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The triple network model, consisting of the central executive network (CEN), salience
network (SN) and default mode network (DMN), has been recently employed to
understand dysfunction in core networks across various disorders. Here we used the
triple network model to investigate the large-scale brain networks in cognitively normal
apolipoprotein e4 (APOE4) carriers who are at risk of Alzheimer’s disease (AD). To explore
the functional connectivity for each of the three networks and the effective connectivity
among them, we evaluated 17 cognitively normal individuals with a family history of
AD and at least one copy of the APOE4 allele and compared the findings to those
of 12 individuals who did not carry the APOE4 gene or have a family history of AD,
using independent component analysis (ICA) and Bayesian network (BN) approach.
Our findings indicated altered within-network connectivity that suggests future cognitive
decline risk, and preserved between-network connectivity that may support their current
preserved cognition in the cognitively normal APOE4 allele carriers. The study provides
novel sights into our understanding of the risk factors for AD and their influence on the
triple network model of major psychopathology.
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INTRODUCTION

The apolipoprotein e4 (APOE4) gene has been well established as a susceptibility gene for
sporadic and late-onset familial Alzheimer’s disease (AD; Poirier et al., 1995; Reitz and Mayeux,
2010; Kandimalla et al., 2013; Tai et al., 2014). Epidemiologic evidence has clarified that APOE4
decreases the age-at-onset of AD in a gene dosage-dependent manner (Corder et al., 1993; Breitner
et al., 1999). Neuroimaging studies have demonstrated that APOE4 carriers exhibit elevated medial
temporal lobe (MTL) atrophy (Agosta et al., 2009; Fleisher et al., 2009a,b; Wolk and Dickerson,
2010), and recent studies have shown that the APOE4 allele is associated with Cerebrospinal fluid
(CSF) biomarkers including Aβ42, tau (Kandimalla et al., 2011) and ubiquitin levels (Kandimalla
et al., 2014). Thus the APOE4 allele has been suggested as an important factor that leads to lower
cognitive performance, or the progression to mild cognitive impairment (MCI) and AD (Barabash
et al., 2009; Sasaki et al., 2009).

Functional neuroimaging connectome studies of AD have proposed a disconnection
hypothesis of the disease. Many studies have consistently reported that the cognitive impairment
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in AD and the cognitive decline in its preclinical stage were
largely due to the disruptions of the brain networks (Stam
et al., 2007; Lo et al., 2010; Wang et al., 2013). For example,
as one of the most relevant networks in AD, various studies
have shown that the default mode network (DMN) exhibited
a disruption in functional connectivity in AD (Greicius et al.,
2004; Rombouts et al., 2005; Celone et al., 2006; Petrella et al.,
2007; Wu et al., 2011), and even at early stages of the disease
such as MCI (Lustig et al., 2003; Rombouts et al., 2005; Celone
et al., 2006; Petrella et al., 2007; Qi et al., 2010; Li et al.,
2013). In addition to the DMN, other networks have also been
found to show alterations in AD. For example, the salience
network (SN), whose connectivity showed negative correlation
with DMN has been linked to AD (Zhou et al., 2010; Balthazar
et al., 2014). These alterations in functionally coordinated brain
systems can occur long before disease onset in cognitively normal
people with various risk factors for AD (Poirier et al., 1995;
Kivipelto et al., 2001; Song et al., 2015). For example, Westlye
et al. (2011) demonstrated a negative correlation between DMN
synchronization and memory performance in healthy APOE4
carriers. Besides, the functional alterations in the DMN and
SN connections were also demonstrated in the elderly APOE4
carriers (Machulda et al., 2011). These evidences suggested that
the presence of APOE4 gene is accompanied by brain network
alterations that are closely relevant to AD progression.

Recently, a triple network model of major psychopathology
has been proposed by Menon (2011). The triple network
model consists of the central executive network (CEN), SN
and DMN. These three networks are generally referred to as
the core neurocognitive networks due to their involvement
in an extremely wide range of cognitive tasks (Greicius
et al., 2003; Greicius and Menon, 2004; Menon and Uddin,
2010; Menon, 2011). Specifically, the CEN and SN typically
show increased activation during stimulus-driven cognitive
or affective processing, while the DMN shows decreased
activation during tasks in which self-referential and stimulus-
independent intellectual activity is not involved (Greicius et al.,
2003; Greicius and Menon, 2004). The triple network model
suggests that the aberrant internal organization within each
functional network and the interconnectivity among them are
characteristic of many psychiatric and neurological disorders.
Recently the triple network model has been widely applied to
elucidate the dysfunction across multiple disorders, including
schizophrenia, depression and dementia (Menon and Uddin,
2010; Menon, 2011; Zheng et al., 2015; Yuan et al., 2016).
However the triple network interactions in elderly APOE4
carriers who are at high risk to AD have not yet been
explored.

In the present study, we investigated the APOE4-
mediated modulation of the within-network functional
connectivity and the between-network connectivity of the
three core networks included in the triple network model
in cognitively normal individuals carrying a family history
of AD and at least one copy of the APOE4 allele using
functional magnetic resonance imaging (fMRI). A group
independent component analysis (ICA) approach and
Bayesian network (BN) approach were used to separate the

functional connectivity networks from the fMRI dataset and
to determine the between-network effective connectivity,
respectively.

MATERIALS AND METHODS

Participants
fMRI data from 29 cognitively normal right-handed volunteers
(8 males and 21 females, ages between 50 and 65 years) who
were the subjects in our previous study (Fleisher et al., 2009b)
were included in this work. They were divided into two groups:
the high-risk group and the low-risk group. The high-risk group
included 17 subjects who had a significant family history of
dementia in a first-degree relative and at least one copy of the
APOE4 allele. The other twelve participants who had neither a
family history of dementia nor a copy of the APOE4 gene were
regarded as the low-risk group. Notably, there were no significant
differences in age, gender and education level between these
two groups (all ps > 0.05). The two groups were matched on
general cognitive function as evaluated by Folstein Mini Mental
State Exam (p = 0.39). The study was conducted according
to Good Clinical Practice, the Declaration of Helsinki and US
21 Code of Federal Regulations (CFR) Part 50-Protection of
Human Subjects, and Part 56-Institutional Review Boards and
was approved by the Institutional Review Board of the University
of California, San Diego. Written informed consent for the study
was obtained from all of the participants before protocol-specific
procedures were performed, including cognitive testing.

All scans were performed on a General Electric Signa EXCITE
3.0 T short bore, twin speed scanner with a body transmit coil
and an 8 channel receive array. High-resolution structural brain
images were acquired with a magnetization prepared from three-
dimensional fast spoiled gradient sequence acquisition (FSPGR:
124 axial slices, 1 mm×1 mm in-plane resolution, 1.3 mm
slice thickness, Field of View (FOV) = 256 mm2

× 256 mm2,
TR = 7.8 ms, TE = 3.1 ms, flip angle = 12◦). Blood
oxygen level dependent (BOLD) data were acquired using echo
planar imaging sequences (35 slices, perpendicular to the axis
of the hippocampus, 6 mm in-plane resolution, 0 spacing,
FOV= 220 mm2

× 220 mm2, TE= 30 ms, TR= 2500 ms, voxel
size= 3.4 mm3

× 3.4 mm3
× 6.0 mm3).

Data Preprocessing
For each participant, the original first five-time functional
images were discarded to allow for equilibration of the magnetic
field. All of the preprocessing steps were performed using the
Statistical Parametric Mapping program (SPM81). They included
within-subject inter-scan realignment, between-subject spatial
normalization to a standard brain template in the Montreal
Neurological Institute (MNI) coordinate space, and smoothing
by a Gaussian filter with a full width at a half maximum of 8 mm.
Following this, the linear trend with regard to time was removed
by linear regression via the Resting-State fMRI Data Analysis
Toolkit (REST2).

1http://www.fil.ion.ucl.ac.uk/spm
2http://restfmri.net

Frontiers in Aging Neuroscience | www.frontiersin.org 2 September 2016 | Volume 8 | Article 231

http://www.fil.ion.ucl.ac.uk/spm
http://restfmri.net
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Wu et al. Brain Networks in APOE4 Carriers

After the preprocessing, we employed the Group ICA and
BN to learn the functional interactions of the triple network
model. Group ICA was first used to isolate the three brain
networks for examination of the functional connectivity changes
within each network in the high risk group. The BN was
then used to show the directed causal effects between these
three networks in the high risk group. Thus, the study was
developed to delineate the influence of APOE4 on the triple
networks in both within-network connections and between-
network interactions.

Group Independent Component Analysis
Group ICA is widely used to separate patterns of task-activated
neural networks, image noises, and physiologically generated
independent components (ICs) in a data-driven manner. The
preprocessed data of all participants were entered into the Group
ICA program in the fMRI Toolbox (GIFT3) for the separation
of the three networks included in the triple network model
and the determination of networks for BN analysis. The Group
ICA program included two rounds of principal component
analyses (PCA) for reduction of fMRI data dimensions, ICA
separation and back-reconstruction of the ICs (Calhoun et al.,
2001). The optimal number of principal components, 31, was
estimated based on the minimum description length (MDL). In
the first round of PCA, the data for each individual subject were
dimension-reduced to the optimal number temporally. After
concatenation across subjects within groups, the dimensions
were again reduced to the optimal numbers via the second round
of PCA. Then, the data were separated by ICA using the Extended
Infomax algorithm (Lee et al., 1999). After ICA separation, the
mean ICs and the corresponding mean time courses over all of
the subjects were used for the back-reconstruction of the ICs
and time courses for each individual subject (Calhoun et al.,
2001).

Finally, the ICs that best matched the CEN, DMN, and SN
for both the low- and high-risk groups were selected separately.
Following this, one-sample t-test (p < 0.001, corrected by
family wise error (FWE)) was performed to determine the
CEN, DMN, and SN functional connectivity for the low-
risk and high-risk groups respectively. Between group within-
network functional connectivity difference was determined by
two-sample t-test (p < 0.05, corrected by false discovery rate
(FDR)).

Bayesian Network Analysis
BN analysis can be used to learn the global connectivity pattern
for complex systems in a data-driven manner, and has been
applied in our previous studies of AD and MCI (Wu et al., 2011;
Li et al., 2013). Here, we employed the Gaussian BN method
to characterize the large-scale networks in terms of directed
effective connectivity among CEN, DMN and SN.

To establish the effective connectivity pattern of the three
networks for the low- and high-risk groups separately, we
defined the region of interest (ROI) mask as each of the three
one-sample t-test network map (p < 0.001, FWE corrected).

3http://icatb.sourceforge.net/

The averaged time series over these voxels in every subject
was extracted and then entered into the BN analysis for the
construction of an effective connectivity pattern of the three core
networks.

A BN model is a directed acyclic graph that encodes a joint
probability distribution over a set of random variables. The
directed arcs in the graph denote the conditional dependence
relationships between nodes, which are qualified by the
conditional probability of each node given its parents in the
network. Specific to our BN model, we have three nodes in total,
which represent the three core networks in the triple network
model, and the arcs connecting them represent the directed
effective connectivity between these functional networks. The
time series of each node was calculated as the mean time
series in each network ROI, and was assumed to follow a
linear Gaussian conditional distribution. To learn the effective
connectivity of the triple network model, we employed the
Bayesian information criterion (BIC)-based learning approach.
The BN model that maximized the BIC score among the space
of possible candidates was selected as the best fit network.
We used the L1-Regularization Paths algorithm (Schmidt
et al., 2007) and the Maximum Likelihood Estimation (MLE)
implemented in the collections of Matlab functions written
by Murphy et al.4 to learn the structure and parameters
of the BN model, respectively, for the high- and low-risk
groups.

Effective Connectivity Comparison
Between the High- and Low-Risk Groups
To examine the effective connectivity difference of CEN,
DMN and SN between the high- and low-risk groups, we
adopted the randomized permutation procedure. We used
the differences of the connection weight coefficients between
the two groups as the statistical measure. The reference
distribution is obtained by calculating all possible values of
the test statistic under rearrangements of the group labels on
the observed fMRI datasets. The statistics for the real two
group samples were calculated first. Then, at each iteration of
the test process, the subject-group membership was randomly
assigned for each subject. A BN model for each rearranged
group was constructed, and the differences of the connection
weight coefficients between the two rearranged groups were
calculated. We ran a total of 1000 permutations and assessed
the sample distributions for these statistics. Finally, for each of
the connections presented in the BN model for the two risk
groups, type I errors of having between-group differences were
estimated.

RESULTS

Functional Connectivity of CEN, DMN and
SN
Figure 1 shows the three networks included in the triple network
model in the low and high-risk groups detected by Group ICA

4https://code.google.com/p/bnt

Frontiers in Aging Neuroscience | www.frontiersin.org 3 September 2016 | Volume 8 | Article 231

http://icatb.sourceforge.net/
https://code.google.com/p/bnt
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Wu et al. Brain Networks in APOE4 Carriers

FIGURE 1 | Functional connectivity maps of the central executive network (CEN; A) default mode network (DMN; B) and salience network (SN; C) in
LR (upper panel) and HR (lower panel) groups. The maps were derived from the one-sample t-test of Group independent component analysis (ICA; p < 0.001,
corrected by family wise error (FWE)). Bar at the right shows T-values.

(one-sample t-test, p < 0.001, FWE corrected). In both groups,
the CEN includes the dorsolateral prefrontal cortex and the
lateral posterior parietal cortex. The DMN includes the posterior
cingulate cortex, medial prefrontal cortex, bilateral inferior
parietal cortex, inferior temporal cortex and the hippocampus.
The SN includes the dorsal anterior cingulate cortex and the
fronto-insular cortex.

Within-Network Functional Connectivity
Difference Between Groups
To compare the within-network functional connectivity
difference of the CEN, DMN and SN between the low-
and high-risk groups, we performed a two-sample t-test
(p < 0.05, corrected by FDR) on individual maps of the
three networks between the two groups. Figure 2 displays
the functional connectivity differences between the low and
high-risk groups.

Within the CEN, the angular gyrus displayed increased
functional connectivity in the low-risk group compared

with the high-risk group (‘‘LR > HR’’), whereas the inferior
parietal lobule displayed increased functional connectivity
in the high-risk group compared with the low-risk group
(‘‘HR > LR’’). Within the DMN, the right medial frontal gyrus
displayed increased functional connectivity in the low-risk
group compared with the high-risk group (‘‘LR > HR’’),
whereas the left middle frontal gyrus displayed increased
functional connectivity in the high-risk group compared
with the low-risk group (‘‘HR > LR’’). Within the SN, the
regions including the right middle temporal gyrus, right
middle frontal gyrus and the anterior cingulate cortex
displayed increased functional connectivity in the low-risk
group compared with the high-risk group (‘‘LR > HR’’).
In contrast, the regions including the left middle temporal
gyrus, posterior lobe of the cerebellum and the supplemental
motor area displayed increased functional connectivity in
the high-risk group compared with the low-risk group
(‘‘HR > LR’’). Details on these regions with between-
group functional connectivity differences are listed in
Table 1.
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FIGURE 2 | Regions showing between-group functional connectivity difference. The comparison was performed for each of the triple networks by the
two-sample t-test with p < 0.05, false discovery rate (FDR) correction. (A) shows the regions in which functional connectivity are stronger in LR group than in HR
group (LR > HR), and (B) shows the opposite case (HR > LR). Bar at the right shows T-values.

BN-Based Effective Connectivity of CEN,
DMN and SN
Figure 3 shows the effective connectivity of the CEN, DMN
and SN in the low-risk group and high-risk group learned using
Gaussian BN approach. In accordance with the triple network

model (Menon, 2011), Figure 3 demonstrates consistently in the
two groups that the DMN together with CEN receive connections
from SN. It is important to note that the SN plays as a special
node that does not receive but only generates connections
in the model in both groups. Furthermore, the result of the

TABLE 1 | Brain regions that showed functional connectivity differences between the low and high risk groups (two sample t-test, p < 0.05, corrected by
false discovery rate (FDR)).

Regions L/R T value MNI coordinate Number of voxels
x y z

Angular gyrus R 5.40 30 −54 36 35
Middle frontal gyrus R 5.90 48 33 44 51
Middle temporal gyrus R 6.92 48 −15 −16 18
Anterior cingulate R 5.74 9 30 20 62
Medial frontal gyrus R 5.25 3 54 −4 15
Inferior parietal lobule R 5.47 39 −48 60 69
Middle frontal gyrus L 4.60 −30 45 28 29
Cerebellum posterior lobe R 5.58 45 −63 −44 71
Middle temporal gyrus L 5.17 −51 −51 16 21
Supplemental motor area R 6.16 6 −6 76 42

Frontiers in Aging Neuroscience | www.frontiersin.org 5 September 2016 | Volume 8 | Article 231

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Wu et al. Brain Networks in APOE4 Carriers

FIGURE 3 | Directed interactions of the triple networks in two groups. The causal interactions were determined based on the Bayesian network (BN) analysis
of the triple networks. The LR group and HR group were found to have the same triple network BN connectivity relationships. The SN plays as an influential hub that
mediates the activity of the CEN and DMN in both groups. The numbers on the connections represent the BN connectivity weights between brain networks.

random permutation test indicates that there is no significant
difference among the effective connectivity coefficients of these
three networks between the low- and high-risk groups (all
ps > 0.05).

DISCUSSION

The focus of the present study was to explore the possible
impairment of the within-network functional connectivity and
the between-network effective connectivity of the large-scale
triple networks in cognitively normal individuals with a family
history of AD and at least one copy of the APOE4 allele.
Group ICA of the triple network model found that a couple of
brain regions in the three networks showed significantly altered
functional connectivity in the high-risk individuals, while the
BN analysis of the model did not find significant between-group
difference in the causal connections among the three functional
networks.

We first compared the within-network functional
connectivity between the low-risk subjects and the high-
risk subjects. The results demonstrated that a number of brain
regions, including the medial prefrontal gyrus from the DMN,
the angular gyrus from the CEN, the anterior cingulate, the
right medial temporal and the right middle frontal gyri from
the SN displayed significantly decreased functional connectivity
in APOE4 carriers. The medial prefrontal gyrus is a critical
area of the DMN (Greicius et al., 2003), and plays a central
role in a variety of cognitive functions, especially memory
(Euston et al., 2012) and executive function (Dalley et al.,
2004) that are vulnerable to cognitive aging and AD (Greicius
et al., 2004; Burke and Barnes, 2006; Li et al., 2013). Various
studies of the DMN in AD have repeatedly reported functional

connectivity disruption in this region (Greicius et al., 2004;
Rombouts et al., 2005; Qi et al., 2010; Wu et al., 2011; Wang
et al., 2013). Recently, Song et al. (2015) also demonstrated
APOE effect on the medial prefrontal regions in the DMN using
seed-based functional connectivity analysis. The angular gyrus is
functionally related to associative memory (Ben-Zvi et al., 2015),
visuo-spatial attention (Cattaneo et al., 2009), and language
ability (Bernal et al., 2015). Agosta et al. (2012) have reported
decreased functional connectivity of the angular gyrus from the
fronto-parietal CEN in AD. Disrupted functional connectivity
of the SN was associated with cognitive and emotional deficits,
and has been found in advanced aging and MCI patients (He
et al., 2014; Uddin, 2015; Lu et al., 2016). Recently, Joo et al.
(2016) and Wang et al. (2015) investigated the functional
disruptions in these functional networks, and found that greater
reductions of inter-network connectivity were associated with
lower cognitive performance in different levels of cognitive
impairment. Thus the result here indicated that the functional
connectivity in the triple networks was different between the
high- and low-risk groups, which may be related to the presence
of APOE4 and a family history of dementia. We speculate
that these AD-like functional connectivity disruptions in the
triple network model may suggest risks of future cognitive
decline or the progression to MCI or AD for the APOE4
carriers.

In contrast with the decreased functional activation compared
with the low-risk group, we found that the high-risk group
also showed increased functional activation in the frontal gyrus,
parietal lobe, temporal gyrus and the cerebellum. It is consistent
with several recent neuroimaging studies of APOE effects
on brain connectivity. For example, Machulda et al. (2011)
found increased SN connectivity by calculating the functional
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connectivity of the anterior cingulate seed in APOE4 carriers.
Westlye et al. (2011) and Song et al. (2015) demonstrated
increased DMN synchronization in APOE4 carriers. Similarly in
AD patients, increased functional activation compared with that
in healthy controls has also been reported (Wang et al., 2007; Qi
et al., 2010; Zhou et al., 2010; Li et al., 2013). These increases
have been usually interpreted as a compensatory reallocation or
recruitment of brain resources (Cabeza et al., 2002), which may
be a protective factor to keep retain a normal cognitive level in
individuals at high risk for AD.

We also employed a BN approach to model and compare
the effective connectivity patterns between the CEN, SN and
DMN in the low- and high-risk groups. The BN learning
approach revealed same-directed connections and network
features in these two groups; the SN node does not receive
but only generates connections to CEN and DMN. The BN-
based directed connectivity pattern in both groups is consistent
with the triple network model of major psychopathology
suggested by Menon (2011), in which the information transfer
occurs only from the SN to the CEN and DMN. It is also
consistent with the study of Uddin et al. (2011), in which
they employed Granger causality analyses to model the effective
connectivity of the triple network with development, and
found consistently that the fronto-insular cortex in the SN
significantly influence the functional activity of regions in the
DMN and CEN. Moreover, a recent study of Liang et al.
(2015) demonstrated that the topological organization of the
triple network changes with cognitive task loads. By comparing
the effective connectivity coefficients between these two risk
groups via the random permutation test, however, we found
no significant difference in the directed connectivity of the
three networks between the low- and high-risk groups. It
suggested that although the APOE4 carriers might demonstrate
AD-like functional connectivity changes in each of the three
networks, the interactions between them could retain a normal
process as in non-APOE4 carriers. This interesting finding
may be explained first by the methodological difference. The
functional connectivity stresses the temporal correlation between
different regions, while the effective connectivity refers explicitly
to the causal influence that one system exerts over another
(Friston, 2011), which is in accordance with the inherent
meaning of the triple network model. Second, the BN-based
directed connectivity reflects how these three networks in
the model cooperate with each other to execute tasks. It
essentially demonstrated an organizational architecture of these

functional networks. We propose that the stable effective
connectivity architecture of the triple networks may be a crucial
factor, together with the increased within-network functional
connectivity, that enables individuals at high risk for AD to
retain a normal cognitive level. Finally, it might be related
to the complexity of brain network itself in response to the
APOE4 effect. We speculate that the within-network regional
connectivity alterations might emerge earlier than between-
network changes, and the further deterioration of within-
network connectivity may gradually lead to disruptions in
interactions between networks for the APOE4 carriers. For
example, Zhu et al. (2016) recently reported more changes of
within-network connectivity than between-network connectivity
in AD and MCI. Further studies would be required to investigate
the dynamic changes of the directed connectivity architecture
of the triple networks in APOE4 carriers through a longitudinal
study.

In summary, we have explored the functional connectivity
and effective connectivity of the three networks included in the
large-scale triple network model in individuals with low and
high risk for AD. The results demonstrated aberrant within-
network functional connectivity that suggests future risk of
cognitive decline or progression to AD, and preserved between-
network effective connectivity that may support their current
preserved cognition in the cognitively normal individuals who
have a family history of AD and at least one copy of the APOE4
allele.
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