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Systemic inflammation, for example as a result of infection, often contributes to long-
term complications. Neuroinflammation and cognitive decline are key hallmarks of
several neurological conditions, including advance age. The contribution of systemic
inflammation to the central nervous system (CNS) remains not fully understood. Using
a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the
role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and
cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of
pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic
cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS
markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced
neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β

expression in astrocytes. Parallel effects were observed on behavior and postsynaptic
density-95 (PSD95), a marker of synaptic function. Taken together these changes
improved acute and long-term cognitive function in aged rats after LPS exposure.
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INTRODUCTION

Inflammation is a critical risk factor in the development of neurological complications;
neuroinflammation in particular has become a key hallmark of several conditions including
neurodegenerative diseases and psychiatric illness (Lynch, 2010; Najjar et al., 2013; Heneka
et al., 2015). Systemic perturbations, like infection, are known to affect the central nervous
system (CNS) causing a constellation of symptoms referred to as ‘‘sickness behavior’’ (Dantzer,
2004). These events may predispose to significant complications, non-resolved inflammation,
and persistent cognitive impairments especially to frail and elderly subjects (Perry et al., 2007;
Cunningham et al., 2009). Microglia activation is a known hallmark of neuroinflammation
(Lucin and Wyss-Coray, 2009) but other cell types in the CNS like astrocytes have been also
implicated in inflammatory signaling and brain plasticity (Dong and Benveniste, 2001; Capani
et al., 2016). During ageing, astrocytes demonstrate phenotypical changes that have been associated
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with cells that express a senescence-associated secretory
phenotype (SASP; Campisi, 2005). These features include
enhanced expression of glial fibrillary acidic protein (GFAP),
increased expression of several pro-inflammatory cytokines, and
a sustained low-level oxidative stress (Cotrina and Nedergaard,
2002; Salminen et al., 2011). Within the aged brain, astrocyte
activation has been implicated with higher cytokines levels
including tumor necrosis factor (TNF)-α, interleukin (IL)-1β,
and IL-6 (Campuzano et al., 2009). These cytokines are known
to interfere with neuronal function, synaptic plasticity, and
memory processes (Henry et al., 2009; Cunningham, 2013).

In our previous work we reported a specific role for
IL-1β and nuclear factor-κB (NF-κB) signaling in astrocytes
causing long-term neuroinflammation up to day 30 after
lipopolysaccharide (LPS) exposure (Fu et al., 2014). NF-κB is
a crucial regulator of immunity (Karin and Lin, 2002) and
an important nuclear transcription factor involved in SASP-
associated inflammation and inflammatory signaling (Salminen
et al., 2012). Phosphorylation of the IKKβ pathway is central
to the canonical activation of NF-κB, thus allowing nuclear
translocation and transcription of several inflammatory genes.
Many of these genes, including TNF-α, IL-1β, IL-6, and
cyclooxygenase-2 (COX-2) mediate neuroinflammation in a
number of conditions (Shih et al., 2015). The aim of the
current study was to evaluate the protective effects of pyrrolidine
dithiocarbamate (PDTC), a well-described inhibitor of the
canonical NF-κB signaling pathway with low-molecular weight
and blood-brain barrier (BBB) permeability (Schreck et al., 1992;
Ziegler-Heitbrock et al., 1993; Chabicovsky et al., 2010) on
neuroinflammation and memory function after LPS exposure
in aged rats. Several studies have described protective effects
of PDTC through suppression of NF-κB translocation into
the nucleus (Ohta et al., 2002; Hirata et al., 2007), yet
the full therapeutic potential of PDTC in the context of
neuroinflammation and immune-to-brain signaling pathway is
poorly known. Based on the above, we hypothesized that PDTC,
would improve memory outcome in aged rats. Overall, we
demonstrate a key role for NF-κB inhibition in preventing
systemic inflammation, prolonged neuroinflammation, and
behavioral changes in the hippocampus of aged rats. PDTC
pretreatment aside from reducing IL-1β up regulation in
astrocytes also prevented changes in postsynaptic density-95
(PSD-95), a major scaffolding protein in the excitatory PSD, thus
improving neurological function.

MATERIALS AND METHODS

Animal
Male Wistar rats (20 months old) weighing 550–850 g were used
in all the experiments. Rats were bred and maintained under
standardized housing conditions with controlled temperature,
humidity, and 12-h light/dark cycle. Standard food chow and
water were provided ad libitum. The experimental protocol was
approved by the Capital Medical University Biomedical Ethics
Committee Experimental Animal Ethics Branch (Approval No.
LA2012-38) and all efforts were made to minimize pain and
suffering of the animals.

Rats were randomly separated into four groups:

1. Vehicle control (0.9% NaCl i.p.),
2. LPS (2 mg/kg i.p., 055:B5, Sigma, St Louis, MO, USA),
3. LPS + PDTC (LPS + PDTC) (LPS and PDTC 30 mg/kg i.p.,

P8765, Sigma, St. Louis, MO, USA), and
4. PDTC alone (30 mg/kg i.p.).

LPS dosing was based on previous work (Fu et al., 2014). PDTC
was administered 1 h before LPS injection at a dose (30 mg/kg)
shown to inhibit NF-κB activation (Cvek and Dvorak, 2007).
Vehicle group received an identical volume of saline.

Sample Preparation
A cohort of rats was sacrificed at 0.5 h, 2 h, 6 h, 1 day, 3 days,
7 days, 15 days, and 30 days (n = 8 per time point per group)
after LPS or saline injection. Under deep isoflurane anesthesia
(Forene, Abbott Laboratories, Queensborough, UK) blood was
taken from the inferior vena cava. Samples were allowed to clot
for 2 h before centrifugation at 4◦C for 20 min at 1000× g. Serum
was collected and stored at −80◦C.

Brains were rapidly dissected following decapitation. All
dissections were performed on an ice-cold frosted glass plate.
The entire brains (n = 4 per time point) were mounted in
OCT compound (Sakura Finetek USA, Inc., Torrance, CA,
USA), frozen in liquid nitrogen, and stored at −80◦C for later
immunofluorescence. The hippocampal tissues were isolated
from the entire brains from the remaining batch (n = 4 per time
point), frozen in liquid nitrogen, and stored at −80◦C used for
RT-PCR and ELISA analyses. The investigator was blinded to the
tested groups for biochemical and behavioral analyses.

Immunofluorescence
Brains were processed on a freezing microtome (CM1850,
Leica Microsciences, Mannheim, Germany) and consecutive
20-µm thick hippocampal coronal sections were selected from
Bregma −2.30 and Bregma −3.60 according to the atlas by
Paxinos and Watson. Briefly, sections were post-fixed in ice-
cold 4% paraformaldehyde for 15 min and rinsed in PBS four
times for 10 min each time. The sections were permeabilized
using 0.3% Triton X-100 (Sigma-Aldrich, St Louis, MO, USA)
for 1 h, blocked with 5% horse serum (8178102, Gibco) for
1 h at room temperature and then incubated with primary
antibodies: goat anti-IL-1β IgG (1:100; catalog number AF-501-
NA, R&D, Systems Inc., Minneapolis, MN, USA), rabbit anti-
PSD-95 (1:100; catalog number 04-1066, Millipore, Billerica,
MA, USA), rabbit anti-GFAP IgG (1:1000; catalog number
Z0334; Dako), rabbit anti-IBA-1 IgG (1:500, catalog number 019-
19741 Wako) and mouse anti-NeuN IgG (1:100; catalog number
MAB360, Millipore) for 2 h at room temperature, and then
overnight at 4◦C. The sections were washed three times with
PBS and incubated for 2 h with secondary antibodies: Alexa-594-
coupled donkey anti-goat IgG (1:500; catalog number: A11058,
Invitrogen), Alexa-594-coupled donkey anti-rabbit IgG (1:500;
catalog number: A21207, Invitrogen), Alexa 488-coupled donkey
anti-rabbit IgG (1:500; catalog number: A21206, Invitrogen),
Alexa-488-coupled donkey anti-mouse IgG (1:500; catalog
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number: A21202, Invitrogen, Paisley, UK). Negative control
sections in which primary antibodies or secondary antibodies
were replaced by PBS showed no labeled cells. The nuclei of
tissues were counterstained with Hoechst 33342 (1:1000; Roche,
Mannheim, Germany). Sections from all time points were stained
simultaneously to provide uniform conditions for subsequent
quantitative analysis by fluorescence staining. Samples were
analyzed with a confocal microscope (Leica TCS SP5, Leica,
Benshein, Germany) and the rate of IL-1β positive expression
in the GFAP-positive astrocytes of the hippocampal DG region
were analyzed using Adobe Photoshop CS3V10.0.1.0. Mean gray
values of PSD-95 were measured using an image analyzing
software (Optimas 6.5, CyberMetrics, Scottsdale, AZ, USA). Ten
visual fields were counted for each section, and 10 values of
positive expression were counted and the mean value calculated
by averaging the counts from the results of the three experiments
at different time points (Fu et al., 2014).

mRNA and RT-PCR
Total RNA was extracted from the hippocampus using Trigol
(NEP019-2, Dingguo Changsheng) and DNA contaminants
removed by RQ1 RNase-free DNase (M610A, Promega).
The integrity of total RNA was measured by agarose gel
electrophoresis and cDNA was synthesized with Toyobo Reverse
transcription Kit (including M-MLV and 5× RT Buffer)
according to the manufacturer’s protocol (TRT-101, Toyobo).
DNA amplification was carried out using Sybr Green I (10×)
(GG1301-500UL, Genviw) for 35 cycles (each cycle consisting
of denaturation for 30 s at 94◦C, annealing for 30 s at 56◦C or
47◦C, extension for 30 s at 72◦C). Primers used are described
in Table 1. The fold expression in gene was determined by
double-standard curves method of relative quantification PCR.
Data are expressed as the relative level of the target gene in the
hippocampus normalized to the endogenous control (GAPDH)
and relative to the control group.

Enzyme-Linked Immunosorbent Assay
Isolated hippocampal tissues were homogenized in 100 mg
tissue/ml RIPA Lysis Buffer (20-188, Millipore, MA, USA).
Immediately prior to use, protease inhibitor (Roche Diagnostics,
Indianapolis, IN, USA) and phosphatase inhibitor (pepstatin,
Roche Diagnostics, Indianapolis, IN, USA) were added into the
RIPA Lysis Buffer. The resulting suspension was sonicated with
an ultrasonic cell disrupter (Bandelin, OSTC) and centrifuged
at 14,000× g at 4◦C for 15 min. Supernatant was collected
and stored at −80◦C. Nuclear protein extraction was performed
with NE-PERTM Nuclear and Cytoplasmic Extraction Reagents

TABLE 1 | Sequences of primers for RT-PCR.

Forward primers (5′→ 3′) Reverse primers (5′ → 3′)

IL-1β ATGAGAGCATCCAGCTTCAAATC CACACTAGCAGGTCGTCATCATC
NF-κB TCCATCAAATCTTCCCG CCTTTCCTTGTCCAGCA
I-κBα ACCCCTCTCCATCTTGCC CATCAGCCCCACACTTCA
PSD-95 ACAACCAAGAAATACCGC ATACTCCATCTCCCCCTC
GAPDH ACAGCAACAGGGTGGTGGAC TTTGAGGGTGCAGCGAACTT

(78833, Thermo) according to the manufacturer’s instructions,
samples were stored at −80◦C. Protein quantification was
performed using BCA Protein Assay Kit (23227, Thermo,
USA). ELISAs were performed according to the manufacturer’s
instructions (IL-1β RLB00; TNF-α RTA00, R&D Systems;
NF-κB ab133128; p-IκBα ab176643, Abcam; PSD-95, LS-F6865,
LifeSpan BioSciences, Inc.) and optical density determined at 450
with a microplate reader (BioRad, Richmond, CA, USA).

Morris Water Maze Test
One day after treatment, learning ability and memory for spatial
orientation of the rats were assessed by Morris water maze
(MWM) test in a separate cohort of animals (n = 8–10/group)
as previously described with some modification (Yang et al.,
2012). The MWM consisted of a circular black painted pool and
was placed in a dimly lit room with several visual clues around.
The pool was filled to a depth of 20 cm water (25 ± 2◦C) and
with a hidden submerged platform located 1.5 cm below the
water surface in one fixed quadrant. Rats were gently placed
in one quadrant facing the wall of MWM pool. The rats were
allowed to swim for 60 s to locate the hidden platform during
each trial. When successful, the rat was allowed to stay for 5 s
on the platform. If unsuccessful within 60 s, the rat was then
physically placed on the platform for 20 s. A 3–5 min interval was
allowed between each trial. The time spent to locate the platform,
swimming speed and distance were recorded by a video camera
and analyzed by Videomot software (version 2.4.50923; TSE
Systems, Bad Homburg, Germany). Four spatial acquisition trials
were performed on each rat per day with the starting location
in each quadrant and five consecutive days of training were
conducted (day 1–5). On day 7, a probe trial was conducted with
the platform removed. Rats were placed in the quadrant opposite
to the original location of the platform, and allowed to swim in
the pool for 30 s. The times crossover the platform location and
the percentage of time spent in the previous platform quadrant
were recorded. From day 31 to 35, spatial acquisition trials were
repeated followed with a probe trial on day 37. The time line of
MWM protocol is shown in Figure 5A.

Statistical Analyses
For statistical analyses Prism v5 software (GraphPad Software
Inc., La Jolla, CA, USA) was used. All values in the figures are
presented as mean± SEM. MWM test was analyzed by repeated-
measures two-way ANOVA followed by Bonferroni post hoc
analysis. All other data were analyzed by two-way ANOVA
followed by Bonferroni post hoc analysis. P values < 0.05 were
considered statistically significant.

RESULTS

PDTC Reduces Pro-Inflammatory Systemic
Cytokines After LPS Administration
The circulating TNF-α and IL-1β levels were significantly
affected by LPS and PDTC (F(2,34) = 152.8 and 40.92, p < 0.0001
respectively). Post hoc comparisons of two-way ANOVA showed
serum TNF-α significantly increased at 0.5 h, 2 h and 6 h
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after LPS injection compared to the vehicle group (333.10
± 102.90, 1033.00 ± 68.55 and 614.20 ± 75.89 vs. 6.28 ±

1.50 pg/ml, p < 0.01 and p < 0.001 respectively, Figure 1A);
while serum IL-1β was significantly increased at 2 h, 6 h
and 24 h after LPS injection compared to the vehicle group
(835.40 ± 203.00, 1203.00 ± 74.31 and 136.80 ± 44.46 vs.
3.59 ± 1.53 pg/ml, p < 0.01, 0.001 and 0.05 respectively,
Figure 1B). PDTC pretreatment significantly decreased serum
TNF-α from 0.5 h to 6 h compared to LPS group (p < 0.01 and
p < 0.001 respectively, Figure 1A). In addition, the LPS induced
increase of circulating IL-1β was significantly reduced by PDTC
pretreatment at 2 h and 6 h (p < 0.05, p < 0.001 respectively,
Figure 1B).

Effects of PDTC on Astrocytes and IL-1β

Expression in the Hippocampus
Previous studies have shown that acute systemic inflammation
triggered by a single administration of LPS resulted in chronic
neuroinflammation (Qin et al., 2007; Gao et al., 2011). Here we
focused on the effects of PDTC on GFAP-positive astrocytes
in hippocampus DG region as minimal immunoreactivity
was observed in microglia by Iba-1 immunofluorescence
(Supplementary Figure S3). The immunofluorescence staining
showed IL-1β in astrocytes was significantly affected by LPS
and PDTC (F(2,45) = 747.60, p < 0.0001 respectively). The
IL-1β positive astrocytes in hippocampus were significantly
increased from day 1 to 15 in both LPS and LPS + PDTC
groups compared to the vehicle (Figures 2A,B). However,
PDTC pretreatment significantly reduced LPS induced IL-1β
expression in astrocytes (p < 0.01, p < 0.001, p < 0.001
and p < 0.05 vs. LPS group respectively). In addition, we
measured IL-1β protein level in hippocampus using ELISA. LPS
and PDTC showed significant effects on hippocampal IL-1β

protein level (F(1,30) = 34.16; p < 0.0001). LPS significantly
increased IL-1β level in hippocampus at day 7 compared to
vehicle (10.50 ± 1.12 vs. 4.02 ± 0.51 pg/mg, p < 0.001),
which was significantly attenuated by PDTC pretreatment (7.02
± 0.70, p < 0.05 vs. LPS group, Figure 2C). In addition,
LPS and PDTC significantly affected the hippocampal IL-1β
mRNA expression (F(2,45) = 13.44; p < 0.0001). LPS i.p.
caused significant increase of IL-1β mRNA expression in
hippocampus at day 3 and 7 compared to vehicle (p < 0.01
respectively), which were significantly attenuated by PDTC
pretreatment (p < 0.01 and p < 0.05 vs. LPS group respectively,
Figure 2D).

PDTC Diminished LPS Induced NF-κB p65
Activity in the Hippocampus
To better understand the mechanisms underlying this
neuroinflammatory response we measured NF-κB p65 and
the phosphorylation of IκB-α in the hippocampus. NF-κB
p65 protein and mRNA expression in hippocampus were
significantly affected by LPS and PDTC treatment (F(2,45) = 21.23
and 19.47, p < 0.0001 respectively). On day 3 and 7 after LPS
administration NF-κB p65 protein levels and mRNA expression
were significantly increased compared to vehicle (Protein
level: p < 0.01 and p < 0.05 respectively; mRNA: p < 0.01
respectively). These changes were significantly attenuated in
the LPS + PDTC group compared to LPS group (Protein
level: p < 0.01 and p < 0.05 respectively, mRNA: p < 0.05
respectively Figures 3A,B). Further, the hippocampal IκB-α
protein and mRNA expression were also affected by different
treatments (F(2,45) = 25 and 27.40, p < 0.0001 respectively).
From day 1 to 7 after LPS administration, phosphorylated IκB-α
was markedly increased in hippocampus compared to vehicle
(p < 0.05, p < 0.01 and p < 0.001 respectively), these increase

FIGURE 1 | Effects of pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-ααα and interleukin (IL)-1β

in serum. Treatment with PDTC significantly reduced serum levels of TNF-α at 0.5 h, 2 h, and 6 h compared to LPS group (A). Levels of IL-1β were also reduced at
2 h and 6 h, returning to baseline after 24 h (B). Data are expressed as mean ± SEM (n = 4) and compared by 2-way ANOVA with Bonferroni post hoc analysis.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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FIGURE 2 | IL-1β expression in astrocytes after LPS is reduced by PDTC. Confocal immunofluorescence images of IL-1β/glial fibrillary acidic protein (GFAP) in
the hippocampus DG region (A). The ratio of IL-1β-positive astrocytes was significantly reduced in LPS + PDTC group compared to LPS (B). IL-1β protein levels
from hippocampal homogenates was affected by PDTC treatment especially on day 7 (C). mRNA expression of IL-1β was also attenuated at all time points, in
particular day 3 and 7 (D). Data are expressed as mean ± SEM (n = 4) and compared by 2-way ANOVA with Bonferroni post hoc analysis. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001. Scale bars = 100 µm; insets = 25 µm.

were significantly attenuated by PDTC pre-treatment (p < 0.05
respectively, Figure 3C). Accordingly, the mRNA expression of
total IκB-α in hippocampus were significantly reduced from day
1 to 15 after LPS injection compared to vehicle group (p < 0.05
and p < 0.01 respectively). However, compared to LPS injection
alone, rats with PDTC pretreatment showed reserved total IκB-α
mRNA expression in the hippocampus, especially on day 3 and
7 (p < 0.05 respectively compared to LPS group, Figure 3D). No
effects of PDTC alone were observed (Supplementary Figure S4).

PSD-95 Expression in the Hippocampus
After PDTC Treatment
Next we measured the effects of LPS administration on
scaffolding proteins focusing on the major molecule, PSD-
95. The immunofluorescence staining showed LPS and PDTC
significantly affected the PSD-95 level in hippocampus (F(2,44)
= 9.07; p = 0.0005, Figures 4A,B). On both day 3 and day 7
PSD-95 was significantly decreased compared to controls (gray
value as 52.86 ± 6.27 and 42.38 ± 1.59 vs. 67.42 ± 6.64,
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FIGURE 3 | PDTC reduced LPS-induced nuclear factor-κκκB (NF-κκκB) p65 activity in the hippocampus. NF-κB p65 protein level and mRNA expression in
hippocampus were significantly increased on day 3 and 7 after LPS exposure, which was attenuated by pre-treatment of PDTC (A,B). IκB-α phosphorylation was
significantly increased at day 1, 3 and 7 in LPS group compared to vehicle and LPS + PDTC groups (C). LPS induced reduction of IκB-α mRNA expression in
hippocampus up to 15 days, pre-treatment with PDTC reversed this effect (D). Data are expressed as mean ± SEM (n = 4) and compared by 2-way ANOVA with
Bonferroni post hoc analysis. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

p < 0.05 respectively, Figure 4B). This effect was abolished by
PDTC pretreatment. The protein and mRNA level of PSD-95 in
hippocampus was then measured. Hippocampal PSD-95 protein
level was significantly affected by different treatment (F(2,45) =
10.99, p = 0.0001, Figure 4C), that LPS significantly reduced
hippocampal PSD-95 on day 3 and 7 (p < 0.01 and p < 0.05
respectively), and PDTC pretreatment restored the PSD-95 level
at these time points (p < 0.05 vs. LPS respectively). Similar
changes were observed in PSD-95 mRNA expression at day 7
(Figure 4D).

PDTC Improves LPS-Induced Cognitive
Dysfunction
We used MWM to test learning and memory function in this
model of endotoxemia. The escape latency was significantly

affected by the testing days and treatment. All groups showed
marked improvements in escape latencies over the 5 days of
training (F(3,144) = 2.87, p< 0.0001, repeatedmeasures ANOVA),
indicating a memory in locating the escape platform. Repeated
measures ANOVA revealed no interaction between training days
and groups (F(12,144) = 1.21, p > 0.05). This suggests that all the
rats effectively learned the task. Post hoc comparisons indicated
that LPS significantly increased the escape latency at day 2–5
in the spatial acquisition trials compared to vehicle (p < 0.001
and 0.01 respectively), PDTC significantly improved the LPS-
induced prolonged escape latency in the rats at day 3–5 (p < 0.01
respectively, Figure 5B). Furthermore, repeated-measures two-
way ANOVA in the probe trial on day 7 revealed the effects of
drug (F(2,62) = 4.76, p < 0.05) and time (F(1,62) = 6.56, p < 0.05)
on the platform crossovers. Post hoc analysis indicated that
rats with LPS challenge had significant less platform crossovers
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FIGURE 4 | Postsynaptic density-95 (PSD-95) expression in the hippocampus after LPS and PDTC treatment. PSD-95 immunoreactivity was analyzed in
the hippocampus, DG area (A). Expression of PSD-95 in neurons was reduced on day 3 and 7, returning to baseline thereafter (B). PSD-95 protein expression in the
hippocampus was measured by ELISA (C) and RT-PCR (D). There was significant increase in PSD-95 expression after PDTC treatment on day 7 and day 15
compared with the LPS group. Data are expressed as mean ± SEM (n = 4) and compared by 2-way ANOVA with Bonferroni post hoc analysis. ∗p < 0.05,
∗∗p < 0.01. Scale bars = 100 µm; insets = 25 µm.

compared to vehicle or LPS + PDTC treated rats (p < 0.001 and
p < 0.05 respectively). Similarly ANOVA revealed the effects of
drug (F(2,31) = 4.63, P < 0.05) and time (F(1,31) = 4.98, p < 0.05)
on the time in the target quadrant. Post hoc analysis indicated
that rats with LPS challenge had significant less time spent in the
target quadrant compared to vehicle or LPS + PDTC treated rats
(p < 0.01 and p < 0.05 respectively, Figures 5C,D). However, in
the second round of spatial acquisition test from day 31 to 35,
rats accepted LPS alone only showed significant longer escape
latency on day 31 compared to rats accepted vehicle or LPS +
PDTC (39.40± 5.96 vs. 19.64± 2.65 and 21.53± 5.33 s, p< 0.05

respectively, Figure 5E). No significant differences were observed
between groups regarding the platform crossover and time spent
in the quadrant in the probe trial on day 37 (Figures 5F,G). The
swimming speeds were similar between all groups throughout the
MWM test (not shown).

DISCUSSION

In this study we focused on the effects of a single systemic dose
of LPS in aged rats and assessed long-term changes in systemic
cytokines, neuroinflammation, and behavior. Using a selective
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FIGURE 5 | LPS induced cognitive deficiency was ameliorated by PDTC. The schematic figure of the water maze protocol is shown in (A). Rat treated with
LPS alone had prolonged escape latency from day 2 to 5 in the first round of spatial acquisition trials compared to vehicle group. This was significantly improved by
PDTC (B). Compared to the vehicle group, rat treated with LPS also showed significant reduced platform site crossovers and time spent in the target quadrant in the
probe trial on day 7, which was reversed by PDTC pre-treatment (C,D). In the second round of acquisition trials, LPS only caused significant prolonged escape
latency on first day (day 31) (E). No differences of platform site crossovers and time spent in the target quadrant were observed between groups in the second round
of probe trial (F,G). Data are expressed as mean ± SEM (n = 8–10) and were compared by repeated measure 2-way ANOVA with Bonferroni post hoc analysis.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 as indicated or vs. vehicle; #p < 0.05, ##p < 0.01 vs. LPS group.

NF-κB inhibitor, PDTC, we report neuroprotective effects
through inhibition of the canonical NF-κB signaling pathway,
reduction of IL-1β expression in astrocytes, and stabilization of
PSD-95. Taken together, PDTC offered sufficient protection to
improve memory dysfunction after endotoxemia in aged rats.

Inflammation is a critical component of almost every
clinical condition ranging from cancer to neurodegenerative
disorders; yet non-resolving inflammation remains one of the
major challenges in biomedical research (Nathan and Ding,
2010). Systemic infections can lead to significant consequences
in elderly subjects and may contribute to the acceleration
of pathologies like Alzheimer’s disease (Cunningham et al.,
2009). LPS, a key component of Gram-negative bacteria outer
membrane, has been used as a robust activator of innate
immunity. Its effects on behavior have been well documented
(Dantzer et al., 1998), but the mechanisms underlying cognitive
impairments after endotoxemia are not fully understood.
Inflammatory molecules can access the CNS through different
immune-to-brain mechanisms, both blood-borne and neuronal

(Capuron and Miller, 2011; Xu et al., 2014). After LPS exposure,
we found a significant increase in systemic pro-inflammatory
cytokines, including TNF-α and IL-1β, which initiate a pro-
inflammatory response that affects long-term CNS function.
LPS acts mainly peripherally, with minimal penetration of the
intact BBB (Banks and Robinson, 2010). However, evidence
from high-resolution magnetic resonance imaging analysis of the
BBB in the living human brains found selective BBB breakdown
during ageing, which may contribute to cognitive impairment
(Montagne et al., 2015). Thus, it is possible that age-induced
BBB opening as well as direct transport of blood-borne factors
and cytokines contribute to subsequent neuroinflammation and
memory dysfunction in our model (Banks et al., 1995; He et al.,
2012).

To support a role for systemic inflammation in mediating
secondary CNS effects, in this study treatment with PDTC
was able to significantly reduce pro-inflammatory cytokines
with levels returning to baseline within 24 h. TNF-α and IL-1β
are two prototypical cytokines hardwired to NF-κB signaling
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(Lawrence, 2009) and are implicated in the development of
age-related postoperative complications including delirium and
postoperative cognitive dysfunction (Androsova et al., 2015). In
mice, modulation of IL-1β signaling after endotoxemia using
IL-1 receptor antagonist or genetic intervention (IL-1R−/−)
prevents cognitive dysfunction by attenuating microglia
activation (Terrando et al., 2010). Microglia and astrocytes
play pivotal roles in surveilling the CNS microenvironment,
supporting neuronal homeostasis and protecting the brain
from danger signals (Streit et al., 2004). Modulation of
microglia activation was also reported after PDTC treatment in
LPS-induced sepsis, improving long-term behavioral outcomes
(Anderson et al., 2015). Previously we described an important
role for astrocytes activation and cytokine expression in this
model of LPS-induced neuroinflammation (Fu et al., 2014).
Here we found PDTC was able to attenuate IL-1β expression
in GFAP-positive cells in the hippocampus, confirming an
important role for IL-1β and NF-κB signaling in ensuing CNS
complications. In addition, pretreatment with PDTC regulated
NF-κB activity by inhibiting IκB-α phosphorylation and p65
translocation into the nucleus. IκB phosphorylation is critical
for activating the canonical and alternative NF-κB pathways and
allowing nuclear translocation and downstream gene activation
(Karin and Lin, 2002). Given PDTC is well tolerated in models
of acute and chronic inflammation (Cuzzocrea et al., 2002),
this could represent a suitable target for novel therapeutic
discoveries.

Aside the effects of PDTC on NF-κB signaling we also
describe a novel interaction with the excitatory postsynaptic
marker, PSD-95. Synaptic proteins, especially PSD-95, play a
critical role in regulating dendritic spine morphogenesis and
plasticity, which are closely implicated in memory function and
cognition (El-Husseini et al., 2000). Loss of PSD-95 coincided
with NF-κB activation in the hippocampus on day 3 and 7 after
LPS exposure, suggesting neuroinflammation impairs synaptic
plasticity by modulating scaffolding protein at glutamatergic
excitatory synapses. PSDs are essential structures for N-methyl-
D-aspartate receptor signaling, thus exerting critical functions
in synaptic processes, glutamate excitatory neurotransmission
and calcium influx (Kennedy, 2000). Inflammation can impair
synaptic plasticity especially during the ageing process or as
a result of injury (Barrientos et al., 2006; Terrando et al.,
2013). Changes in long-term potentiation, the molecular
surrogate for memory dysfunction, have been implicated
in LPS-induced changes in memory and behavior (Vereker
et al., 2000). In our study PDTC rescued LPS-induced
memory impairment as a result of its anti-inflammatory
effects on NF-κB/cytokines signaling and stabilization of
PSD-95 in the hippocampus. Improved memory function
after PDTC treatment has been reported in other models of
neuroinflammation and cognitive disorders (Li et al., 2012;
Zhang et al., 2014). Since PDTC compounds have been used
already in the clinic (Reisinger et al., 1990), inhibition of NF-
κB pathway may offer therapeutic benefit for neuroinflammation
and cognitive dysfunction.

Other mechanisms are likely to be involved in
PDTC-mediated neuroprotection. The effects on oxidative

stress are well known (Tsai et al., 1996) and these processes are
tightly related with the ageing process. Increased reactive oxygen
species and lipid peroxidation is found during brain ageing,
contributing to microglia priming, SASP and cognitive decline
(Norden and Godbout, 2013). This inherited vulnerability
contributes to the prolonged and amplified immune response as
noted in this study after a single LPS challenge. This ‘‘immune-
priming’’ is likely to contribute to non-resolving inflammation
and long-lasting modifications in behavior and CNS molecular
markers (Bossù et al., 2012). Mechanistically, since PDTC
crosses the BBB (Schreck et al., 1992; Ziegler-Heitbrock et al.,
1993; Chabicovsky et al., 2010) and aged rats may have deficits
in endothelial function, the drug could exert direct CNS effects
both as anti-inflammatory on glia cells but also neurons. Some
limitations of our study must be pointed out. We focused our
study in aged rats as a clinically relevant model for a more
vulnerable system to general perturbations like infection. We
did not include or compare the effects of LPS and PDTC in a
younger cohort, however previous studies demonstrated similar
protective effects on neuroinflammation and cognitive outcomes
in younger rodent models (Anderson et al., 2015). Also, the role
of NF-κB modulation on different CNS cell types awaits future
investigations with the use of more selective strategies to target
exaggerated neuroinflammation, astrocyte activation, and brain
dysfunction.

In conclusion, LPS-induced acute systemic cytokines can
induce prolonged neuroinflammation in the ageing brain.
Inhibition of NF-κB signaling regulates key processes in
the CNS, including IL-1β up regulation in astrocytes and
PSD-95 expression in the hippocampus. The anti-inflammatory
and neuroprotective effects provide an important target for
dampening neuroinflammation and improving cognitive decline.
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