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Cognitive abilities decline over the time course of our life, a process, which may be
mediated by brain atrophy and enhanced inflammatory processes. Lifestyle factors,
such as regular physical activities have been shown to counteract those noxious
processes and are assumed to delay or possibly even prevent pathological states,
such as dementing disorders. Whereas the impact of lifestyle and immunological factors
and their interactions on cognitive aging have been frequently studied, their effects on
neural parameters as brain activation and functional connectivity are less well studied.
Therefore, we investigated 32 healthy elderly individuals (60.4 ± 5.0 SD; range 52–
71 years) with low or high level of self-reported aerobic physical activity at the time of
testing. A higher compared to a lower level in aerobic physical activity was associated
with an increased encoding related functional connectivity in an episodic memory
network comprising mPFC, thalamus, hippocampus precuneus, and insula. Moreover,
encoding related functional connectivity of this network was associated with decreased
systemic inflammation, as measured by systemic levels of interleukin 6.
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INTRODUCTION

It is a well-known phenomenon that our neurocognitive abilities change with age but there are
remarkable differences in the timing and trajectory of these changes (Hedden and Gabrieli, 2004;
Hofer and Alwin, 2008). Investigating the effects of lifestyle factors may be highly informative
for the development of interventions to reduce or delay age-related cognitive decline. Among
these lifestyle factors physical exercise both enhances and preserves cognitive function in the
elderly (Dustman et al., 1984; Colcombe and Kramer, 2003; Smith et al., 2010; Bherer et al.,
2013). Additionally, physical exercise appears to significantly reduce the risk of adults developing
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dementing diseases in later years (Laurin et al., 2001; Hamer and
Chida, 2009; Middleton et al., 2010; Llamas-Velasco et al., 2015).
Even patients already suffering from mild cognitive impairment
or dementing disorders improve in cognitive functioning after a
physical exercise intervention (Heyn et al., 2004; Lautenschlager
et al., 2008). Hence, physical exercise is a promising low-cost
treatment to improve neurocognitive function that is accessible
to most elderly.

There is general agreement that memory performance declines
from early to late adulthood, and that such age-related memory
impairments do not involve every domain of Memory (Grady and
Craik, 2000). Decrements are typically slight in implicit memory
tasks, immediate memory tasks, and in many recognition
memory tasks (Grady and Craik, 2000). In contrast, age-related
memory losses are substantial in episodic memory tasks involving
cued or free recall (Anderson and Craik, 2000; Balota et al.,
2000; Grady and Craik, 2000; Nyberg et al., 2012). In this
regard, it has been shown that episodic memory (Chalfonte
and Johnson, 1996; Naveh-Benjamin, 2000; Naveh-Benjamin
et al., 2003, 2004), and in particular the memory for face-
name or face occupation associations (Naveh-Benjamin et al.,
2004; James et al., 2008; Hayes et al., 2015), is markedly
reduced in the elderly. However, recent elderly studies have
shown that the engagement in physical activity can counteract
those episodic memory losses (Zlomanczuk et al., 2006; Hayes
et al., 2015). For instance, Hayes et al. (2015) showed that
engagement in physical activity, is positively associated with
performance on the face-name association task. However, the
neuronal correlates of this effect in terms of brain activation and
functional connectivity have not yet studied. Sperling et al. (2003)
examined the pattern of brain activation during the encoding
of face-name associations in young and elderly. The authors
showed that elderly, compared to young adults, have greater
activation in parietal regions but less activation in both superior
and inferior prefrontal cortices and the hippocampus, a brain
region known to be essential in episodic memory (Burgess et al.,
2002). One may hypothesize that engagement in aerobic physical
activities has a positive effect on these brain regions affecting
encoding related brain activation in and functional connectivity
between these brain regions. Anatomically, the hippocampus is
strongly connected to prefrontal regions as medial prefrontal
cortex (mPFC; Preston and Eichenbaum, 2013) which, in turn,
have reciprocal connections to several thalamic nuclei that are
indirectly or directly reciprocally connected to the hippocampus
in monkey (Aggleton et al., 2011). Moreover, a recent fMRI
study revealed functional connectivity between hippocampus,
mPFC and thalamus during episodic memory retrieval in
young adults (Thielen et al., 2015). Therefore, we hypothesize
that face association learning (encoding) is associated with
the hippocampal-thalamus-mPFC axis and that engagement in
aerobic physical activity has a positive effect on activation and
functional connectivity within this memory network.

There is evidence that aerobic physical activity is associated
with reduced systemic inflammation (Elosua et al., 2005;
Autenrieth et al., 2009). There is also evidence that age
related episodic memory decline is associated with inflammation
(Simen et al., 2011). An association between inflammation

and memory impairment has been reported in both, rodents,
and human studies (Heyser et al., 1997; Gemma et al., 2005;
Barrientos et al., 2006, 2009; Hilsabeck et al., 2010; Simen
et al., 2011; Harrison et al., 2014, 2015). Thus, there seems
to be an interaction between physical activity, inflammation
and aging related memory decline. In this regard, it has
been reported that inflammation affects the functioning of the
hippocampus. For instance, peripheral injection of the bacteria
Escherichia coli – leading to increased inflammation – produces
both retrograde and anterograde amnesia in 24 month old,
but not 3-month-old rats for memories that depend on the
hippocampus (Barrientos et al., 2006). Recent studies in human
have linked hippocampal activation and functional connectivity
to systemic inflammation (Harrison et al., 2014, 2015). It
was shown that induced (S. typhi vaccination) inflammation
causes a reduced medial temporal cortex glucose metabolism
and selectively impaired spatial episodic, but not procedural,
memory (Harrison et al., 2014). Moreover, induced inflammation
blocked functional connectivity between the substantia nigra
and hippocampus that occurred during novelty processing in
noninflammatory states (Harrison et al., 2015). Thus, it seems
that inflammation has pronounced effects on hippocampus both,
in terms activation and connectivity. Therefore, we assume that
inflammation is inversely related to encoding related activation
and functional connectivity within the hippocampal-thalamus-
mPFC axis. Interleukin-6 (IL-6) has been recognized as an
active player in inflammation (Rincon, 2012). IL-6 is both an
anti-inflammatory and pro-inflammatory cytokine and can be
released from different cell types as for instance astrocytes,
muscle or fat cells (Gruol and Nelson, 1997; Nybo et al., 2002).
IL-6 released from muscle tissue during or immediately after a
bout of exercise exert anti-inflammatory effects by suppressing
pro-inflammation factors. For instance, elevations in skeletal
muscle derived IL-6 trigger an anti-inflammatory cascade by
lowering the release of pro-inflammatory cytokines (e.g., IL-1β)
via the stimulation of their antagonistic receptors (Nimmo et al.,
2013). Moreover, exercise-related IL-6 triggers the release of IL-
10, an anti-inflammatory molecule, which directly inhibits the
synthesis of different pro-inflammatory mediators, particularly
of the monocytic lineage, such as TNF-α, IL-1α, IL-1β, IL-
8, and macrophage inflammatory protein-1α (Petersen and
Pedersen, 2005) At rest, the release of IL-6 from skeletal muscle
is minimal, with the majority being produced from adipose
tissue and leucocytes, which is thought of as pro-inflammatory
(Fischer, 2006; Nimmo et al., 2013). Moreover, studies revealed
that regular engagement in physical activities is associated
with lower systemic IL-6 levels at rest. For instance, Elosua
et al. (2005) reported a negative relation between interleukin-
6 to both physical fitness and leisure time related physical
activity in the elderly. Lower levels of the pro-inflammatory IL-
6 may reduce the risk of adults developing neurodegenerative
diseases (Laurin et al., 2001; Hamer and Chida, 2009; Middleton
et al., 2010; Llamas-Velasco et al., 2015). For instance, IL-6-
treated hippocampal neurons showed tau hyperphosphorylation
(Quintanilla et al., 2004), a hallmark of Alzheimer’s disease.
Moreover, neurons subjected to chronic IL-6 treatment exhibit
increased sensitivity to NMDA receptor mediated neurotoxicity
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(Qiu et al., 1998). In addition, it has been shown that IL-6 can
have negative effects on synaptic plasticity. For instance IL-6
affects synaptic plasticity in the CA1 region of the hippocampus
by causing a marked decrease in the expression of long term
potentiation (LTP), the cellular model of learning and memory
(Gruol and Nelson, 1997; Tancredi et al., 2000). However, we
should note that IL-6 has not only destructive but also a beneficial
potential. In this regard, numerous studies provide evidence
for an IL-6 involvement in neuronal survival, protection, and
differentiation (Hirota et al., 1996; Gadient and Otten, 1997; März
et al., 1997; Loddick et al., 1998).

In the light of the aforementioned findings, we hypothesized
that aerobic physical activity does not only improve episodic
memory (Hayes et al., 2015) but that this effect goes along with
changed brain activation and connectivity in the hippocampal-
thalamus-PFC axis which in turn is inversely related to
inflammation as measured with systemic IL-6 at rest. Therefore,
this cross sectional study examined the effects of aerobic physical
activity engagement on the performance on a face association
task and related brain activation and functional connectivity in
the elderly. Moreover, we hypothesized that systemic IL-6 levels
are reduced in individuals that engage in aerobic physical activity
which in turn is related to the functional effects, especially those
that are related to the hippocampus.

MATERIALS AND METHODS

Subjects
Thirty-two healthy elderly, right-handed volunteers (16 males,
mean age 60.4 ± 5.0 SD; range 52–71 years) were examined.
None of the subjects reported a history of neurological
or psychiatric diseases and all were free of psychotropic
medication. Participants had normal or corrected-to-normal
vision. Exclusion criteria were febrile illness within 7 days prior to
study participation and severe somatic diseases, such as thyroid
dysfunction, hypercortisolism, or adrenal dysfunction as well as
diabetes mellitus type I and type II with an HBA1c > 8%, subjects
with regular medication other than diabetes type 2 related
medication. Written informed consent was obtained according
to the local medical ethics committee.

Procedure
Assessments were carried out during 1 day. Before scanning,
each subject scored the Physical Activity Scale for the Elderly
(PASE; Washburn et al., 1993) questionnaire and a blood sample
was taken to define plasma levels of IL-6. Since there is strong
evidence for an increased level of IL-6 immediately after a bout
of exercise that last at least 90 min (Leggate et al., 2010; Nimmo
et al., 2013), it is important to note that the participants had not
engaged in physical exercise on the day of testing. In addition,
to account for potential differences between groups, each subject
performed a standard neuropsychological test battery. The
neuropsychological assessment included (1) the German version
of the Auditory Verbal Learning Test (VLMT; Lux et al., 1999)
to assess verbal episodic memory, (2) the Brief Visuospatial
Memory Test-Revised (BVMT-R; Benedict et al., 1996; Benedict,

1997) and (3) the Paired Associates Learning (PAL; Torgersen
et al., 2011) as measures of visuospatial episodic memory. (4) the
Trail Making Test (Tombaugh, 2004; Bowie and Harvey, 2006)
version A (TMT-A, visuoperceptual abilities; Sánchez-Cubillo
et al., 2009) and B (TMT-B, working memory; Sánchez-Cubillo
et al., 2009) and (5) the Intra- and Extra-dimensional Shift (IED;
Égerházi et al., 2007) to assess cognitive flexibility and executive
functions as well as (6) the Controlled Oral Word Association Test
(COWAT; Baldo et al., 2006) to assess for verbal fluency. The
Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B; Lehrl, 2005)
was conducted to estimate subject’s general educational status as
measurement for IQ. Both, the PASE and the neuropsychological
test battery were performed before the blood sampling to ensure
that the participants were not engaged in any physical activities
for 90 min.

Physical Activity Assessment
The Physical Activity Scale for the Elderly (PASE; Washburn
et al., 1993) provides a measure of physical activity regarding
the past 7 days and is composed of the individual engagement
in activity like sports, gardening, household activity, etc. Physical
activity is commonly described by the following four dimensions:
(1) frequency, (2) duration, (3) intensity, and (4) type of
activity (Caspersen et al., 1985). Any assessment of physical
activity should ideally measure all of these dimensions and
account for day-to-day variation (Warren et al., 2010). The
PASE questionnaire measures all dimensions and is therefore an
appropriate measurement to assess physical activity level. Since
we aimed at elucidating the effects related to aerobic physical
activity we used the “strenuous sport” PASE sub-score to assess
the aerobic physical activity level. Based on the finding that the
PASE has demonstrated good validity in a couple of evaluations
as for instance peak oxygen uptake, systolic blood pressure
and measurements assessing physical fitness (Washburn et al.,
1993, 1999; Harada et al., 2001) we assume that in particular
this subscore has the potential to measure variations in aerobic
capacity.

IL-6 Assessment
Blood samples were collected in EDTA tubes from the cubital
veins between 9:00 am and 12:00 am in the fasting state and
processed within 2 h by centrifugation at 1600 g for 15 min
at RT. Plasma aliquots (500 µl) were stored in MatrixTM tubes
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) at −80◦
until IL-6 determination. IL-6 was determined in duplicate with
the Human IL-6 QuantikineTM HS (high-sensitivity) ELISA Kit
in 1:2 prediluted plasma. All readings were acquired in the dual
wavelength mode at 467/650 nm on a Tecan Infinite ProTM

microplate reader (Tecan, Switzerland) with the MagellanTM data
analysis software and corrected for background. Standard curves
were generated on the basis of a four parameter logistic (4-PL)
curve-fit.

fMRI Design
An associative face-profession encoding task (Theysohn et al.,
2013) was performed during fMRI scanning (Figure 1). Five
blocks of an episodic memory condition (face-profession
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FIGURE 1 | Design of the face profession association task. During scanning, subjects performed the face-profession association task and a visuo-motor
control task. The participants were instructed to memorize the face-profession associations for a subsequent memory test and to judge whether the face fitted well
with the underlined profession or not. A simple visuo-motor task was used as control condition, in which subjects were required to judge whether the ears of a
shadow-masked face contour were closer to the left or the right shoulder. Thereafter, subjects performed a recall test for the associated profession outside the
scanner. Therefore, the participants were provided with a list on which all professions were listed and the faces (printed on papers in A4 format) seen during
scanning. The participant had to write down the associated professions below the faces.

encoding task) consisting of four stimuli as described below
were interleaved by five blocks of a control condition consisting
of six stimuli whereby each block lasted 22.8 s. During the
episodic memory condition, a series of four novel faces uniquely
associated with occupational titles were shown. Each face with
its associated occupational title underneath was displayed at
the center of the screen for 5.7 s. Subjects were instructed to
memorize face-profession associations for a subsequent memory
test and to judge whether the face fitted well with the underlined
profession or not. A simple visuo-motor task was used as
control condition, in which each block (as in the episodic
memory condition) started with the presentation of a brief
instruction for 2.0 s, and followed by showing a series of six
shadow-masked face contours with the presentation time of
3.8 s each. Subjects were required to judge whether the ears

of a shadow-masked face contour were closer to the left or
the right shoulder. We have chosen an “active” control task to
avoid mental processes that are related to memory formation.
In other words, during the visuo-motor task the participants
could not spend effort to remember the faces and related
occupations in order to improve memory. After the fMRI task
subjects performed a recall test for the associated profession
outside the scanner whereby they were presented with all the
faces (printed on papers in A4 format) and had to write down
the associated profession. To simplify this task, participants
were also provided with a list on which all professions were
listed. Stimuli, consisted of 20 portraits (half males) and 20
familiar professional names, were standardized according to
several criteria, such as no strong emotional facial expression,
direct gaze contact, no glasses, no beard, no headdress, etc. The
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order of stimuli presentation was randomized for each subject.
Length of familiar professional names ranged from 7 to 15 letters
(mean length± SD= 10.65± 2.77). For the control condition, 30
color photographs showing shadow-masked face contours (with
shoulders) served as stimuli.

MRI Data Acquisition
Image acquisition was performed on a whole-body 7 T MR
system (Magnetom 7T, Siemens Healthcare, Germany) using a
32-channel Rx/Tx head coil (Nova Medical, Wilmington, MA,
USA). We used a T1 weighted MPRAGE sequence for structural
image acquisition with a TR = 2.5 s, TE = 1.44 ms, flip
angle= 6◦, slice thickness= 0.7 mm, resolution= 0.7 mm3, FOV
236 mm × 270 mm. Functional volumes were acquired using
a T2∗-weighted gradient echo 3D EPI sequence with ascending
slice acquisition order, acceleration factor 8 (GRAPPA R = 4∗2),
TR= 3.0 s, TE= 20 ms, flip angle= 15◦, matrix size 192∗192∗96,
slice thickness = 1.5 mm, resolution = 1.5 mm3, and a FOV of
288 mm× 288 mm.

fMRI Data Analysis
The native structural T1 images were segmented into gray and
white matter components. The output of the segmentation
was then used to create a group specific template in SPM8
by using diffeomorphic anatomical registration through
exponentiated lie algebra (DARTEL), which is registered to
the Montreal Neurological Institute (MNI) space. Functional
images were realigned, and the individual mean images were
coregistered with the corresponding structural MRI by using
normalized mutual information optimization. Then, the
functional images were spatially normalized and transformed
into a common space (group specific DARTEL template), as well
as spatially filtered by convolving the functional images with
an isotropic 3D Gaussian kernel of 6 mm FWHM. Regressors
of interest were formed by creating a box-car function for both
conditions (face-profession task/control task) convolved with
the canonical hemodynamic response function. On the first
level, a GLM was conducted with these two regressors, together
with the six motion parameters derived from realignment
procedure.

To investigate the effects of aerobic physical activity on the
memory network, we performed psychophysiological interaction
(PPI) analyses embedded in SPM8 (Friston et al., 2007).
First eigenvariate values were extracted (physiological factor)
from 5-mm spheres centered around the maxima within the
clusters indicative of significant main effects (face-profession
task > control task). A box-car function (weighted with +1 for
face-profession and−1 for the control condition) was temporally
convolved with the canonical hemodynamic response function
(psychological factor). An interaction factor (PPI) was calculated
as an interaction term of physiological and psychological
factors. For each seed region, a first level GLM was conducted
including the face-profession and control task regressors, the
PPI regressors (physiological, psychological, and interaction
factors) as well as the six motion regressors derived from
realignment procedure during preprocessing of the functional
scans.

Activation Analysis (Main Effect of
Memory)
To assess the main effect of memory encoding, the subject-
specific contrast images (face-profession condition over control
condition) from all participants (N = 32) were used as inputs
for the second-level random effects analysis. The results of
the second level random effects analyses were thresholded at
P = 0.001 and thereafter cluster-size statistics were used as test
statistic. Only clusters at P ≤ 0.05 (family-wise error corrected
for multiple comparisons) were considered significant.

Activation Analysis (Effects of Aerobic
Physical Activity)
The subject-specific contrast images (face-profession condition
over control condition) were used as inputs for the second-level
random effects analysis. Age, gender, and MWT-B IQ scores were
included in the model as covariates of no interest. We did a
GLM analyses in SPM8 to probe differences in brain activation
due to aerobic physical activity [aerobic (+) group vs. aerobic
(−) group]. Given the prior findings regarding the hippocampus,
a bilateral hippocampus region of interest (ROI) was defined
by means of the WfU-Pickatlas (Maldjian et al., 2003, 2004)
as reduced search space. Thus we performed, whole brain and
ROI (hippocampus) analyses. The outcomes of the second level
group analyses were thresholded at P = 0.001 and thereafter
cluster-size statistics were used as test statistic. Only clusters at
P ≤ 0.05 (family-wise error corrected for multiple comparisons)
were considered significant.

Functional Connectivity Analysis
We conducted separate PPI analyses (mPFC and precuneus),
based on the outcome of the initial activation analyses (main
effects). The subject-specific contrast images for the interaction
term (PPI.ppi) were used as inputs for the second-level group
analyses [aerobic (+) vs. aerobic (−)] with age, gender, and
MWT-B IQ scores as covariates of no interest. As previous, we
performed a whole bran and ROI analysis (hippocampus). The
results of the second level group analyses were thresholded at
P = 0.001 and thereafter cluster-size statistics were used as test
statistic. Only clusters at P ≤ 0.05 (family-wise error corrected
for multiple comparisons) were considered significant.

Correlation Analysis
Pearson’s partial correlations analyses were performed by means
of SPSS (IBM 21) software, with age, gender and MWT-B IQ score
as variables of no interest. To assess the relations between brain
activation/connectivity parameters and IL-6, we extracted the
mean beta values of the clusters that revealed a significant effect
of aerobic physical activity. For this purpose, we used MarsBaR
toolbox to create separate masks of the significant clusters (see
Figures 2B,C) which in turn were used in the REX toolbox
to extract the analyses specific (PPI mPFC, PPI precuneus, or
activation) mean beta-values of each cluster for all subjects. The
mean b-values of the fMRI (activation/PPI) clusters and IL-6
concentration were then used for Pearson’s partial correlation
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FIGURE 2 | fMRI results. The functional maps are overlaid on the MRIcron template brain (ch256). In (A) an illustration of the two brain regions that showed a main
effect (face-profession task over control task) in the whole group analysis is depicted. Both, the precuneus cluster and the mPFC cluster extend into both
hemispheres and served as seed regions in the functional connectivity analyses. In (B) the left hippocampus region that was more activated in the aerobic (+) group
compared to the aerobic (−) group is illustrated. The outcome of the performed psychophysiological interaction (PPI) analyses is depicted in (C). The two red circles
are the seed regions which are spheres of 5 mm centered around the maxima within the clusters depicted in (A). The white arrows indicate increased functional
connectivity’s between precuneus and thalamus, precuneus and right insula, mPFC and right hippocampus as well as between mPFC and left thalamus in the
aerobic (+) group.

analyses with Benjamini and Hochberg (1995) correction for
multiple testing.

RESULTS

Characteristics of the Sample
We grouped the subjects according to the PASE subscore
“strenuous sport.” Subjects in the aerobic (+) group scored
on average 9.01 (SD = 4.7) whereas the subjects in the
aerobic (−) group did not engage in any strenuous physical
activities. No significant differences were found on relevant group
characteristics, such as age and gender. However, the aerobic
(−) group revealed a higher MWT-B IQ score compared to the
aerobic (+) group (Table 1). Regarding the neuropsychological
assessment, we found that the aerobic (+) group performed
better on the TMT-A/B and the COWAT (Table 2). With
respect to the fMRI memory task, we found a significant
difference in performance (number of correct remembered face-
profession associations) between the aerobic (+/−) groups. The
aerobic (+) group revealed a significantly increased memory
performance compared to the aerobic (−) group (see Table 1).
This effect remained stable if corrected for MWT-B score, age,
and gender.

Subjecting the blood parameter scores (IL-6) to a ANOVA a
statistical significant effect of aerobic physical activity on IL-6
was observed (F(1,30) = 7.70, P < 0.009) when dividing groups
according to their aerobic physical activity level (+/−). This

TABLE 1 | Group differences in the aerobic (+/−) groups are depicted.

Aerobic physical activity P

Aerobic (−) Aerobic (+)

Mean (SD) Mean (SD)

Demographics

Gender 9 M/7 W 7 M/9 W 0.480

Age 61.19 (4.87) 59.75 (5.19) 0.426

MWT-B (IQ score) 116 (13.52) 106.69 (11.53) 0.045∗

Blood parameter

IL-6 (pg/ml) 1.98 (1.45) 0.89 (0.59) 0.009∗

fMRI-Task

Face-professional task
(remembered items)

2.62 (1.82) 5.62 (3.57) 0.006∗

In the top relevant group characteristics (age, gender, and IQ) are shown. Below
the group characteristics, the group differences of the parameters of interest (blood
parameter and fMRI task) are depicted. ∗Significant.

effect remained stable if corrected for MWT-B score, age and
gender. A post hoc t-test revealed that the aerobic (+) subjects
had significantly lower levels of IL-6 compared to the aerobic (−)
group (Table 1).

MRI Analyses
fMRI (Activation)
Whole brain analysis revealed a main effect of memory encoding
in the bilateral precuneus (maxima at MNI = −2 −61 40
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TABLE 2 | Group differences in the aerobic (+/−) groups are depicted.

Aerobic physical activity P

Aerobic (−) Aerobic (+)

Mean (SD) Mean (SD)

Neuropsychology

VLMT-recognition
(remembered items)

10.50 (2.65) 10.19 (4.26) 0.805

VLMT-delayed recall
(remembered items)

8.53 (2.53) 9.12 (3.13) 0.570

BVMT-recognition
(remembered items)

9.81 (1.97) 10.63 (1.70) 0.223

BVMT-delayed recall
(remembered items)

7.5 (3.03) 9 (2.53) 0.139

PAL-stages completed 7.73 (0.5) 8 (0.0) 0.104

TMT-A (time) 40.19 (10.14) 31.88 (6.81) 0.011∗

TMT-B (time) 99.44 (26.41) 80.56 (22.69) 0.038∗

IED-stages completed 14.20 (5.58) 18 (16.99) 0.408

COWAT-correct
produced

43.56 (11.33) 53.94 (12.53) 0.020∗

The aerobic (+) group scored better on tests assessing visual processing speed
(TMT-A), working memory (TMT-B) and verbal fluency (COWAT) but not on
tests assessing verbal LTM (VLTM), visuospatial LTM (BVMT-R/PAL) or cognitive
flexibility/executive functions (IED). ∗Significant.

FWE corrected, P < 0.03) and bilateral medial prefrontal cortex
(maxima at MNI=−6 48 6 FWE corrected, P < 0.05; Figure 2A).

While the whole-brain analysis did not reveal significant
differences between the aerobic + vs − group, the ROI analysis,
however, revealed significantly increased activation in the left
hippocampus (maxima at MNI = −29 −33 −6, FWE corrected,
P < 0.03) in the aerobic (+) group (Figure 2B).

Functional Connectivity
Seed ROI mPFC (Figure 2C): The whole brain analyses revealed
a stronger mPFC-left thalamus functional connectivity (maxima
at MNI = −3 −17 13, FWE corrected, P < 0.02) in the aerobic
(+) group compared to the aerobic (−) group. Regarding the ROI
approach, an increased mPFC-right hippocampus functional
connectivity (maxima at MNI = 37 −21 −11, FWE corrected,
P < 0.05) was found in the aerobic (+) relative to the aerobic (−)
group.

Seed ROI precuneus (Figure 2C): In the aerobic (+)
group a pattern of increased functional connectivity was found
comprising the bilateral thalamus (maxima at MNI = −4 −16
10 FWE corrected, P < 0.01) and the right insula (maxima at
MNI = 32 8 17 FWE corrected, P < 0.02) when compared to the
aerobic (−) group.

Correlation Analyses
The functional parameter that revealed a significant association
with IL-6 (see Table 3) were the functional connectivity
between mPFC/hippocampus and precuneus/insula. We found
that mPFC-hippocampal functional connectivity correlated
negatively with IL-6 (r = −0.46; P = 0.009). As did the
precuneus-insula functional connectivity (r =−0.45; P= 0.011).
In line with lesser inflammation in the presence of better

TABLE 3 | Correlation matrix of aerobic physical activity effects on fMRI
parameter (activation and functional connectivity) and IL-6 concentration.

IL-6

fMRI (activation)

Left hippocampus r = −0.39∗

fMRI (connectivity)

mPFC to thalamus r = −0.27

mPFC to hippocampus r = −0.46∗∗

Precuneus to thalamus r = −0.33

Precuneus to insular r = −0.45∗∗

The black correlations indicate the Benjamini and Hochberg corrected correlations.
∗Uncorrected significant.
∗∗Benjamini and Hochberg corrected significant.

connectivity within the memory network, we also found a
negative correlation between hippocampal activation and IL-6
concentrations (r = −0.39; P = 0.033), which, however, did
not survive the Benjamini and Hochberg correction for multiple
comparisons.

DISCUSSION

The present study aimed to combine immunological and
functional imaging parameters to investigate multifactorial
protective mechanisms of physical activity in healthy elderly.
More precisely, we assessed the potential impact of the
engagement in aerobic physical activity on changes in a network
of brain regions mediating episodic memory functions and the
associations to inflammation. As a marker for inflammation
we indexed IL-6 since this cytokine displays the most marked
response to acute exercise compared to other inflammation
marker as for instance TNF-R, TNF alpha, IL 1 beta, IL-1ra, or
IL-10 (Petersen and Pedersen, 2005).

Behaviorally, the aerobic (+) group had an elevated memory
performance for face-profession associations compared to the
aerobic (−) group, which is in line with the recent finding
of Hayes et al. (2015). This finding was paralleled by better
scores on tests assessing visual processing speed (TMT-A),
working memory (TMT-B), and verbal fluency (COWAT)
but not on tests assessing verbal episodic memory (VLTM),
visuospatial episodic memory (BVMT-R/PAL) or cognitive
flexibility/executive functions (IED). Note, we found only
in the face-association task but not on the other episodic
memory tasks an effect of physical exercise. This results are
only partly in line with the findings of Hayes et al. (2015),
which showed also no effect on verbal episodic memory but
on visuospatial episodic memory. This may be related to
methodological differences since Hayes et al. (2015) measured
the level of physical activity via accelerometry. Moreover,
Hayes et al. (2015) showed that the face-association task
seems to be more sensitive to physical activity in older
adults, since physical activity level accounted for 29.6% of the
variance in the face-association task compared to 13.3% of
the variance on the neuropsychological tests of visuospatial
episodic memory. Regarding brain activation (main effect),

Frontiers in Aging Neuroscience | www.frontiersin.org 7 December 2016 | Volume 8 | Article 319

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-08-00319 December 23, 2016 Time: 19:30 # 8

Thielen et al. Exercise Affects fMRI and Inflammation Parameters

we found face-profession encoding related activation in the
medial precuneus and the mPFC. While in line with other
studies, we also found an activation in ventral temporal
areas and lateral parietal as well as lateral frontal areas,
these clusters failed to reach significance in the whole
brain analysis, mirroring the findings from Theysohn et al.
(2013), which used the same experimental paradigm and 7
Tesla scanning in healthy young adults. It is important to
note, that dissimilar to Theysohn et al. (2013), there was
signal dropout in the ventral temporal cortices, reducing the
size of the activation cluster in the hippocampus so that
the hippocampal clusters did not reach significance in the
whole brain analyses. As aforementioned, based on anatomical
connections and previous fMRI reports we assumed the mPFC-
thalamus- hippocampus axis to be involved in the given memory
task and that the engagement in aerobic activity increases
functional connectivity in this axis. Therefore, we used the
mPFC region as seed region in the PPI analyses. The precuneus
is assumed to be involved in visual imagery and working
memory occurring in episodic memory (Fletcher et al., 1996;
Halsband et al., 1998; Cavanna and Trimble, 2006). Given
the rich anatomical connectivity to several thalamic nuclei
(Cavanna and Trimble, 2006) and reports of aging related
changes in precuneus functions (Sperling et al., 2003; Gould
et al., 2006; Mevel et al., 2011; Yang et al., 2014; Kleerekooper
et al., 2016), we used the precuneus region as a second
seed region in the PPI analyses. Note, since our preliminary
hypothesis was focused on the mPFC-thalamus-hippocampus
axis, the analyses regarding the precuneus cluster have an
exploratory characteristic. In the following paragraphs, the
effects of self-reported engagement in aerobic physical activity
on brain activation/functional connectivity and the relation to
inflammation will be discussed.

Whereas behavioral effects of physical activity/fitness on
episodic memory have been frequently studied its relation to
functional parameter as memory related brain activation or
functional connectivity are still poorly understood. Here, we
provide first evidence that engagement in aerobic physical
activity is associated with episodic memory related brain
activation and functional connectivity. More precisely, we
found that the aerobic (+) group revealed stronger BOLD
activation in the left hippocampus and a stronger functional
connectivity between mPFC and left thalamus/right hippocampus
during memory encoding. The thalamus has been described
as an important structure regarding mPFC-hippocampus
“communication” during memory processes. Evidence from
human imaging studies as well as animal data revealed that the
mPFC-thalamus-hippocampus axis is strongly associated with
memory encoding (Xu and Südhof, 2013) memory consolidation
(Thielen et al., 2015) and memory retrieval (Aggleton and Brown,
1999; Davoodi et al., 2009, 2011; Aggleton et al., 2010; Loureiro
et al., 2012). Here, we show for the first time, that engagement in
aerobic physical activity is associated with increased activation
and functional connectivity in the mPFC-thalamus-hippocampal
axis when elderly learn new face-occupation associations.
Unfortunately, we could not observe a relation between the
functional effects and performance on the face-profession task.

However, in contrast to event related designs, blocked designs
(as used here) are not able to distinguish between successful vs
unsuccessful encoding processes.

In addition, we found that the aerobic (+) group revealed a
stronger functional connectivity between precuneus and bilateral
thalamus/left insula. The precuneus is assumed to be involved
in visual imagery occurring in episodic memory (Fletcher
et al., 1996; Halsband et al., 1998; Cavanna and Trimble,
2006). Interestingly, both seed regions (precuneus and mPFC)
revealed increased functional connectivity to the thalamus that
overlaid in the midline/dorsomedial thalamus. Therefore, the
precuneus/thalamus connectivity might reflect support of the
mPFC-thalamus-hippocampus axis with information regarding
the visual representation of the memory. The insula, has
been functionally divided into a posterior, ventroanterior and
dorsoanterior part (Wager and Feldman-Barrett, 2004; Chang
et al., 2013). In the present study, we found precuneus
functional connectivity to the dorsoanterior insula, a region
that is commonly activated in tasks that require executive
control of attention, including those that require manipulation
of information in working memory (Wager and Smith, 2003),
shifting attention and response inhibition (Wager et al.,
2004). Hence, the underlying function of the precuneus/insula
connectivity may be related to executive manipulations of
information in the working memory. To summarize, as
hypothesized, the engagement in aerobic physical activity
increased activation and functional connectivity within the
mPFC-thalamus-hippocampus axis in the elderly. Interestingly,
we found that the engagement in aerobic physical activity
increases also task related functional connectivity in a precuneus-
insula network that appears to interact with the mPFC-thalamus-
hippocampus axis via the thalamus. Thus, we provide initial
evidence that the thalamus has the potential to connect different
networks, probably involved in different aspects of episodic
memory encoding, a function that is boosted due to the
engagement in aerobic activity.

Finally, we assessed whether systemic IL-6 concentrations
are related to the functioning within the episodic memory
network. In this regard, Harrison et al. (2014, 2015) have shown
that induced inflammation causes a reduction in hippocampal
glucose metabolism and functional connectivity during memory
related processes. In the present study, we found an inverse
relation between mPFC-hippocampus functional connectivity
and circulating IL-6. In addition, a negative correlation between
hippocampal activation and IL-6 could be observed. However,
this correlation did not survive the Benjamini and Hochberg
correction for multiple comparisons. Regarding the functional
connectivity between mPFC and thalamus there was no relation
to IL-6 which may be related to the heterogeneity of IL-
6 distribution within the brain. For instance, rodent studies
revealed high levels of IL-6 mRNA and IL6 receptor mRNA
expressions in some brain regions, including the hippocampus, if
compared to other brain regions (Schobitz et al., 1993; Gadient
and Otten, 1994; Aniszewska et al., 2015). Together, we found
that the functioning in the mPFC-thalamus-hippocampus axis
is negatively related to inflammation, extending the previous
findings of Harrison and colleagues to episodic memory
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processes in the elderly. Interestingly, we found also an inverse
relation between IL-6 and the functional connectivity between
precuneus and insula. This is in line with recent studies that
showed an association between inflammation and the insula
in human (Hannestad et al., 2012; Labrenz et al., 2016).
For instance, Labrenz et al. (2016) induced inflammation
with lipopolysaccharide in healthy young adults and measured
inflammation produced changes in resting state functional
connectivity. They found a strong reduction between insula-
precuneus functional connectivity, which was most pronounced
for the anterior part of the insula. In the present study,
we reveal for the first time that encoding related functional
connectivity to the insula is associated to inflammation as
measured with IL-6. Altogether, we provide new evidence that
self-reported engagement in aerobic physical activity predict
the strength of brain activation and functional connectivity
in an episodic memory network composed of hippocampus,
mPFC, thalamus, precuneus, and insula. Within this network,
it appears that the circulating inflammatory marker IL-6 is
inversely related to mPFC/hippocampal and precuneus/insula
functional connectivity extending previous research that showed
high affinity of inflammation on these brain regions. With
respect to memory performance, we could not observe a
relation between the amount of remembered associations and
IL-6 levels, which may be attributed to the small sample
size.

Some limitations should be acknowledged in this study. First,
due to susceptibility artifacts, there was signal dropout in the
ventral temporal cortices which reduced the size of the activation
clusters (main effect) in this areas. Thus we cannot rule that
these clusters would have reached significance in the absence
of this artifact. Second, we did not assess the individual levels
of physical fitness. Therefore, the findings we report here in
relation to aerobic physical activity cannot transferred directly
to aerobic capacity (fitness). For instance, a participant that
reported 3 h of jogging may have run a distance that was much
less than that of another participant that reported also 3 h of
jogging. Moreover, physical activity is socially desirable behavior
that might be overreported because of a social desirability bias.
Third, this study had a non-randomized design so any number
of third variables could have influenced the results. Fourth, our
preliminary hypothesis did not include the involvement of the
precuneus in the given task rendering the second PPI analysis
more exploratory. Furthermore, we used IL-6 only as a measure
of inflammation which does not represent the whole complexity
going on in inflammatory processes. To date, many different

markers of inflammation have been discovered. Therefore, to get
a more comprehensive understanding, future studies should also
indexing other inflammatory marker as for instance NF Kappa B,
TNF alpha, and IL-10. In addition, we cannot determine whether
the IL-6 effect is related to cells in the CNS (e.g., astrocytes) or
cells in the periphery as for instance muscle or fat cells. In this
regard, Nybo et al. (2002) showed that IL-6 release from the CNS
is increased after a bout of exercise. However, the net release of IL-
6 from the CNS appears to be manyfold lower than that released
from muscles (Steensberg et al., 2001; Nybo et al., 2002). Future
studies should use controlled experimental designs (e.g., Nybo
et al., 2002) to determine the effects of physical activity on CNS
released IL-6.

CONCLUSION

We assessed the impact of the engagement in aerobic physical
activity on immunological and functional imaging parameters in
healthy elderly in a between-subject cross-sectional design. We
replicated prior findings regarding better memory functioning
and decreased IL-6 concentration in aerobic active elderly
subjects. In addition, we provide new evidence for an effect of
aerobic physical activity on episodic memory related activation
and functional connectivity. Moreover, we demonstrate that
episodic memory related hippocampal and insula functional
connectivity is inversely related to circulating IL-6 extending
previous findings of inflammation effects on network properties.
Future studies should try to replicate the current findings in a
prospective intervention set-up to assess the impact of physical
activity on the given parameters and their relations over time.
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