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To address the challenging task of diagnosing neurodegenerative brain disease, such

as Alzheimer’s disease (AD) and mild cognitive impairment (MCI), we propose a novel

method using discriminative feature learning and canonical correlation analysis (CCA) in

this paper. Specifically, multimodal features and their CCA projections are concatenated

together to represent each subject, and hence both individual and shared information

of AD disease are captured. A discriminative learning with multilayer feature hierarchy

is designed to further improve performance. Also, hybrid representation is proposed

to maximally explore data from multiple modalities. A novel normalization method is

devised to tackle the intra- and inter-subject variations from the multimodal data. Based

on our extensive experiments, our method achieves an accuracy of 96.93% [AD vs.

normal control (NC)], 86.57 % (MCI vs. NC), and 82.75% [MCI converter (MCI-C) vs. MCI

non-converter (MCI-NC)], respectively, which outperforms the state-of-the-art methods

in the literature.
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INTRODUCTION

Brain disease or disorder [i.e., Alzheimer’s disease (AD), Parkinson’s disease] has arisen as a serious
social issue in line with aging populations and has garnered great attention over the past decade.
As one of the most common and progressive impairment of cognitive dementia, AD, and mild
cognitive impairment (MCI) mainly occur in the elderly person over 65 years old. Recently, the
Alzheimer’s Association (2014) has reported that the number of elderly people with either AD or
MCI increases significantly, and hence it is of great importance for early diagnosis and symptomatic
treatments of the disease.

Until now, there are a myriad of literature focused on developing computerized methods for the
AD/MCI prediction and diagnosis, and great success has been witnessed in numerous modalities
such as magnetic resonance imaging (MRI; Davatzikos et al., 2010; Cuingnet et al., 2011; Li
et al., 2011; Wee et al., 2011, 2012; Zhang and Shen, 2011; Zhou et al., 2011), positron emission
tomography (PET; Nordberg et al., 2010), and functional MRI (fMRI; Greicius et al., 2004). In the
literature, there are many methods to diagnose this neurological disease via feature or score fusion
(Perrin et al., 2009; Wee et al., 2011; Catana et al., 2012; Westman et al., 2012; Ramirez et al., 2013;
Jiang and Lai, 2014; Suk et al., 2014; Zhu et al., 2014a; Lei et al., 2015a). It was shown in previous
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study that the unimodal data (i.e., MRI or PET) provides
limited information for AD diagnosis, whereas data fusion such
as MRI and PET substantially boosts the diagnostic accuracy
thanks to the complementary information. In addition, it will
boost AD/MCI diagnosis performance by fusing scores and
features. For instance, in Liu M. et al. (2014), single modality
with a hierarchical feature representation was proposed for
the AD/MCI diagnosis and achieved high success. However,
it is still a challenging issue to incorporate features from
different modalities and complex patterns in canonical space for
computer-aided disease diagnosis.

Canonical correlation analysis (CCA) has been successfully
used to fuse features of different modalities in various
applications (Nielsen, 2002; Hardoon et al., 2007; Zhang et al.,
2007; Hardoon and Shawe-Taylor, 2011; Sun et al., 2011, 2013;
Hou and Sun, 2014; Yeh et al., 2014; Yuan et al., 2014). In this
work, we also use CCA for feature fusion with the rationale that
CCA can handle the heterogeneous characteristics of the features
by transforming them into a canonical common space, so that
it becomes easy to construct a robust model of classification. By
investigating information not only from individual modalities,
but also from the shared features, the learning and classification
performance can be further enhanced (Sun et al., 2013). As
proved in Shen et al. (2014), auxiliary features boost classification
performance in some applications. Consequently, the auxiliary
features in a canonical subspace are incorporated for AD disease
diagnosis. Since fusion is highly effective for classification task,
multi-modal data is fused by CCA. In addition, a novel hybrid
level fusion is also designed in our method to enhance diagnosis
performance.

State-of-the-art low-level feature representations and patterns
include cortical thickness, gray matter/voxel intensity extracted
from voxel, patch, or region-of-interest (ROI) are widely used
for AD/MCI diagnosis. Both single feature (Tamaki et al., 2013;
Stanciu et al., 2014) and feature fusion have commonly used for
diagnosis as well. Recently, visual feature such as the densely
sampled scale-invariant feature transformation (SIFT; Jégou
et al., 2012; Vedaldi and Zisserman, 2012; Cinbis et al., 2013;
Gorelick et al., 2013; Sánchez et al., 2013; Lei et al., 2014, 2015b)
has become a very popular feature descriptor. However, this low-
level visual feature often suffers from noises, whereas high-level
or abstract feature is able to withstand the noises to achieve
robustness. Hence, low-level visual features are transformed into
a high-level representation (e.g., histogram of occurrence).

Large feature dimension and small sample size (i.e., “small-n-
large-p” problem) is always a challenging issue to identify clinical
subject correctly via robust modeling. Both feature dimension
reduction and feature selection are promising approaches
to address this challenge, which can also solve over-fitting
problem and reduce computational time. Feature selection is
often useful to find discriminative and informative feature
to obtain encouraging performance. For feature dimension
reduction, widely used and effective methods are CCA,
linear discriminant analysis (Polat et al., 2008), and principal
component analysis (PCA). Essentially, these methods reduce
dimension by mapping the feature into a low dimensional
subspace with a transformation function, but they also suffer

from limited interpretability. Another way to mitigate the
dimension curse is to use popular feature encoding algorithm
such as linear locally embedding (LLE; Shen et al., 2013), support
vector coding (SVC; Yang et al., 2009), and the widely used bag
of feature (BoF) representations (Stanciu et al., 2014) such as
bag of visual word (BoVW; Fei-Fei and Perona, 2005; Lazebnik
et al., 2006), vector locally aggregated descriptors (VLAD; Jégou
et al., 2012; Li et al., 2014), and Fisher vector (FV; Sánchez et al.,
2013; Lei et al., 2015c,d). These methods have shown compelling
results in the computer vision field. Motivated by the promising
performance of BoF, we use both the widely used BoVW and its
variant VLAD for AD/MCI diagnosis and prognosis. Specifically,
we investigate a BoFmethod to identify a particular stage between
AD and healthy normal control (NC). Due to the variations of the
multi-modal data in our database, a novel feature normalization
method is developed to normalize the histogram feature obtained
from the BoF pipeline. To the best of our knowledge, BoF has
neither been used for AD/MCI diagnosis nor was associated with
MRI/PET imaging data analysis.

In previous BoF pipeline, most work mainly concentrated
on shallow structure, which is not desirable due to the
ignorance of feature hierarchy. It has been shown that feature
hierarchy by multilayer feature in the deep structure has
achieved more encouraging results than that without feature
hierarchy (Simonyan et al., 2013). Recently, spatial pyramid
matching (SPM) strategy (Lazebnik et al., 2006) has shown
its promising classification performance by exploring spatial
information (i.e., pairwise and neighboring information) via the
global representation. By partitioning the input signal uniformly
into different regions and scales symmetrically, SPM has proved
to be highly effective to improve descriptive power of the
image representation and recognition accuracy. SPM method
is furthered improved using linear sparse coding (Yang et al.,
2009) and linear locality constrained coding (Wang et al.,
2010). Recently, more advanced methods had been proposed
to improve SPM further, e.g., VLAD (Jégou et al., 2012) and
Fisher kernel encoding with Gaussian mixture model (GMM)
based framework (Sánchez et al., 2013). Due to the powerful
discriminative learning ability, deep learning has becoming a
highly hot topic and gaining more and more popularity in the
recent years, especially in the medical field (Chen et al., 2013).
Actually, deep learning method with hierarchical feature design
has achieved state-of-the-art performance in numerous tasks
(Shin et al., 2013). For AD/MCI brain disease diagnosis, deep
learning has been widely applied as well (Shin et al., 2013; Hjelm
et al., 2014; Suk et al., 2014). For instance, Suk et al. (2014) use
a high-level representation based on deep learning via restricted
Boltzmann machine and deep Boltzmann machine to further
improve performance. Inspired by this, we adopted a similar
idea of deep learning method for the feature structure design.
A feature hierarchy with multi-layer design is developed for
the feature representation. Also, a novel feature normalization
method is designed in order to reduce feature variations in
different hierarchy.

Overall, we propose a novel framework for AD/MCI
classification by learning discriminative features and fusing
features of different modalities via CCA. The main contributions
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of our work are four-fold: (1) MRI and PET data are fused
via CCA to make use of both individual and common features;
(2) Deep feature architecture with multi-layer design and
discriminative learning in feature encoding is investigated;
(3) Different level of fusion method is developed to boost
the diagnosis performance; (4) Novel feature normalization
method is devised to improve the classification performance.
Based on our extensive experiments on the ADNI dataset,
our method achieves a classification accuracy of 96.93%
(AD vs. NC), 86.75% (MCI vs. NC), and 82.75% [MCI
converter (MCI-C) vs. MCI non-converter (MCI-NC)], which
outperforms the state-of-the-art methods in the literature. The
promising results validate the efficacy of CCA-based feature
fusion and BoF-based feature representation for AD/MCI
diagnosis.

MATERIALS AND METHODS

Materials and Dataset
The publicly available ADNI dataset initialized by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies, and
non-profit organizations has been utilized for performance
evaluation. By utilizing MRI, PET, and other biomarkers, ADNI
aims to facilitate the measurement of MCI progression and
early AD. Until now, there are more than 800 senior adults
participated this project. Specifically, an approximate of 200
cognitively normal older individuals follow up with the study
for 3 years, and 400 people with MCI follow up for 2 years.
Each local institutional review board approved the research
protocol, and the written informed consent was obtained from
each participant.

Subjects
In this work, the pubic available ADNI dataset is utilized, but only
the baseline MRI and 18-fluorodeoxyglucose PET (FDG-PET)
data are used. There is a total of 93 AD subjects, 204MCI subjects
including 76 MCI converters (MCI-C), 128 MCI non-converters
(MCI-NC), and 101 NC subjects. A detailed description of
the clinic and demographic information is summarized in
Table 1.

TABLE 1 | Clinical and demographic statistics (SD: standard deviation).

AD (93) MCI(204) NC(101)

Female/Male 36/57 68/136 39/62

Age(mean ± SD) 75.49 ± 7.4 74.97 ± 7.2 75.93 ± 4.8

Age[min–max] [55–88] [55–89] [62–87]

Education(mean ± SD) 14.66 ± 3.2 15.75 ± 2.9 15.83 ± 3.2

Education[min–max] [4–20] [7–20] [7–20]

MMSE(mean ± SD) 23.45 ± 2.1 27.18 ± 1.7 28.93 ± 1.1

MMSE[min–max] [18–27] [24–30] [25–30]

CDR(mean ± SD) 0.8 ± 0.25 0.5 ± 0.03 0 ± 0

CDR[min–max] [0.5–1] [0–0.5] [0–0]

Among ADNI eligibility criteria (Alzheimer’s Association,
2014), all subjects are aged from 55 to 90, an independent
evaluation of functioning is conducted by study partner. The
criteria (Suk et al., 2014) for general selection is as below:
(1) NC subjects have MMSE scores ranging from 24 to 30
(inclusive), and a clinical dementia rating (CDR) of 0, which are
non-depressed, non-MCI, and non-demented as well; (2) MCI
subjects have MMSE scores ranging from 24 to 30 (inclusive),
with complaint of memory loss. Objective memory loss measured
by education adjusted scores on Wechsler Memory Scale Logical
Memory, a CDR of 0.5, an absence of significant levels of
impairment in other cognitive domains. MCI preserves daily
living activities and dementia absence essentially. MMSE score
of mild AD ranges between 20 and 26 (inclusive), and CDR
of mild AD normally is 0.5 or 1.0. All the criteria satisfy the
National Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS/ADRDA) criteria for probable AD.

MRI/PET Scanning and Image Processing
All structural MR images in this study were obtained from
1.5T scanners and downloaded in a Neuroimaging Informatics
Technology Initiative (NIfTI) format. The preprocessing of
these images includes spatial distortion correction caused by a
gradient nonlinearity and B1 field inhomogeneity. The FDG-
PET images were obtained 30–60min post-injection, averaged,
spatially aligned, interpolated to a standard voxel size, intensity
normalization, rescaled to a common resolution of 8mm, and
with a full width at half maximum.

By applying the preprocessing such as the typical procedures
of Anterior Commissure (AC)–Posterior Commissure (PC)
correction, skull-stripping, and cerebellum removal, the MR
images were preprocessed using MIPAV software 6 for AC–
PC correction and resampled images to 256 × 256 × 256.
N3 algorithm (Sled et al., 1998) is also applied to refine non-
uniform tissue intensities. Skull stripping (Wang et al., 2014)
and cerebellum removal are first applied, and the skull-stripped
images are manually checked to ensure the clean and dura
removal. FAST in FSL package 7 (Zhang et al., 2001) was
employed to split the structural MR images into three tissue types
of gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF). Finally, all the three tissues were spatially normalized
onto Kabani et al.’s atlas (Kabani et al., 1998). Although there
are numerous advanced registration methods available for this
process (Xue et al., 2006; Tang et al., 2009; Jia et al., 2010),
the registration via HAMMER (Shen and Davatzikos, 2002) is
selected and applied. Then, the regional volumetric maps named
as RAVENS maps were produced by a tissue-preserving image
warping method (Davatzikos et al., 2001). Given a quantitative
representation of the spatial distribution of tissue types, the
values of RAVENS maps are in a positive proportion of the
amount of original tissue volume for each region. Since the
high relation of AD/MCI and GM compared to WM and CSF
(Liu et al., 2012), only the spatially normalized GM volumes
(e.g., GM tissue densities) is considered for diagnosis in this
work. Moreover, the FDG-PET images were rigidly aligned to the
respective MR images. To improve signal-to-noise ratio, the GM
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density maps and PET images went through Gaussian smoothing
further by a kernel method same as Liu M. et al. (2014), which
shorten the computation time and reduces memory requirement
without performance degradation.

Methods
System Overview
The flowchart for the AD/MCI diagnosis is illustrated in
Figure 1. The system inputs are the preprocessed MRI and PET
imaging data. The CCA filter-bank is applied to the input MRI
and PET data to extract the common features of each sample
between MRI and PET imaging data. For both MRI and PET
modalities, a densely sampled SIFT descriptor (Vedaldi and
Zisserman, 2012) is utilized to extract visual features from the
input patches. As illustrated in the flowchart, the GM intensities
of MRI and PET data are represented by component-wise dense
SIFT descriptor. To enhance feature discriminability by exploring
the intrinsic common feature, both MRI and PET modalities
are fused with a canonical representation. Subsequently, we
construct a histogram-based feature vector. Inspired by the
explicit feature mapping using the non-linear kernel strategy in
Vedaldi and Zisserman (2012), the kernel mapping method is
applied in the diagnosis framework for performance boosting.
After kernel mapping, the final histogram feature vectors are
normalized and concatenated. Finally, support vector machine
(SVM) classifier is utilized to classify the AD/MCI disease.

The detailed procedure of the feature vector construction
is illustrated in Figure 2. Specifically, the input MRI and PET
data is partitioned into disjoint divisions at different scales to
take advantage of spatial information and further increase the
discriminability of the descriptor. In each division, the densely
sampled SIFT feature (Vedaldi and Zisserman, 2012) is built.
The extracted low-level dense SIFT features from each division
is encoded to generate the visual words based vocabulary, for
which we use the techniques of K-means clustering technique.
An associated approximate nearest neighbor (ANN) determining
the closest visual word to each descriptor based on a forest of
randomized K-d tree is also recorded in the vocabulary (Muja
and Lowe, 2014) to incorporate the neighboring information.
This enables fast medium and large scale nearest neighbor queries
among high dimensional data points (such as those produced by
SIFT). TheK-d tree data structure is able to quickly solve nearest-
neighbor queries for the histogram representation. The entire
histograms are concatenated from different divisions, and final
concatenated histograms are constructed to form a long feature
vector.

CCA
Feature fusion has been proved to be quite effective to greatly
enhance the performance in a myriad of fields (Sun et al.,
2013; Liu M. et al., 2014; Suk et al., 2014; Zhu et al., 2014a).
In the AD/MCI diagnosis, MRI and PET modalities have
played important roles as appearances, pattern, function, and

FIGURE 1 | Flowchart for the AD/MCI diagnosis system. Feature extraction is based on both MRI and PET data. For the input MRI and PET data, CCA is first

performed to extract the shared information between MRI and PET. And then the visual feature is extracted based on both the input MRI and PET data, and the fused

data after CCA filterbank. A histogram representation is established based on the extracted feature by the standard BoF pipeline. The kernel mapping and

normalization are applied to facilitate the classification. The final AD diagnosis results are based on the decision rule in the SVM classifier.
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FIGURE 2 | Illustration of the feature vector formation using MRI imaging data only. Each MRI imaging data is partitioned into different layouts using

multi-scale techniques. In each patch, a SIFT feature is calculated and vector quantized into a visual word. The SIFT descriptor is extracted from all patches, all scales

and all layouts. The descriptors from all the training data are mapped to visual words by K-means clustering technique to build a visual word vocabulary. The

histogram of the BoVW representation is simply an occurrence count of the number of SIFT vectors assigned to each visual word. In the representation, the histogram

has K bins generated by K-means. Each bin denotes an occurrence count of the SIFT vectors associated with that visual word. In this way, the imaging data is

encoded into a feature vector.

structure are highly correlated with each other. With this
high correlation, multimodal imaging feature fusion is able to
enhance classification performance. It is known that CCA is a
typical method to take the maximal advantage of the correlation
among the multivariate random variables (Hardoon et al., 2004).
Different from the previous study, CCA is investigated to identify
the shared feature, and hence there is more information available
in the feature subspace. By maximizing the correlation coefficient
in a common space, fusing multimodal data by CCA can be used
to extract the shared feature representation between MRI and
PET (Zhu et al., 2014b).

Supposing that we have MRI and PET data (d-dimensional
features from two different modalities of n samples) as follows:

X(1) ∈ Rd×n,X(2) ∈ Rd×n (1)

X = [X(1);X(2)] ∈ R2d×n (2)

Where, the superscripts (1) and (2) denote MRI and PET,
respectively. Given the covariance matrix of MRI and PET

data is
∑
=

(
611 612

621 622

)
, CCA finds the projection matrices,

B(1) ∈ Rd×d,B(2) ∈ Rd×d, by maximizing the correlation among
features projected into the common space as follows:

(
B̂(1), B̂(2)

)
= arg max

(B(1),B(2))

B(1)T
∑

12 B
(2)

√
B(1)T

∑
11 B

(1)
√
B(2)T

∑
22 B

(2)

(3)

This objective function can be solved by generalized eigen-
decomposition. Thus, our canonical feature representation, Z(1)

and Z(2), can be obtained by a weighted linear combination of the
basis vectors as follows:

Z(1) =

(
B̂(1)

)T
X(1),Z(2) =

(
B̂(2)

)T
X(1) (4)

To increase discriminative ability, we combine the original
features and the canonical feature representation together

F = [X(1);X(2);Z(1);Z(2)] ∈ R4d×n (5)

After constructing augmented feature vectors, the classification
performance can be boosted with available auxiliary training
data from the canonical projection (Shen et al., 2014). Namely,
the augmented training data from other sources can provide
better results compared to the original data if the extra and
existing data have high correlation. By concatenating the MRI
and PETmultimodal information and canonical representations,
the common and individual features are learned jointly, which
benefits the AD/MCI diagnosis and prognosis.

Deep Feature Architecture
Most of the previous studies focused on handcrafted features.
However, this pipeline with a global feature vector is too
shallow. As reported in Simonyan et al. (2013), feature
hierarchy by multilayer feature is very effective to enhance the
performance in that this structure builds the feature hierarchy
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for performance improvement. It is also demonstrated that
deep learning representation with multilayer, e.g., convolutional
neural network (CNN; Shin et al., 2013), delivers state-of-the-
art performance in a myriad of classification tasks. In this
regard, we design a deep multi-layer architecture for feature
representation. Specifically, we first extract SIFT local features
from the densely constructed patches as 0th layer. Since the
low-level features are often indiscriminative and vulnerable to
noises, they are mapped to middle-level features. As illustrated in
Figure 3, we build a deep feature architecture to take advantage
of the spatial information. Feature spatial layout strategy which
divides an image into disjoint divisions (illustrated in feature
formation steps in Figure 2) is also developed to explore
the spatial information. Namely, the first layer only contains
the feature extracted from all data without any partitioning.
The second layer feature contains the disjoint subdivision
information from the original modality, the deep feature
architecture contains both first and second layer information
from the original imaging modality and the subdivisions from
the original imaging modality, whereas the first layer only
contains the original imaging modalities information without
any partitioning. By incorporating more spatial information, the
deep feature architecture design has the capability to enhance the
diagnosis performance.

Feature Encoding
In our method, feature encoding is explored to map the
extracted local features to codes. Compared with the local feature
methods, the main advantage of encoding is that codes can be
compared with simple Euclidean distance. Another advantage is
that it is much easier to be learned by a classifier. Compared
with feature selection methods (Chu et al., 2012; Zhu et al.,
2014b), feature encoding gains an advantage by discriminative
learning using high order statistics. Namely, feature selection
only selects the discriminative or essential feature from the
existing features, whereas feature encoding not only identifies the
essential feature, but also incorporates high order statistics (e.g.,
co-covariance) and probability weights based on discriminative
learning. The high order feature statistics provide auxiliary and
useful information for classification, and high order statistics in
feature encoding achieve better classification performance than
that without them.

Before feature encoding, the clustering method is first applied
to group the feature descriptors into different clustering centroid
based on the similarity (Rodriguez and Laio, 2014). K-means
(Leung and Malik, 2001) and spectral clustering (Ng et al., 2002)
are popular clustering methods. Since K-means is probably one
of the most popular ways for this task, it is selected in our
method to construct codebook. Given a set of local features,
x1, . . . , xm, . . . , xM , the objective of clustering is to find the
representative K clusters, d1, . . . , dk, . . . , dK . For each feature
xm, we define an indicator vector λm ∈ {0, 1}

K that indicates
which cluster the feature vector belongs to. λmk becomes 1 if
feature vector xm is assigned to them-th cluster, and 0 otherwise.

It is known that the incorporating constraints into local
structure increases robustness against noises (Yang et al.,
2009). Figure 4 illustrates different structures used in
clustering methods. VQ is the traditional method, which
selects the nearest neighboring and encodes it as 1. The
coding without any constraint clusters all the codes together,
which is time consuming and indiscriminative. In contrast,
the locally constrained coding only selects the K nearest
neighbors and encodes them for learning. VLAD adopts
the locally constrained coding strategy, which not only
reduces computational time, but also increases discriminability
as well.

Once a codebook learnt by K-means, µ1, . . . , µm, . . . , µM ,
we obtain a VLAD

1) Assign neighboring:

NN (xm) = argminµk
‖xm − µk‖ (6)

2) Compute vk:

vk =
∑

xm:NN(xm)=µk

xm − µk (7)

3) Concatenate vk and normalize all feature vectors.

By concatenating the vectors together, we obtain a VLAD
representation. The main purpose of encoding is to discriminate
the distributional difference between a test image and all
fitted training images. Essentially, BoVW is a simple counter
of feature distribution and represented by the first moment
information (i.e., cluster means), and the VLAD keeps both
the first moment information and the residual information (i.e.,

FIGURE 3 | The deep feature architecture for the AD diagnosis.
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FIGURE 4 | Illustration of the clustering method (A) VQ; (B) coding without constraint; (C) locally constrained coding.

mean and covariance of the distribution). One advantage of
this is having the best representation of the feature descriptor
distribution for discriminative classification. Another advantage
is the alternative soft assignment of feature descriptor to the
visual words is possible since the feature descriptor is distributed
across several bins.

Feature Normalization
In our dataset, testing and training data from different
modality cause numerous variations in feature representation.
A normalized feature representation helps improve classification
accuracy (Sánchez et al., 2013) and hence feature normalization is
first employed to lower the variance. lp-norm is a useful method
to address the variation problem. After feature normalization,
it is also shown that histogram normalization is especially
beneficial for the SVM classifier (Vedaldi et al., 2009; Vedaldi and
Zisserman, 2012). The widely applied normalization approaches
include l1 normalization and l2 normalization. Since the
large components can lead to suboptimal performance by
affecting the SVM decision score with a dominating similarity,
this effect should be suppressed. The signed square root
normalization (a.k.a., power normalization) is used to suppress
large components (Sánchez et al., 2013):

x← sign(x)|x|ρ, 0 ≤ ρ ≤ 1 (8)

where, ρ was set to 0.5 in our experiments, which is the same
setting as that in Sánchez et al. (2013).

However, the drawback of traditional normalization method
is the ignorance of the global and relational information among
different subjects. To explore more relational information, a
comprehensive normalization algorithm, namely, L2AL2W, is
developed. This method makes use of the relation across and
within subjects to enhance the AD/MCI diagnosis performance.
Specifically, L2AL2W first performs l2 normalization for training
and testing data of different subjects (across subject), and then
l2 normalization is applied to the same feature vectors from the
same subject (within subject). L2AL2W takes advantage of the
relation between subject and feature, the decision boundary of the
classifier is modified by the updated feature distribution, namely,
the features are scaled based on both the subject information
and feature information. The rationale behind the normalization

method is that normalized histogram is distributed in the finite
dimensions within [0,1]. By applying normalization across and
within subjects, not only inter-subject variations are reduced,
intra-subjects variations are probably expanded. Accordingly,
competing classification results are obtained by affecting decision
boundary of SVM classifier.

Fusion Strategy
Figure 5 illustrates both low-level modality fusion and hybrid
level fusion. Low-level modality fusion involves concatenation of
multiple modalities and their corresponding CCA projections.
That is, MRI and projected MRI via CCA (MRIC), PET and
projected PET via CCA (PETC), are concatenated together. For
hybrid representation, the widely applied encodingmethods such
as BoVW and VLAD are explored. Initially proposed by Jégou
et al. (2012), VLAD is an improved version of BoVW obtained
by aggregating BoVW representation with high order statistics.
Both BoVW and VLAD representation are promising ways for
classifying patterns distinctively via discriminative learning. To
make use of both, we propose to combine them at the classifier-
level. Let SBoVW and SVLAD denote the scores from the two
classifiers, to which BoVW and VLAD representations are fed
into as inputs, respectively. We then combine the scores as
follows:

S = αSBoVW + (1− α)SVLAD (9)

where, α is a fusion weight. The weight is chosen adaptively based
on cross-validation.

The motivation behind the hybrid level fusion is that low-
level fusion is effective when MRI and PET modality is highly
correlated, whereas the score level fusion is effective when
each subject is independent with each other. However, each
modality is neither fully correlated nor each subject is fully
independent, and the simple fusion method may not achieve a
satisfying result. Hybrid fusion takes advantage of both BoVW
and VLAD representation together, which is able to boost
the diagnosis performance with feature complementarities in
the standard BoF pipeline. This simple yet effective feature
representation benefits from exploration of different encoding
methods, and thus the state-of-the-art performance can be
obtained.
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FIGURE 5 | Illustration of different fusion methods; (A) modality fusion; (B) hybrid level fusion.

EXPERIMENTAL RESULT

Experiment Setup
Both the individual feature and shared feature fusion by CCA is

evaluated in our experiments to validate the effectiveness of three

binary classifiers for AD vs. NC, MCI vs. NC, MCI converter

(MCI-C) vs. MCI non-converter (MCI-NC). The performance

evaluation is based on 10-fold cross validation, that is, each

dataset is randomly partitioned into 10 subsets, where 10 and 90%

is used for testing and training, respectively. Each experiment is

repeated 10 times to remove the introduced bias. A linear SVM

classifier is utilized for the performance evaluation. The methods

in Liu M. et al. (2014) and Suk et al. (2014) are selected for

performance comparison based on the same dataset since they

are similar. Same as Suk et al. (2014), the diagnostic performance

is quantitatively evaluated by the recognition accuracy (the

disease status of subjects is correctly classified as the actual disease

status of the subjects in each class) (ACC), sensitivity (SEN),

specificity (SPEC), balanced accuracy (BAC), positive predicted

value (PPV), negative predictive value (NPV), area under the

receiver operating characteristic curve (AUC) is also utilized for

the evaluation metrics. The same definition of the quantitative

measurements as Suk et al. (2014) are utilized to evaluate the

diagnosis performance, which are denoted as below:

• ACC= (TP+TN)/(TP+TN+FP+FN)

• SEN= TP/(TP+FN)

• SPEC= TN/(TN+FP)

• BAC= (SEN+SPEC)/2

• PPV= TP/(TP+FP)

• NPV= TN/(TN+FN)

where TP, TN, FP, FN are true positive, true negative, false

positive, and false negative, respectively.

Diagnosis Results
Table 2 summarizes the classification results for AD/MCI
diagnosis and prognosis, where MRIPET means the simple
concatenation of MRI and PET, and MRIPETHF means
the hybrid level fusion of MRI and PET. The performance
comparison of both Liu et al.’s and Suk et al.’s methods are
also summarized in Table 2. For the AD and NC classification,
compared with Suk et al.’s Suk et al. (2014) and Liu et al.’s
Liu M. et al. (2014) methods, the proposed method exhibited
maximal accuracies of 96.93% (AD vs. NC), 86.57% (MCI
vs. NC), and 82.75% (MCI-C vs. MCI-NC), respectively. The
accuracy of the proposed method is slightly higher than Suk
et al.’s method, but it shows a significant improvement over Liu
et al.’s method. Specifically, compared with the best performance
of Suk et al.’s method, the proposedmethod shows a performance
improvement of 1.66% (AD vs. NC), 1.05% (MCI vs. NC), and
8.34% (MCI-C vs. MCI-NC). Discrimination between MCI-C
and MCI-NC are the most challenging for early treatment and
diagnosis. For MCI-C and MCI-NC classification, our method
has an improvement of 10.63% (MRI), 12.96% (PET), 8.34%
(MRI+PET), respectively, over Suk et al.’s method.

Probability of misdiagnosing AD/MCI patients reduces with
increasing sensitivity, and probability of misdiagnosing NC as
AD/MCI reduces with increasing specificity. It can be seen
that the proposed method has a lower performance than Suk
et al.’s method in some cases in terms of sensitivity and
specificity. It is obvious that our method outperforms Liu et al.’s
method significantly especially for the MCI-C and MCI-NC
classification.

Based on the PPV and NPV results for AD, MCI and MCI-
NC, it can be observed that PPV and NPV results are quite good.
That is, the high percentage of AD,MCI, orMCI-NC subjects can
be diagnosed correctly. From the above-mentioned quantitative
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TABLE 2 | Diagnosis results.

Method Modality ACC(%) SEN(%) SPEC(%) BAC(%) PPV(%) NPV(%) AUC(%)

AD/NC Liu M. et al., 2014 MRI 90.18 ± 5.25 91.54 90.61 90.67 88.94 90.67 96.20

PET 89.13 ± 6.81 90.06 89.36 89.71 88.49 89.26 95.94

MRIPET 90.27 ± 7.02 89.48 92.44 90.96 90.56 88.7 96.55

Suk et al., 2014 MRI 92.38 ± 5.32 91.54 94.56 93.05 92.65 90.84 96.97

PET 92.20 ± 6.70 88.04 96.33 92.19 95.03 89.66 97.98

MRIPET 95.35 ± 5.23 94.65 95.22 94.93 96.80 95.67 98.77

Proposed MRI 91.76 ± 6.14 91.01 91.54 92.44 92.17 90.86 92.44

PET 90.89 ± 5.81 93.32 88.01 91.53 88.96 91.32 91.53

MRIPET 94.4 ± 5.65 97.35 90.79 95.03 91.72 93.25 95.03

MRIPETHF 96.93 ± 2.65 97.48 93.65 96.41 99.09 94.16 95.7

MCI/NC Liu M. et al., 2014 MRI 81.00 ± 4.98 97.08 48.18 72.63 79.14 88.99 72.63

PET 81.14 ± 10.22 96.03 52.59 74.31 80.26 84.16 74.31

MRIPET 83.9 ± 5.80 98.97 52.59 75.78 81.18 97.22 75.78

Suk et al., 2014 MRI 84.24 ± 6.26 99.58 53.79 76.69 81.23 98.75 76.69

PET 84.29 ± 7.22 98.69 56.87 77.78 81.99 94.57 77.78

MRIPET 85.67 ± 5.22 95.37 65.87 80.62 85.02 89.00 80.62

Proposed MRI 83.52 ± 5.38 92.07 50.28 84.98 79.99 88.75 84.98

PET 82.95 ± 6.37 91.78 50.64 77.25 81.09 90.43 77.25

MRIPET 83.67 ± 5.49 91.03 51.12 78.39 82.48 91.23 78.39

MRIPETHF 86.57 ± 4.72 95.41 52.79 82.03 81.26 92.42 82.03

MCI-C/MCI-NC Liu M. et al., 2014 MRI 64.75 ± 14.83 22.22 89.57 55.90 46.29 77.39 55.90

PET 67.17 ± 13.43 40.02 82.61 61.32 64.13 70.31 61.32

MRIPET 73.33 ± 12.47 33.25 97.52 65.38 80.00 73.18 65.38

Suk et al., 2014 MRI 72.42 ± 13.09 36.70 90.98 55.90 46.29 77.84 55.90

PET 70.75 ± 13.23 25.45 96.55 61.32 64.13 70.69 61.32

MRIPET 75.92 ± 15.37 48.04 95.23 65.38 80.00 74.33 65.38

Proposed MRI 80.12 ± 8.65 62.42 89.06 81.52 82.14 84.55 81.52

PET 79.92 ± 4.72 59.37 91.12 82.45 85.14 86.98 82.45

MRIPET 81.57 ± 8.66 66.52 89.96 79.67 83.41 88.92 79.67

MRIPETHF 82.75 ± 4.81 77.29 95.08 85.27 90.36 90.23 85.27

measurements, it can be shown that our method outperforms the
competing methods in most cases. The main reason is that multi-
modality data and fusion improve the classification performance
significantly.

Due to imbalance between classes [i.e., AD (93 subjects),
MCI (204 subjects; 76 MCI-C and 128 MCI-NC subjects),
and NC (101 subjects)], low sensitivity (MCI vs. NC) or
specificity (MCI-C vs. MCI-NC) is obtained. The balanced
accuracy is calculated to avoid inflated performance estimates
on imbalanced datasets. From BAC result, it is clear that
the proposed method performs better than Liu et al.’s and
Suk et al.’s methods.

Unlike hierarchical fusion method (Liu M. et al., 2014) and
traditional methods of concatenating features from multiple
modalities into a long vector (Suk et al., 2014; Zhu et al., 2014a),
both CCA and discriminative learning are investigated to fuse
multimodal data with consideration of common and essential
features from different feature spaces (Hardoon et al., 2004; Shen
et al., 2014).

Effect of Different Modalities
Figure 6 shows the diagnosis results with different fusion
method, where MRIPET means simple concatenation,
MRIPETLF means the modality level fusion of MRIPET,
and MRIPETHF means hybrid level fusion including both
modality fusion and score fusion. It is known that the increased
in performance by modality fusion is mainly due to the feature
complementarity. The complementarity is not limited to the
exploration of different modality, which can be further extended
into different encoding methods. Since VLAD extends BoVW’s
zero statistics by introducing high order statistics, these two
encoding methods have essential complementary information
for each other. Better performance can be obtained by the hybrid
representation than simple representation. It can be seen that
hybrid fusion is the best choice for all scenarios, which indicates
that multiple descriptors are highly correlated in the modality
level. In general, fusion method is quite effective to improve
the performance, and hybrid level fusion generally outperforms
the simple concatenation. Based on the above observations and
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FIGURE 6 | Diagnosis results with different modalities. (A) AD vs. NC; (B) MCI vs. NC; (C) MCI-C vs. MCI-NC.

analysis, we can conclude that fusion method is able to boost
AD/MCI diagnosis performance.

Effect of Feature Hierarchy
It is known that a single layer is not sufficient to improve
the performance due to its shallow representation, and hence
feature hierarchy based on multiple layers is utilized. Besides,
the combination of the single layer and multiple layers (stacked)
will further boost the performance. In this section, we compare

the performance of the single layer, multiple layers, as well
as the stacked representation. The quantitative analysis of
different layers in the feature representation is performed
and demonstrated in Figure 7. In the baseline, the shallow
representation with a single layer achieves accuracies of
91.32, 77.67, 80.25%, respectively. A significant performance
boosting has achieved by injecting a single intermediate
layer, which leads to 3.15% improvement in terms of the
accuracy, whereas the stacked representation further improves
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FIGURE 7 | Diagnosis results with different layers. (A) AD vs. NC; (B) MCI vs. NC; (C) MCI-C vs. MCI-NC.

accuracy by 8.34%. The encouraging results obtained by
adding a single intermediate layer based on similar deep
learning architecture. In fact, the state-of-the-art performance
is achieved by stacked representation in our proposed
method.

Figure 8 shows the receiver operating characteristic (RoC)
curves of the proposedmethod based on the single layer, multiple
layers, and stacked representation. It is obvious that the proposed
hybrid fusion achieves the best performance in all experiments.

Effect of Different Normalized Methods
Apart from conventional normalization methods, novel
normalization methods are proposed, and evaluated for super
vector based encoding methods. l2 Normalization generally
outperforms l1 normalization when the kernels are utilized
in the classifier. The main explanation is: if K

(
x, y

)
= xTy is

interpreted as a distance score nearest to itself, when the kernel
K

(
x, y

)
is used in the linear SVM classifier, l2 normalization

can guarantee: K
(
x, y

)
= C and K(x, x) > K

(
x, y

)
, and
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FIGURE 8 | RoC results with different layers. (A) AD vs. NC; (B) MCI vs. NC; (C) MCI-C vs. MCI-NC.

hence a simple consistency criterion is achieved. However, the
choice of l1-normalization is unable to ensure this criterion
and leads to instability in the SVM training. In view of
this, only l2 normalization is compared and reported in this
section. Figure 9 illustrates the experimental results in terms
of different normalization methods, where Sqrt denotes the
power normalization, L2A means L2 normalization across the
subjects, and L2AL2W represents the inter- and intra-subject
normalization. Several observations can be concluded from these
results:

1. For the support vector based encoding methods,
normalization is a promising way to reduce variations
and make maximal use of the relational information across
and within subjects.

2. The feature bursts of the background can be suppressed by
the power normalization method. By removing the bursting
effect, the power normalization is especially effective to boost
the super-vector based representation using the sum pooling.

3. Generally, l2 normalization achieves good performance with
the linear SVM.

Classification Performance Using Kernel
Mapping
As shown in Vedaldi and Zisserman (2012), the classification
performance can be boosted by kernel mapping, which
approximate the feature map via non-linear kernel. The
motivation is to use non-linear mapping for the linear SVM
method to reduce the computation time. This kernel trick can be
applied for distance metric based algorithms. The classification
algorithm based on inner product (i.e., linear SVM) is computed
in a non-linear way via inner product with a suitable kernel
or feature map. For example, feature map for Hellinger (or
Bhattacharyya) kernel is obtained by calculating the element-
wise square root. It is shown that the Hellinger kernel is equal
to the Euclidean distance in feature map. Hellinger kernel is
demonstrated to produce superior results than a linear kernel.

The performance with and without kernel mapping of our
proposed method is shown in Figure 10. The linear algorithm
(Linear) and nonlinear mapping kernels including chi2-square
kernel (Kchi2), Jensen-Shannon kernel (Kjs) are evaluated. The

optimal parameters for kernel mapping are selected via grid
search. Generally, the approach without kernel obtains the worst
performance for AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-
NC classification results, which justifies the significance of the
kernel mapping for the disease diagnosis. It can be observed
that Kjs kernel achieves superior performance among different
kernels, whereas the combined method achieves the highest
performance. Generally, kernel based mapping outperforms the
nonlinear method, and combined method achieves the state-of-
the-arts performance.

Comparison with State-of-the-Art Methods
The diagnosis performance is also compared with the state-of-
the-art algorithms with and without multi-modality information
in the widely applied AD vs. NC, and MCI-C vs. MCI-NC
classification tasks. Since different datasets and approaches may
have different features and classifiers, direct fair comparison is
difficult or impossible. Nevertheless, the achieved accuracy in the
classification problems shows the effectiveness of the proposed
method. Tables 3, 4 summarized comparisons of different
algorithms for AD vs. NC and MCI-C vs. MCI-NC classification,
respectively. It can be seen that the fusion methods are generally
quite effective for the AD/MCI diagnosis. Multimodality and
multi-atlas are also able to enhance the classification performance
than the unimodal and single atlas methods.

DISCUSSIONS

Although efficacy is achieved in our experiments for the three
classification problems, there are still some limitations of the
proposed method. First, it is quite difficult to interpret the
brain and neurodegenerative disease (i.e., AD or MCI) using
feature representation in the clinical application. There is not
sufficient clinical information to find the brain ROI regions for
the clinical understanding of the brain abnormalities. Second,
the parameters for feature extraction, clustering and coding
may not be optimally determined. Intensive study is also
required to find the optimal parameter via optimization method.
Third, only MRI and PET modalities are explored in this
study, more auxiliary information such as CSF and clinical
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FIGURE 9 | Diagnosis results with different normalization methods. (A) AD vs. NC; (B) MCI vs. NC; (C) MCI-C vs. MCI-NC.

information may be beneficial for the AD/MCI if they have high
correlations. Also, there is other information available such as
cognitive, genetics, proteomics, and psychological perspective,
which may further improve the performance. Fourth, modality

level fusion emphasizes the dependence in imaging approaches,
high dimensional features in the codebook training, which
causes the instability in the unsupervised training. Finally,
discriminative feature encoding methods are able to achieve very
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TABLE 3 | Algorithm comparison for AD vs. NC classification results.

Algorithm Subject Modality AD vs. NC (%)

Zhang and Shen, 2011 51AD+99MCI+52NC PET+MRI 90.6

Zhang and Shen, 2011 51AD+99MCI+52NC PET+MRI+CSF 93.2

Hinrichs et al., 2011 48AD+66NC PET+MRI 87.6

Hinrichs et al., 2011 48AD+66NC PET+MRI+CSF+APOE+cognitive scores 92.4

Kohannim et al., 2010 88AD+115NC Multi-atlas 86.0

Liu et al., 2012 198AD+229NC Single atlas 90.8

Gray et al., 2013 51AD+99MCI+52NC PET+MRI 94.37

Liu et al., 2014 51AD+99MCI+52NC 92.82

Min et al., 2014 91AD+128NC Data-driven GM ROI 91.64

Zhu et al., 2014a 51AD+99MCI+52NC PET+MRI+CSF 95.9

Suk et al., 2014 128AD+169MCI+101NC MRI+PET 95.35

Proposed 128AD+169MCI+101NC MRI+PET 96.93

TABLE 4 | Algorithm comparison for MCI-C vs. MCI-NC classification results.

Algorithm Subject Modality MCI vs. NC (%)

Davatzikos et al., 2010 69MCI-C+170 MCI-NC CSF+MRI 61.7

Cuingnet et al., 2011 76MCI-C+134MCI-NC Single-atlas 70.4

Zhang and Shen, 2011 38MCI-C+50MCI-NC PET+MRI +CSF+APOE 78.4

Coupé et al., 2012 167MCI-C+238MCI-NC MRI 71.0

Kohannim et al., 2010 54MCI-C+115MCI-NC Multi-atlas 72.1

Young et al., 2013 47MCI-C+96MCI-NC PET+MRI 74.1

Min et al., 2014 117MCI-C+117MCI-NC Multi-atlas 72.41

Zhu et al., 2014a 51AD+99MCI+52NC PET+MRI CSF 72.6

Suk et al., 2014 128MCI-C+76MCI-NC PET+MRI 75.42

Proposed 128MCI-C+76MCI-NC PET+MRI 82.75

promising performance with histogram level representation, but
the final dimension of combined representation is large. High
dimension may render the SVM classifier to be computational
intensive, and the codebook size of the super vector generated
from the encoding algorithm is too small. Meanwhile, there
are some suggestions to address these limitations. The fusion
different feature representation could be an effective way
to interpret AD disease. The optimal parameters can be
obtained by inner cross validation or evolutional algorithm
such as genetic algorithm. However, it takes a long time
to compute the best parameters. More modality should be
considered to boost the performance. Lastly, high dimension
problem can be addressed by feature dimensionality reduction
algorithm.

Overall, we can have the following findings summarized
based on the extensive experiments. First, transforming the
local feature from descriptor to codeword space and from
0-th statistics to high order statistics is able to boost the
classification performance (Sánchez et al., 2013). Second, fusion
of different level of modalities and hybrid level representation
are able to improve the performance greatly. Third, feature
normalization is often ignored in previous studies. Novel intra-
and inter-normalization strategies are developed instead of
using the previous normalization method. This novel feature

normalization has the capability to reduce the variations and
makes use of the relational data as well due to a large number of
the unrelated feature. Feature normalization is highly important
to boost the performance. Last but not least, it is important
to preprocess the data to enhance the diagnosis performance.
Generally, discriminative learning based representation is quite
effective and efficient to encode data and obtain promising
results. The sparse feature is not stable and reliable enough to
achieve encouraging AD/MCI results. Hard assignment may not
have discriminability power for the code words, whereas the
soft assignment is able to further distinguish the neuro-disease
by the enhanced discriminative power of the generated visual
words.

CONCLUSIONS

In this paper, a fusion method via shared and individual feature
representation based on MRI and PET is proposed for AD/MCI
diagnosis. Different from the unimodal method using GM
intensities only, both MRI and PET features are fused together
to incorporate the complementary feature. CCA is employed
to identify the latent and joint feature from multi-modality in
the feature representation. The complementary feature from
MRI and PET can boost the performance. Novel normalization
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FIGURE 10 | Diagnosis results with different kernels; (A) AD vs. NC; (B) MCI vs. NC; (C) MCI-C vs. MCI-NC.

method is designed to further improve the performance. It
is found that kernel technique with feature hierarchy could
further improve the performance. Extensive experimental on
publicly available ADNI dataset demonstrated that the proposed
method outperforms related methods based on quantitative
measurements.
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