?3)
X Y V4

PCC Left dorsolateral prefrontal lobe 20 —-33 15 24 18.64 2187
Left cerebellar lobule IX —6 —51 —54 16.2 2241
Right putamen 9 18 15 -9 13.17 1377
Right dorsolateral prefrontal lobe 51 0 30 12.86 1782
Left superior frontal gyrus 20 —24 36 39 11.66 1323

Right Al Right insula 45 30 -9 -18 15.82 4644
Left frontoinsula 45 —-51 33 —12 11.67 2538

Right DLPFC Right superior frontal cortex 11 15 27 54 13.30 3186
Left dorsolateral prefrontal cortex 9 -39 30 42 12.78 1647
Left inferior parietal lobe -30 —63 30 13 1431
Right superior frontal gyrus 42 27 42 12.12 2970

BA, Broadmann area; CEN, central executive network; DMN, default mode network; SN, salience network; DLPFC, dorsolateral prefrontal cortex; Al, anterior insula; PCC,

posterior cingulate cortex.
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FIGURE 2 | Significant differences in FC were observed between DMN and CEN (A,B), between DMN and SN (C), and between CEN and DMN (D)
using a voxel-based 2 x 2 repeated measure ANOVA (p < 0.05, cluster size > 621 mm?). Bars at the bottom show the mean correlation coefficient of
significant altered FC between networks in training and control groups at the baseline (blue) and 1-year after training ended (red). CEN, Central executive network;
DMN, default mode network; DLPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobe; PCC, posterior cingulate cortex; SN, salience network.

and DLPFC - IPL). The coupling between DMN and SN multi-domain cognitive training might counteract decreased
(PCC - putamen) was also maintained in training group, but integration within network and impaired coupling between
decreased in the control group. These findings suggested that networks with aging.
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FIGURE 3 | Correlation between the change in resting-state FC and the change in cognitive performance in the multi-domain training group (A) and
in the control group (B,C).

Training Effects on FC within Networks

This study found training-related enhanced integration of FC
within the DMN, SN, and CEN. In particular, we observed that
FCs between PCC and SFG and between PCC and cerebellar
lobule IX were maintained in the multi-domain training group,
but decreased in the control group. Previous studies have
provided consistent evidence that healthy aging is accompanied
by decreased FC within the DMN, particularly an anterior-
posterior disruption of FC (Andrews-Hanna et al., 2007; Mevel
et al.,, 2013). The decreased FC between the PCC and the SFG
in the control group was consistent with previous findings,
highlighting age-related disruption of connectivity at rest along
the anterior-posterior axis of the DMN (Andrews-Hanna et al.,
2007). The role of the cerebellum in cognitive function has
been accepted. For example, lobule IX has been mentioned in
association with DMN (Habas et al., 2009), and the FC between
DMN nodes (PCC and MPFC) and cerebellar regions has been
described as modified by aging and by diseases such as dementia
(Bernard et al., 2013; Guo et al., 2015). Unlike the decreased FC
with normal aging in the control group, multi-domain cognitive
training maintained these FCs from the PCC to the SFG and to
lobule IX of the cerebellum, suggesting that cognitive training
might resist or postpone age-related disruption of FC within
the DMN. In the CEN, we also observed increased FC between
the right DLPFC and the frontal lobe (bilateral DLPFC and
right SFG) at 1 year after training compared with baseline in
the multi-domain training group, while these FCs decreased in
the control group. These frontal regions have been found to
be involved in executive and cognitive function (Ridderinkhof
et al,, 2004; Grady, 2012), such as working memory, and to
be activated by tasks related to these function when the age-
related effects were investigated (Grady, 2012). The frontal
lobe is known to be affected by training (Park and Bischof,
2013). In addition, the change of FC between the right DLPFC
and the right SFG was slight positively correlated with the
improvement on the RBANS test in the training group. Thus,
we presumed that the multi-domain training might have positive
effects on improvement of behavior via enhancing the FC.
However, a larger sample size should be considered to verify the
relationship between the FC and cognitive function. A recent
study of complex cognitive training in healthy seniors also found

increased resting-state FC of the DMN and CEN, as well as
increased cerebral blood flow (Chapman et al., 2015). Consistent
with those reports, our results showed changes in intranetwork
FC in the DMN and CEN after cognitive training. These findings
might suggest that the cognitive training enhanced integration of
FC within networks, resulting in the improvement of cognitive
function.

Recent studies demonstrated that the decreased FC within
the SN is an important feature of normal aging and is
associated with the cognitive impairments (Onoda et al,
2012; He et al, 2013). Consistent with previous studies,
we found decreased FC between the right AI and the left
frontoinsula in the control group between the two timepoints
scanned. However, the FC was maintained in the training
group, as indicated by the absence of a difference between
the FC values from before and after multi-domain cognitive
training. In addition, we observed the FC between the right
Al and right middle/posterior insula was maintained in the
training group, but increase in the control group. The right
Al, as a key node of the SN, is involved in cognitive
function; by contrast, the middle/posterior insula serves in
sensorimotor functions (Kurth et al., 2010). The increased
FC between the right AI and right middle/posterior insula
might indicate the disrupted function of the insula, likely
reflecting an association with the cognitive decline in old
adults. Here, we observed the negative correlation between
the increase in the FC between the right anterior and right
middle/posterior insula and the improvement of delayed memory
and RBANS scores in the control group, probably implicating
the relationship between the FC within the SN and the
cognition. Thus, we speculated that cognitive training enhanced
integration of the SN to retain at least some of the cognitive
performance.

Training-Related Changes of FC between

Networks

The triple network model of the DMN, SN, and CEN has
been used to understand cognitive dysfunction in neurological
and psychiatric disorders (Menon, 2011). A previous study
provided evidence for a decrease in the anti-correlation
between DMN and CEN in normal aging (Wu et al, 2011).
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Here, we found that the aging-sensitive anti-correlation between
DMN and CEN was maintained after training. A higher
anti-correlation between DMN and CEN was also found
after working memory training in healthy adults (Takeuchi
et al, 2013). In addition, the disruption of SN and DMN
connectivity has been observed in dementia (Zhou et al,
2010). Here, the connection between the DMN and SN
was maintained in the training group, but decreased in the
control group. Our results might also suggest that the anti-
correlation of DMN and CEN is relatively sensitive to cognitive
training.

Limitations

Interpreting the present findings requires the consideration of
a few key limitations. First, our demographic characteristics,
such as sample size and educational level, might affect the
generalisability of the results. A larger sample size and a more
consistent educational level among the subjects are necessary
to verify the effect of cognitive training on the resting-state
FC of three networks. Second, because the imaging data
were not acquired at intermediate stages and or immediately
after the completion of training completion, the effects of
training on FCs within and between networks at additional
intermediate timepoints and immediately after the completion
of training are not studied. Third, we considered the effects of
brain atrophy on FC in this work. However, the other focal
damage (i.e., vascular lesions) is prevalent in the population
and may have contributed to our findings. Fourth, the effects
of cognitive training on resting-state FCs of three networks
were observed in our study. This result suggested that the
training was valid in the current population; however, further
work should be performed to verify these conclusions in
other populations. Finally, another control group of younger
subjects should be considered in future work to determine
whether the effects of cognitive training are specific to older
adults.
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