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A common problem in the older population is the risk of falling and related injury,

immobility, and reduced survival. Age-related neuronal changes, e.g., decline in

gray-and white-matter, affect neuronal, cognitive, and motor functioning. The

improvement of these factors might decrease fall events in elderly. Studies showed

that administration of video game-based physical exercise, a so-called exergame, or

omega-3 fatty acid (FA) may improvemotor and/or cognitive functioning through neuronal

changes in the brain of older adults. The aim of this study is to assess the effects of

a combination of exergame training with omega-3 FA supplementation on the elderly

brain. We hypothesize that an intervention using a combination approach differently

affects on the neuronal structure and function of the elderly’s brain as compared to

the sole administration of exergame training. The study is a parallel, double-blinded,

randomized controlled trial lasting 26 weeks. Sixty autonomous living, non-smoking,

and right-handed healthy older (>65 years) adults who live independently or in a

senior residency are included, randomized, and allocated to one of two study groups.

The experimental group receives a daily amount of 13.5 ml fish oil (including 2.9 g of

omega-3 FA), whereas the control group receives a daily amount of 13.5 ml olive oil

for 26 weeks. After 16 weeks, both groups start with an exergame training program

three times per week. Measurements are performed on three time-points by treatment

blinded investigators: pre-intervention measurements, blood sample after 16 week, and

post-intervention measurements. The main outcomes are motor evoked potentials of

the right M. tibialis anterior (transcranial magnetic stimulation) and response-related

potentials (electroencephalography) during a cognitive test. For secondary outcomes,

reaction time during cognitive tests and spatio-temporal parameters during gait

performance are measured. Statistics will include effect sizes and a 2 × 2-ANOVA

with normally distributed data or the non-parametric equivalent for data not fulfilling
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normal distribution. The randomized controlled study is the first to investigate the

effectiveness of exergame training combined with omega-3 FA in counteracting

age- and behavioral-dependent neuronal changes in the brain. This study has been

registered in the Swiss National Clinical Trials (SNCTP000001623) and the ISRCTN

(ISRCTN12084831) Portals.

Keywords: older adults, exergame training, video game, nutritional supplementation, omega-3 fatty acid, brain

function, brain structure

INTRODUCTION

In general, the human brain undergoes age-dependent changes
by losing about 15% of the cerebral cortex and about 25%
of the cerebral white-matter between the ages of 30 and 90
years (Colcombe et al., 2003). Age-associated alterations in
gray-matter and white-matter integrity (Longstreth et al., 1996;
Gunning-Dixon et al., 2009; Fjell and Walhovd, 2010) and
a decrease in synthesis and binding of dopamine (produced
in substantia nigra and ventral tegmental area), serotonin
(produced in raphe nuclei), and acetylcholine (produced in
pedunculopothine nucleus and laterodorsal tegmental nucleus,
medial septal and diagonal band nuclei, and nucleus basalis;
Wang et al., 1995, 1998; Volkow et al., 1998; Bäckman et al.,
2006; Schliebs and Arendt, 2011) are connected to deteriorations
of cognitive functioning, e.g., working memory and executive
function (EF). EFs are interrelated cognitive abilities that control
and guide goal-directed actions (Banich et al., 2009); e.g., walking
in challenging environments. Different EF components, e.g.,
“working memory” (Holtzer et al., 2006), “divided attention”
(Sheridan et al., 2003), and “inhibition” (Hausdorff et al., 2005),
partly explain gait performance. Especially spatial and temporal
dual-task cost characteristics of gait are associated with divided
attention (de Bruin and Schmidt, 2010). Gait disturbances and
fall events, caused by sensory and motor impairments, are
believed to bemoderated by executive functioning (Rapport et al.,
1998; Scherder et al., 2011). Training of EFs in older adults might
contribute to improved gait performance (Pichierri et al., 2012a)
andmight reduce fall events as EF performance predicted the risk
for future falls (Mirelman et al., 2012). However, so far no direct
cause and effect relationship was demonstrated between EF and
gait (Yogev-Seligmann et al., 2008).

Anatomically, EFs have been linked with the frontal lobe of the
brain, in particular the dorsolateral prefrontal cortex (PFC) and
related brain networks (DeLong, 2000; Yogev-Seligmann et al.,
2008). A large PFC volume and a greater PFC thickness were
associated with better EFs (Yuan and Raz, 2014). During lifetime,
the (pre) frontal network undergoes age-dependent neuronal

Abbreviations: CREB, cAMP response element-binding protein; CRF, case

report from; DTC, dual task cost; EDTA, ethylenediaminetetraacetic acid; EEG,

electroencephalography; EF, executive function; FA, fatty acid; FES-I, falls efficacy

scale international; FITT, frequency, intensity, type, and time; GDS, geriatric

depression scale; ID, identification; LCPUFA, long chain polyunsaturated fatty

acid; MEP, motor evoked potential; MMSE, mini mental state examination; NS,

nutritional supplementation; PE, physical exercise; PFC, prefrontal cortex; RC,

recruitment curve; RMT, resting motor threshold; RRP, response-related potential;

TAP, test for attentional performance; TMS, transcranial magnetic stimulation;

VG, video game.

changes; however, no consensus exists to the precise pattern of
EF altering (Gunning-Dixon and Raz, 2003; Brickman et al.,
2006; Yogev-Seligmann et al., 2008; Gunning-Dixon et al., 2009).
One assumption is that the decline in frontal gray-matter might
be associated with the deterioration of EFs (Zimmerman et al.,
2006). Moreover, disturbances in cortico-cortical and cortico-
subcortical connections, e.g., frontal connections with parietal
lobes and basal ganglia, respectively, are classified as higher
level gait disorders (Thompson and Nutt, 2007; Scherder et al.,
2011). A phenomenon coined “retrogenesis” implies that brain
circuits that mature late in ontogeny are most vulnerable to early
neurodegeneration (Davis et al., 2009) and might contribute to
the understanding and prediction of disturbances in higher level
gait and gait-related motor activity. This suggestion is supported
by recent work of Rosano et al. (2012) showing that a smaller
volume of the prefrontal area is likely to contribute to slower gait
through slower information processing (Rosano et al., 2012).

So far, training of cognitive abilities (e.g., EFs) may represent
an important strategy to preserve brain function and also prevent
mobility disability (de Bruin et al., 2011, 2013; Pichierri et al.,
2012b; Rosano et al., 2012). Furthermore, recent reviews focusing
on the interplay between physical function and cognition
concluded that it seems important to combine motor and
cognitive training into clinical practice to enable older adults
to move safer in their physical environment (Segev-Jacubovski
et al., 2011; Pichierri et al., 2012b; Bamidis et al., 2014).
Especially, computerized interventions seem promising (Green
and Bavelier, 2008; Pichierri et al., 2012b; Bamidis et al., 2014)
when considering training principles that enhance (motor)
learning (Green and Bavelier, 2008). Video games might have
the potential to train cognitive functions (Zelinski and Reyes,
2009). A video game-based physical exercise, or a so-called
exergame, allows the recommended combinatory training of
motor and cognitive abilities. It is believed that physical exercise
(PE) interventions with decision-making opportunities might
facilitate the development of both motor performance and
cognitive function (Yan and Zhou, 2009).

Recent research indicates that the effects of PE on the brain
can be enhanced by concurrent consumption of natural products
(van Praag, 2009). This means it can be hypothesized that a
combination of physical training with a nutritional supplement
(NS) has the potential to further enhance the effects of physical
training on the level of brain structure and function in older
persons. The potential synergy between nutrition and PE could
involve common cellular pathways important for neurogenesis,
cell survival, synaptic plasticity, and vascular function (van Praag,
2009).
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A systematic review revealed that previous interventions using
a combined approach of PE and NS to effect on the brain were
not particularly successful because of the misfit between the
combinations; the intervention components were not selected
based on sharing of similar neuronal mechanisms (Schättin
et al., 2016). The review indicates, however, that especially fish
oil, containing omega-3 fatty acid (FA), might be an effective
NS supporting the positive effects of PE. Omega-3 FA is
important for energy metabolism and for the composition of the
plasma membranes in the brain (Gómez-Pinilla, 2008). Another
review showed that long chain polyunsaturated FA (LCPUFA)
might improve cognition, decrease (neuro) inflammation, and
reduce vascular risk factors in normal aging adults (Janssen and
Kiliaan, 2014). Omega-3 LCPUFA may provide decreased brain
deterioration through the positive effects on brain structure,
function, and cerebral blood flow (Haast and Kiliaan, 2015).
A recent randomized-controlled study showed that fish oil had
positive effects on brain structure and function in healthy older
adults (Witte et al., 2014). The participants showed improved
EFs, white matter microstructure integrity, gray matter volume,
and vascular parameters.

So far no study investigated the combined effect of exergame
training and omega-3 FA on the elderly brain’s structure and
function. This study, therefore, aims to investigate the effects
of a combination of exergame training and omega-3 FA. The
following research question will guide through the research
process: “Does the combination of exergame training and fish
oil differently affect neuronal system levels in the elderly brain
compared to exergame training alone?” The main objectives of
the trial are (1) to determine the effects of the intervention on the
neuronal structural level of the brain (neuronal excitability) and
(2) to assess the effects on functional level in the brain (neuronal
activity). We hypothesize that the combination will differently
affect these parameters.

MATERIALS AND METHODS

Ethics and Reporting
The study procedure has been approved by the local ethics
committee (EC Zurich Switzerland, EC number: 2015-0190) and
conforms to the Declaration of Helsinki and the guidelines of
Good Clinical Practice E6 (R1). No data was recorded before
written informed consent was given by the participants. The
trial protocol follows the Consolidated Standards of Reporting
Trials (CONSORT) statement on randomized trials of non-
pharmacological treatment (Boutron et al., 2008) and Standard
Protocol Items: Recommendations for Interventional Trials
(SPIRIT) guidance for protocol reporting (Chan et al., 2013).

Design and Setting
The study is a randomized double-blinded, placebo-controlled
study involving elderly adults above 65 years. The study is
designed to examine the effect of omega-3 FA supplementation
and exergame training on the endpoints of neuronal structure
and function before and after a 26-weeks intervention period.
The measurements and data collection, the exergame training,
and data analysis are conducted at the same study site (ETH

Hönggerberg, Zurich, Switzerland). At home, the participants are
expected to take the NS regularly.

Blinding, Randomization, and Allocation
The NS, packed in bottles equal in outer appearance, were
blinded by an external center (Kantonsapotheke Zurich,
Switzerland) to achieve double blinding. The external center
created a computer-generated list including numbers from 001
to 060 that correspond to either fish oil or olive oil, respectively.
The list number does not correspond to the participants’
identification (ID) number. The list consists of six blocks of
ten whereas fish oil and olive oil are randomly and equally
distributed in all blocks. The investigators continuously assigned
the volunteering women to the numbers starting with 001
and ending with 030 and the men starting with 031 and
ending with 060. The randomization list is stored by a non-
involved investigator and out of reach and sight of the involved
investigators. For statistics, the groups will be referred to without
specification of NS (e.g., group A and B).

Participants
Participants were recruited from the Senior’s University
Zurich (Switzerland), senior residency dwellings in Zurich
(Switzerland), and through public advertisement. The public
advertisement included a brief study description and study site
contact information. All those who were interested received
a study information sheet including the design, procedure,
benefits, and risks of the study. Before the study procedure
started, the participants had to provide signed written informed
consent forms. Participants fulfilling all of the following inclusion
criteria were eligible for the study: (1) age above 65 years, (2)
live independently or in a residency dwelling, (3), non-smoker,
and (4) healthy (self-reported). Participants were excluded
if they exhibited one of the following exclusion criteria: (1)
mobility impairments, (2) orthopedic or neurological diseases
that prevent training participation, (3) rapidly progressive or
terminal illness as well as acute or chronic illness, (4) history of
heart attack, stroke, or epilepsy, (5) medication that interacts
with NS (e.g., hypoglycemic medication and anticoagulants),
(6) medication that acts on neuronal level (e.g., psychotropic
medications), (7) cognitive impairment (Mini Mental Status
Examination <22 points), (8) signs of an upcoming depression
(Geriatric Depression Scale), (9) electronic or metallic head
implants, and (10) personal history of dizziness.

Interventions
The study interventions are described in detail according to the
Template for Intervention Description and Replication (TIDieR)
guidelines (Hoffmann et al., 2014) in Table 1 to allow readers and
other researchers to use or replicate the intervention.

Nutritional Supplementation
Participants randomized to the experimental group take a liquid
(oily consistency) fish oil (San Omega AS, Akersbakken 35B, NO-
0172 Oslo). Participants randomized to the control group take
olive oil as placebo (Oro del Desierto, Ctra. Nacional 340, 04200
Tabernas, Almeria, Spain). The reasons for choosing olive oil as
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TABLE 1 | Description of study intervention based on the Template for Intervention Description and Replication (TIDieR) checklist (Hoffmann et al., 2014).

Item Experimental group Control group

1. Brief name Fish oil + exergame training Olive oil + exergame training

2. Why? Exergame training (Bamidis et al., 2014) as well as omega-3

FA (Witte et al., 2014) have positive effects on the elderly

brain. The combination of exergame training and omega-3 FA

might improve brain structure and function more effectively

than their sole administration.

Olive oil is not expected to induce better effects as omega-3 FA.

Olive oil acts as a good comparator because of similarity in taste,

composition, consistency, and color. Exergame training can

improve brain structure and function, but on a lower level as

compared to the experimental group.

3. What materials? Participants receive bottles including the fish oil, measuring

cups, and a NS diary to record adherence.

Participants receive bottles including the olive oil, measuring cups,

and a NS diary to record adherence.

On pressure sensitive dance plates, participants perform whole body movements driven by VGs presented on a frontal screen.

4. What procedure? The participants take the NS daily.

The PE includes six different VGs whereas each VG adapts the difficulty level to the participant’s abilities. Each exergame is designed to

train different executive and physical functions. One 30 min-training includes one session of each VG (4 min) with short breaks (∼1 min) for

game change.

5. Who provides? Investigators instructed to NS and exergame training.

6. How? For the NS, both intervention groups receive initial instruction about intake, duration, and dosage by an exercised investigator. The PE is

performed in small groups supervised by experienced investigators (master students in human movement sciences at ETH Zurich).

7. Where? The participants take the NS at home. The PE is performed in training rooms at ETH Hönggerberg (Switzerland).

8. When and how much? For 26 weeks, the participant takes 13.5 ml of the NS daily. After 16 weeks, the participants continue with the NS and start with the PE.

The PE takes place three times per week (30 min) for 10 weeks.

9. Tailoring The PE is tailored to the abilities of each individual participant by the integrated progression algorithm. If a participant gets better/worse in

performance, the VG automatically adapts and becomes more difficult/easier.

FA, fatty acid; NS, nutritional supplementation; PE, physical exercise; VG, video game.

comparator are the similarity of taste, composition, consistency,
and color. Thus, olive oil is the most commonly used placebo for
omega-FA studies (Miller et al., 2014).

Over 26 weeks, the participants take a daily amount of
13.5 ml of fish oil, including 2.9 g of omega-3 FA, or 13.5 ml
of olive oil. The first 16 weeks, the participants take the NS
with the aim of reaching a steady state (Katan et al., 1997;
Arterburn et al., 2006; Stonehouse, 2014). A review on omega-
3 FA suggests that a duration of 16 weeks is needed to account
for potential interaction effects of gender and age (Stonehouse,
2014). Moreover, the time frame of 16 weeks is the minimum
time needed for red blood cells to reach a steady state (Katan
et al., 1997; Arterburn et al., 2006). The duration and dosage of
the omega-3 FA was based on findings of previous studies. Two
studies showed no detectable cognitive benefits when considering
an intake of 0.7 g for 24 months (Dangour et al., 2010) or 1.8 g
for 26 weeks (van de Rest et al., 2014), respectively. A possible
explanation might be that the dosage level is more important
than the time frame. Witte et al. (2014) utilized 2.2 g for 26
weeks and achieved a significant increase of EF and beneficial
effects in white-matter microstructure integrity and on gray-
matter volume (Witte et al., 2014). A review identified low to
moderate side effects in form of gastrointestinal upset, fishy
aftertaste, worsening glycemia, and rise in low density lipoprotein
cholesterol for 1–3 g/d of omega-3 FA (Kris-Etherton et al.,
2003).

At home, the NS can be taken undiluted or can be added to
food (e.g., salads) or drinks. At intervention start, the participants
receive bottles including the NS, measuring cups (13.5 ml),
and oral as well as written information about duration, dosage,
and intake. To check for intake adherence, the participants are
supplied with a NS diary including week days and daytime.

Exergame Training
On a pressure-sensitive dance plate (Impact Dance Platform, 87.5
× 87.5 × 2.5 cm, Positive Gaming BV, BZ Haarlem, Nederland),
the participants perform specific whole body movements
triggered by a video game (VG) presented on a frontal screen. The
dance pad is connected by USB to a desktop computer and with
symbols projected on a wall using a beamer. Electronic sensors
in the dance pad detect position and timing information that are
used to provide participants with real-time visual and auditory
feedback. Through foot pushes on the plate arrows (right, left,
top, and bottom), the participants interact with the game. The
VGs (dividat, Schindellegi, Switzerland) are designed to train
different aspects of EFs (divided attention, working memory,
inhibition, and shifting) and physical functions. The exergame
training allows the implementation of training principles as
described in the paper of Healy et al. (2014) a feedback system
to facilitate training, individual levels of difficulty according to
individual skills and abilities, adjustable task difficulty to facilitate
retention, and variability of training to enhance task transfer.
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Additionally, the FITT training principles are implemented;
Frequency: three times per week, Intensity: individually adapted
VG (allowing training progression), Type: combination of
cognitive andmotor training, and Time: 30min training sessions.

After 16 weeks of NS intake, all participants start to perform
the exergame training that lasts 10 weeks. The participants train
for 30 min, three times per week. Based on the results of a
meta-analysis, the time frame of 10 weeks was chosen in terms
of an expected effect size of 0.478 (Colcombe and Kramer,
2003). The time frame and training intensity were, furthermore,
based upon studies illustrating positive training effects in older
adults performing a VG on a dance plate (Pichierri et al.,
2012a,b). Training includes one session of each VG (4 min)
in a pre-defined order and short breaks (∼1 min) for game
change. In training rooms (ETH Hönggerberg, Switzerland), the
participants perform their exercises in small groups supervised
by experienced investigators. To control for adherence, the
participants receive a training plan including dates and time
schedule. Furthermore, the investigators control adherence by a
training adherence checklist. A previous trial testing the effects of
similar games in older adults showed that this program will effect
on EFs (Schättin et al., 2016).

Staff Eligibility
All involved investigators received training for data collection
and handling in accordance with the study measurement
protocols. Additionally, the investigators were instructed on how
to prepare the participants for correct maintenance of the diary
and NS intake. Furthermore, the investigators guiding the PE
got instructions about the handling of the game console, game
software, and the training procedure. The trained investigators
supervise PE to explain the VG (if needed) and to minimize the
risk of falls.

Outcomes
All measurements are performed at pre- and post-intervention.
The primary and secondary outcomes are listed in Table 2.

Transcranial Magnetic Stimulation
Participants sit comfortably on an adjustable chair with hip, knee,
and ankle joint angles of 100◦, 120◦, and 90◦, respectively. Given
the symmetrical nature of transcranial magnetic stimulation
(TMS)-related measurements of the lower limb, only the
dominant side is assessed (Cacchio et al., 2009). Cortical
stimulation is applied by means of a TMS stimulator MAGSTIM
200 (Magstim Company Ltd., Whitland, Dyfed, UK) with a
“figure of eight” coil placed over the cortical motor area
to stimulate the right M. tibialis anterior (TA). In healthy
participants, TMS-related measurements of the TA are reliable
(Cacchio et al., 2009).

Muscle activity is recorded by Telemyo DTS (Noraxon,
Cologne, Germany). Before the measurement, the skin of
the shank is shaved (if needed) and prepared with an
abrasive gel (OneStep AbrasivPlus, H+H Medizinprodukte,
Münster, Germany). The electrodes (Ambu R© Blue Sensor N,
Cambridgeshire, UK) are placed with an inter-distance of two cm

TABLE 2 | Trial outcomes.

Assessment

methodology

Outcomes Indication

PRIMARY OUTCOME

TMS Motor evoked potential

(right M. tibialis anterior)

Excitability of neuronal system,

indirect measure of synaptic plasticity

(Voss et al., 2013)

EEG Response-related

potential

Neuronal activity

SECONDARY OUTCOME

TAP Reaction time Cognitive functioning

Gait Temporal and spatial

parameters

Motor functioning

DTC Cognitive cost

Blood sample FA levels Indicator for NS

OTHER OUTCOMES

Short FES-I Points (7–28) “Concern” about falling

MMSE Points (0–30) Mental status

GDS Points (0–15) Depression status

DTC, dual-task cost; EEG, electroencephalography; FES-I, falls efficacy scale

international; GDS, geriatric depression scale; MMSE, mini mental state examination;

NS, nutritional supplementation; TAP, test for attentional performance; TMS, transcranial

magnetic stimulation.

on the muscle belly of the right TA. The muscle belly is defined
through contraction of the TA.

In the first step, the participants are handed a bathing cap that
fits tightly on the head. On the top of the cap, a grid is drawn
using the vertex as initial position. The vertex is determined
as half distance from nasion to inion and half distance from
right to left pre-tragus. As previously suggested, the optimal
activation of the TA is obtained if the coil is placed parallel to and
approximately 0.5–1.0 cm lateral to the midline and its mid-point
is aligned anterior-posteriorly against the vertex (Cz) (Devanne
et al., 1997). To maintain consistent coil positioning across
sessions, detailed distance recordings are made from the nasion,
inion, and bilateral pre-tragus to the vertex. In the second step,
the optimal stimulation point is assessed (hotspot). The hotspot
corresponds, on the grid, to the lowest motor threshold that
evokes a motor evoked potential (MEP) response (Rossini et al.,
1994). The third step involves determination of the resting motor
threshold (RMT) defined as the lowest intensity of magnetic
stimulation required to evoke MEPs of 50 µV in peak-to-peak
amplitude in at least 6 of 10 consecutive trials (Rossini et al.,
1994). In the fourth step, a recruitment curve (RC) of increasing
intensities of 10% steps is obtained in 10 trials per step. The
stimuli intensities from 90% RMT to 140% RMT are applied in
a random order. The interval between the stimuli is 7 s with a
20% variance to avoid familiarization. The analysis of peak-to-
peak amplitude (MEP) and RC will be performed in MatlabTM

for Windows (Mathworks Inc., Natick, MA, USA).

Electroencephalography
For electroencephalography (EEG) measurement, the
participants wear a 20-channel dry-electrodes Enobio device
(Neuroelectrics, Barcelona, Spain; Ruffini et al., 2006, 2007). The
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EEG system records and visualizes 24 bit EEG data at 500 Hz.
The device sends the data via wireless connections to a personal
computer where data can be monitored in real-time. During
the EEG recording, the participants perform a Go/No-Go task
including the suppression of a response in the presence of
irrelevant stimuli. The stimuli presentation of the Go/No-Go
task stems from the Test for Attentional Performance (TAP). The
task is presented on a personal computer screen in front of the
participants for about 10 min (five times 2 min). On a keyboard,
the participants have to push a predefined button when the
relevant stimuli appear. One investigator records the right and
wrong event-related responses of the participants comparing
the stimuli of the Go/No-Go task and the trigger appearing
on the EEG screen. At the time point of clicking, a trigger is
recorded and integrated into the EEG data recording. The trigger
time points will be used for further analysis of the EEG data
including response-related potentials (RRP). The analysis will be
performed in MatlabTM for Windows (Mathworks Inc., Natick,
MA, USA).

Test for Attentional Performance
The TAP (D-TAP 2.3 VL, PSYTEST, Psychologische Testsysteme,
Herzogenrath, Germany) was initially developed to assess
deficits in attention. The TAP is a valid test with the subtests
measuring different and statistically independent attentional
aspects (Zimmermann and Fimm, 2002). On a frontal screen,
the participants see each test running on a personal computer.
A button, placed in front of the participants, is used to record
the reaction time and failure rate of the participants. Before the
main test starts, the participants perform a pre-test to clarify
the procedure and to minimize possible learning effects. The
participants execute two tests: (1) Working memory (5 min):
The participant has to compare presented double-digit numbers
on the screen with previously exposed double-digit numbers.
By pressing the button, the participants indicate the repetition
of a number within a short interval; and (2) Divided attention
(3.25 min): This subtest consists of visual and acoustic signals
presented in an asynchronous way. In a 4 × 4 matrix, the visual
task consisting of crosses appearing in a random configuration.
The acoustic part consists of low and high beeps playing in a
regular sequence. The participant has to detect whether the cross
forms the corners of a square or whether the beeps have an
irregularity in their sequence.

Gait Analysis
Temporal (time) and spatial (distance) gait parameters are
measured with the Physilog (Gait up Sàrl, Lausanne, Switzerland)
via wearable standalone movement sensors (50 × 37 × 9.2 mm,
19 g, anatomical curved shape) containing inertial sensors. A
button on the sensors allows the start and stop of measurement.
A micro-USB port allows data transfer to the personal computer
for further analysis of gait performance data. Physilog provides
objective, quantitative, and valid assessment of gait movement
(Aminian et al., 1999; Dubost et al., 2006; de Bruin et al.,
2007; Mariani et al., 2012). The sensors are fixed with elastic
straps at the right and left forefoot of the participants for flat
over ground gait analysis over a distance of 10 m. Participants

perform a single-task condition (preferred walking) and a dual-
task condition, i.e., preferred walking whilst counting backwards
in sevens from a random given number. The participants are
instructed to position themselves at the beginning of the walkway
and are asked to walk with their comfortable speed to the
end of the walkway. Thereafter, the participants are asked to
perform the same walking task while counting. For counting,
the participants get a random number between 200 and 250
at the start. The instructions are standardized as follows: (1)
“Walk with your comfortable speed right to the end of the
walkway.” (2) “Walk with your comfortable speed right to the
end of the walkway counting backwards from [random number
between 200 and 250].” The participants have to count loud and
don’t stop walking; otherwise, the trial is recorded as failure.
Instructions are given that no one task should be prioritized
over the other. Assistive devices like canes, crutches or walking
frames can be used if necessary. Each tested condition is repeated
three successful times to obtain representative samples and the
means of the three successful trials will be used for further data
analysis. For each participant the relative dual-task costs (DTC)
of walking, as percentage of loss relative to the single-task walking
performance, according to the formula DTC [%] = 100∗ (single-
task score-dual-task score)/ single-task score (McDowd, 1986)
will be calculated.

Blood Sample
Venous blood samples are collected by a qualified investigator
and stored in 2.7 ml EDTA tubes (S-Monovette, K3 EDTA, 75 ×
13 mm, Sarstedt, Germany). Blood samples are taken to analyze
FA values in erythrocytes. This direct method for FA analysis
is reliable and accurate with Limits of Detection of the FAs
profiles ranging between 0.23 and 3.19 µg (Rodriguez-Palmero
et al., 1998). Pre- and post-dosage FA values will be assessed and
compared with reference values previously reported (Superko
et al., 2013). The FA parameters will be analyzed by Omegametrix
GmbH (Martinsired, Germany). The laboratory meets the strict
criteria of the quality standard DIN ISO 15189.

Mini Mental State Examination
The Mini Mental State Examination (MMSE) is a reliable and
valid test to quantitatively estimate the severity of cognitive
impairment (Folstein et al., 1975; Tombaugh and McIntyre,
1992). The 30 questions of the MMSE are categorized into seven
categories: (1) orientation to time, (2) orientation to place, (3)
registration of three words, (4) attention and calculation, (5)
recall of three words, (6) language, and (7) visual construction.
An investigator performs the test with the participants by
giving zero points or one point for incorrect or correct answer,
respectively.

Geriatric Depression Scale
The Geriatric Depression Scale (GDS) is a self-report
questionnaire to identify depression in older adults (Yesavage
et al., 1983). The GDS is a valid and reliable depression screening
(Yesavage et al., 1983). The short form has 15 questions focusing
on worries of the participants, and the way they conceive and
interpret their quality of life (Yesavage and Sheikh, 1986). The
questionnaire can be answered in a yes/no response.
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Data Collection
All consenting participants received a case report form (CRF)
to ensure that eligibility criteria are met and to ensure all
measurements are performed. The CRF includes a confirmation
that participants read the information sheet and signed the
informed consent. Furthermore, the list of inclusion and
exclusion criteria is included to confirm the eligibility of the
participants. For the measurements, the steps are cross-checked
for digital recording data (TMS, EEG, TAP, and gait), results are
noted (short FES-I, GDS, MMSE) and blood taking is confirmed.
The data from TMS, EEG, TAP, and gait are stored on a personal
computer for further analysis. Any digital data, blood samples,
questionnaires, and CRFs are coded with the individuals’ ID.

Sample Size
To avoid a type I or II error, the power calculation was based on
a study examining the effect of omega-3 FA on EEG frequency
band distribution during a sustained attention test (Fontani
et al., 2005). The aforementioned study was used for sample size
calculation because so far there exists no study that examined
the influence of exergame training in combination with omega-
3 FA on neuronal systems using TMS or EEG methodology.
Due to the values of EEG frequency band distribution during
sustained attention tests (with values K + K = 27.70 ± 5.2; K
+ K = 31.49 ± 8.6), an estimated sample size of 24 participants
would result in 80% power at an alpha-level of 0.05 for this
parameter. To account and compensate for expected drop-outs,
the study includes 30 participants in each group. Drop-outs are
expected because of the long study duration of 26 weeks, the age
of the participants, and numbers are based on previous reports
on adherence of non-institutionalized older adults to exercise
programs (Nyman and Victor, 2012).

Statistics
The data analysis will be performed at the end of intervention
including the measurement values from pre- and post-
intervention measurements. Data will be tested for normal
distribution using Shapiro-Wilk test and Q-Q-plots. A 2 × 2-
ANOVA will be used with normally distributed data, the non-
parametric equivalent for data not fulfilling assumptions of
normal distribution. The test will be used to compare the two
interventions over time (from pre- to post-measurement) on
changes on the main dependent variables MEP, RRP, RT of
cognitive tasks, spatio-temporal gait parameters, DTC, and FA
levels. In addition to statistical significance testing effect size
calculation (r = Z/

√
N) will be performed. The participants’

FA blood levels, demographic, and health information will be
examined in relation to the outcome measures in order to
interpret the results in context. All statistical procedures will
be conducted with the IBM Statistical Package for the Social
Science software package. A probability level of p < 0.05 will be
considered to be statistically significant.

STEPWISE PROCEDURE

The stages of the study procedure are illustrated in Figure 1.
The study includes two measurement time points (pre- and

post-intervention) which are performed in a laboratory at the
ETH Zurich (Hönggerberg, Switzerland). The two data collection
sessions are performed by treatment-blinded investigators
including the following assessments: TMS measurement,
EEG measurement, TAP performance, gait performance, and
questionnaires (short FES-I, MMSE, and GDS). The pre-
measurement consists of a screening and measurement part.
The screening part contains data of the MMSE, GDS, and health
questionnaire (including questions about physical impairments,
medical history, anthropometric data, and physical activity level)
and is used to determine eligibility for the measurement part
and study participation, respectively. The measurements for
each session take about 2 h and are conducted to determine the
effects of the interventions on brain structure and function. The
pre-intervention measurement is planned to be performed in
the week before the intervention starts. The post-intervention
measurement is planned for the first week after the intervention,
while the possibility consists to postpone the measurement
by one week. In addition, blood samples are taken at pre-
intervention measurement, after 16 weeks of NS intervention,
and at post-intervention measurement.

The intervention starts on Monday of the week following
the pre-intervention measurement and lasts 26 weeks. Each day
for 26 weeks, the participants have to take the same amount of
NS regularly at home, while the intake time point should be
as consistent as possible. The investigators can reproduce the
intake using the individual intake protocol of each participant.
After 16 weeks, the participants start with the exergame training
lasting for 10 weeks. In small groups, each participant trains
three times per week for 30 min. The training time points are
individualized for each participant and may also be variable from
week to week for individual participants. Each participant has to
attend at least 70% of training to be considered for (per protocol)
analysis.

ANTICIPATED RESULTS

The results of this study can be influenced by several factors.
One might be the adherence to regular intake of the NS. As
countermeasures an intake protocol supports the participant
and helps the investigator to control the intake. Blood sample
analysis is an additional control measure. Moreover, the
training attendance is checked by the investigators, so that
each participant reaches at least 70% attendance. However, a
higher drop-out rate may be expected because of the long trial
duration. The aforementioned sample size calculation included
the calculated 25 participants and five additional participants
for each intervention group because of the expected drop-outs.
Moreover, TMS is used in this study as an indirect proxy
measure of synaptic plasticity. Based on the results of this study
future studies should focus on more direct measures of synaptic
plasticity by using either magnetic resonance tomography
(Alvarez-Salvado et al., 2014) or positron emissions tomography
scans (Magistretti, 2006) for comparing the brain scans before
and after the intervention.

The aim of this study is to investigate the neuronal effects of
an intervention that combines exergame training with omega-3
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FIGURE 1 | Flow chart of study procedure. FA: fatty acid.

FA supplementation. Several animal studies combined omega-
3 FA and PE focusing on the neuronal effects and the possible
underlying mechanism. One study concluded that omega-3 FA
interacts with PE in improving the axonal growth, synaptic
plasticity, and cognitive function of the adult rat brain (Chytrova
et al., 2010). Omega-3 FA and PE might act both on the
energy metabolism of hypothalamus and hippocampus thereby
influencing brain plasticity and cognitive function (Gomez-
Pinilla and Ying, 2010). Moreover, the combination may increase
the level of brain-derived neurotrophic factor resulting in the
activation of CREB and synapsin I (Wu et al., 2008). The activated
metabolic pathway supports neuroplasticity and cognition. So far,
no comparable human study exists that combines PE, especially
exergame training, and omega-3 FA. The trial design is based
on the results of the aforementioned animal studies and of

the sole administration studies of either exergame training or
omega-3 FA for older participants focusing on the brain. An
exergame intervention was chosen because a combination of
cognitive and motor training is expected to have positive effects
on the elderly brain (Bamidis et al., 2014; Law et al., 2014;
Schättin et al., 2016) and is able to ameliorate EFs in older
adults (Eggenberger et al., 2016; Schättin et al., 2016). Motor
training builds new synaptic connections while the cognitive
part supports the preservation of the new build structure. In
aging humans, PE can strengthen neuronal structure, synaptic
plasticity, and transmission as well as cognitive function (Cai
et al., 2014). PE might trigger molecular and cellular mechanisms
supporting brain plasticity (Cotman et al., 2007). Furthermore,
video game-based training serves as a powerful tool to train
cognitive abilities (Zelinski and Reyes, 2009; Kueider et al.,
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2012), including attention and EFs (Jobe et al., 2001) as well
as to evaluate functioning of underlying neuronal mechanisms
explaining cognitive control (Anguera et al., 2013). In normal
aging humans, omega-3 FA might improve cognition (Janssen
and Kiliaan, 2014) and ameliorate brain deterioration through
the positive effects on brain structure, function, and cerebral
blood flow (Haast and Kiliaan, 2015). A recent randomized-
controlled trial showed that omega-3 FA had positive effects on
EF, white matter microstructure integrity, gray matter volume,
and vascular parameters (Witte et al., 2014). Both interventions,
exergame training and omega-3 FA, are believed to act on the
same (metabolic) brain pathways and, therefore, complement
each other (Gómez-Pinilla, 2008). The brain gets trained during
the exergame training and the omega-3 FA might, in this case,
provide the needed substance and energy to build up new
structures and to support metabolic pathways. An interaction
is created that might be more effective for brain structure and
function compared to the sole administration of an individual
intervention component.
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