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Efficacy of future treatments depends on biomarkers identifying patients with mild

cognitive impairment at highest risk for transitioning to Alzheimer’s disease. Here, we

applied recently developed analysis techniques to investigate cross-sectional differences

in subcortical shape and volume alterations in patients with stable mild cognitive

impairment (MCI) (n = 23, age range 59–82, 47.8% female), future converters at

baseline (n = 10, age range 66–84, 90% female) and at time of conversion (age range

68–87) compared to group-wise age and gender matched healthy control subjects

(n = 23, age range 61–81, 47.8% female; n = 10, age range 66–82, 80% female;

n = 10, age range 68–82, 70% female). Additionally, we studied cortical thinning and

global and local measures of hippocampal atrophy as known key imaging markers for

Alzheimer’s disease. Apart from bilateral striatal volume reductions, no morphometric

alterations were found in cognitively stable patients. In contrast, we identified shape

alterations in striatal and thalamic regions in future converters at baseline and at time of

conversion. These shape alterations were paralleled by Alzheimer’s disease like patterns

of left hemispheric morphometric changes (cortical thinning in medial temporal regions,

hippocampal total and subfield atrophy) in future converters at baseline with progression

to similar right hemispheric alterations at time of conversion. Additionally, receiver

operating characteristic curve analysis indicated that subcortical shape alterations may

outperform hippocampal volume in identifying future converters at baseline. These results

further confirm the key role of early cortical thinning and hippocampal atrophy in the

early detection of Alzheimer’s disease. But first and foremost, and by distinguishing

future converters but not patients with stable cognitive abilities from cognitively normal

subjects, our results support the value of early subcortical shape alterations and reduced

hippocampal subfield volumes as potential markers for the early detection of Alzheimer’s

disease.
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INTRODUCTION

Recent findings have demonstrated that beta-amyloid can be
effectively removed from the brain, which may have a beneficial
effect on cognitive function (Sevigny et al., 2016). Following
the concept of the amyloid-hypothesis, Alzheimer’s disease (AD)
treatment methods that are currently under investigation may be
most efficacious in preclinical or early disease stages (Golde et al.,
2011; Sperling et al., 2011; Sevigny et al., 2016), referred to as
mild cognitive impairment (MCI). Here, MCI is used as umbrella
term covering subjects with stable cognitive impairment without
progression to AD as well as subjects with worsening of
cognitive impairment and progression to AD. Considering that
only the latter will benefit from potential treatment methods,
the establishment and validation of biomarkers that accurately
identify future converters to AD among individuals with MCI is
crucial.

Structural magnetic resonance imaging (MRI) allows the
quantification of brain atrophy and represents a key imaging
marker for the early detection of AD. Specifically, reduced
gray matter volume in medial temporal lobe regions including
the hippocampal formation may precede the clinical onset of
AD by 10 years (Tondelli et al., 2012). Consequently, the
applicability of hippocampal subfield segmentation in clinical
populations has gained increasing attention, with different
studies providing evidence for predominant cornu ammonis
(CA)1 and subiculum atrophy in MCI (Atienza et al., 2011;
Pluta et al., 2012; Yushkevich et al., 2015a) and AD (Frisoni
et al., 2008; Mueller and Weiner, 2009; Wisse et al., 2014a).
Cortical thickness analysis constitutes another widely accepted
approach to measure gray matter atrophy in AD, and cortical
thinning has been found in MCI and AD (Lerch et al., 2008; Liao
et al., 2014), in late compared to early amnestic MCI (Ye et al.,
2014), and in future converters (Bakkour et al., 2009; Julkunen
et al., 2010; Li et al., 2012; Liao et al., 2014). Although gray
matter alterations assessed byMRI represent valuable biomarkers
for AD, the appropriate characterization of the progressing
pattern of AD pathology across the brain (Braak and Braak,
1991a,b)might require the consideration ofmultiple structures as
well as standardized procedures/analysis methods. Additionally,
as results from hippocampal subfield analyses have indicated,
more local information about different structures might further
contribute to the characterization of AD-typical patterns of
morphometric alterations.

Despite evidence for subcortical amyloid and neurofibrillary
tangle formation in AD (Braak and Braak, 1990, 1991b), MRI
research has drawn its attention to AD related subcortical

Abbreviations: CA, Cornu ammonis; eTIV, estimated total intracranial volume;

HC, Healthy controls; ICBM, International consortium for brain mapping; ICV,

intracranial volume; INSECT, Intensity-Normalized Stereotaxic Environment for

Classification of Tissues; LGN, lateral geniculate nucleus; MAGeT, Multiple

automatically generated templates; MCI-CB, mild cognitive impairment to AD

converters at baseline; MCI-CC, mild cognitive impairment converters to AD at

time of conversion; MCI-S, stable mild cognitive impairment at baseline; MGN,

medial geniculate nucleus; NINCDS-ADRDA, National Institute of Neurological

and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related

Disorders Association; RMINC, R for Medical Imaging NetCDF; VA, ventral

anterior nucleus; VL, ventral lateral nucleus; VP, ventral posterior nucleus.

structure changes only recently. Advanced segmentation
techniques now permit the quantification of subcortical volumes
and provide the basis for subcortical shape analysis. Although
volume loss and/or shape alterations in the thalamus (Zarei
et al., 2010; Roh et al., 2011; Stepan-Buksakowska et al., 2014),
putamen (Roh et al., 2011; Cho et al., 2014; De Jong et al., 2014)
and caudate nucleus (Madsen et al., 2010; Roh et al., 2011; Cho
et al., 2014) have been identified in AD, little is known about
subcortical volumetric and shape differences in MCI in general,
and in future converters in particular. Given the connectivity
of the thalamus and striatum to other AD-relevant structures,
such as the hippocampus (Zarei et al., 2010), alterations in these
structures may be of high value for the early detection of AD.

Here, we investigated subcortical volume and shape
alterations as well as cortical thickness and volumes in the
hippocampus and its subfields in MCI with stable cognitive
abilities compared to healthy control subjects (HC) as well as
in MCI with future conversion to AD at their baseline and
conversion timepoints. In this manner we were able to elucidate
the potential value of subcortical shape measures and their ability
to improve the identification of future converters to AD. Further,
we use cortical and hippocampal measures to demonstrate
anatomical trajectories of the subjects under study, thereby
confirming their role in the early detection of AD.

We expected stable MCI subjects to show no morphometric
alterations typically related to AD, such as hippocampal
atrophy or cortical thinning when compared with HC. In
contrast, we expected morphometric alterations in accordance
with known AD related histopathological processes in future
converters at baseline and—more pronounced—at time of
conversion. Specifically, and based on the pattern of AD
related neurofibrillary tangle formation (Braak and Braak, 1990,
1991a,b), we expected volume reductions in the hippocampus
(CA1, subiculum), the thalamus (anterior subregions) and
the striatum in future converters at baseline and at time of
conversion. Further confirming AD related neurodegenerative
patterns (Lerch et al., 2008; Bakkour et al., 2009; Dickerson et al.,
2009; Liao et al., 2014; Ye et al., 2014) in future converters at
baseline and at time of conversion, we additionally expected
cortical thinning in mediotemporal as well as lateral parietal
and frontal regions and in the limbic system. Most importantly,
and considering that subcortical volume reductions as well as
possible secondary downstream effects may lead to thalamic and
striatal shape alterations, we expected shape alterations in these
structures to occur in both, future converters at basline and at
time of conversion.

MATERIALS AND METHODS

Participants
We selected participants from different pre-existing longitudinal
cohorts at the Memory Clinic of the Division of Psychiatry
Research and Psychogeriatric Medicine, University of Zurich.
Briefly, participants were recruited from the outpatient
population of the Memory Clinic or through advertisements
in the local media. HC were retrospectively and additionally
recruited through inquiries of caregivers or relatives of the
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patients. MCI was diagnosed according to Winblad et al.
(2004), based on performance in multiple tests covering the
following cognitive domains: episodic memory, executive
function, attention/psychomotor processing speed, language and
visual-constructive abilities. Impairment was defined if at least
one score per domain was 1.5 SD below group means provided
by test-specific normative data. Conversion to dementia was
diagnosed when clinical work up indicated progression and
significant impairment in activities of daily living. This was
assessed by a multidisciplinary team under the supervision of an
experienced psychiatrist.

For the present study, inclusion criteria for MCI subjects
were: amnestic MCI (single or multiple domain) diagnosis and
availability of MRI data at baseline and follow-up. Exclusion
criteria were: left-handedness, significant medication or drug
abuse as well as clinically significant neurological and psychiatric
or internal disease that may affect cognition, MRI findings of
infarction or other focal lesions, multiple lacunes or lacunes
in critical memory structures. A total of 33 baselines from
subjects with amnestic MCI were considered for the present
study. The population was stratified into subjects with stable
cognitive abilities during an approximately 2-year follow-up
(MCI-S, n = 23), and subjects with future cognitive worsening
and conversion to probable AD (MCI-CB, n= 10) within a 2-year
time frame during follow-up. Additionally, data from the MCI-
CB group at time of conversion was obtained (MCI-CC, n= 10).
Inclusion criteria for HCwere: stable cognitive health ascertained
by clinical work up and neuropsychological testing during an
approximately 2-year follow-up. Exclusion criteria were: MRI
exclusion criteria, left-handedness, evidence for abuse of alcohol
and drugs, psychiatric, neurological or significant other system
diseases. Three groups of HC were identified for group wise
age and gender matching with MCI-S, MCI-CB, and MCI-CC,
and MRI data was acquired following the description in section
Magnetic Resonance Image Acquisition. The final demographic
details are presented in Table 1. This study was approved by
the cantonal ethics committee of canton Zurich, Switzerland,
in accordance with the Helsinki Declaration. All participants
provided written informed consent prior to study inclusion.

Magnetic Resonance Image Acquisition
All (MRI) were performed on the same 1.5 Tesla Phillips
Achieva scanner using an 8-element head coil.Whole-brain high-
resolution 3D T1-weighted structural data was obtained by using
the following scanning parameters: 166 slices, repetition time: 6.9
ms, echo time: 3.2 ms, flip angle: 8◦, field of view: 240 × 240 ×

166mm (anterior-posterior, foot-head, right-left), slice thickness:
1 mm, total scan time: 15 min.

Image Processing: Subcortical Structures
and Hippocampus
Segmentation of the striatum, thalamus and thalamic nuclei
was performed using a recently developed label-fusion-based
segmentation method that had previously proven its high
accuracy (Chakravarty et al., 2013). Briefly, the MAGeT-
Brain algorithm applies multiple automatically generated
templates from a single atlas derived from manually segmented

serial histological data comprising 108 basal ganglia and
thalamic structures as defined using three different references
(Schaltenbrand and Wahren, 1977; Hirai and Jones, 1989; Gloor,
1997). We used two of the segmentations produced from the
MAGeT-Brain pipeline, the first are the whole striatum (caudate
and putamen) and thalamus, and the second are the thalamic
subnuclei as per the Hirai and Jones definitions (1989). The
thalamus was segmented into pulvinar-, anterior-, and central
nuclei and lateral dorsal-, lateral posterior-, medial dorsal nuclei,
ventral anterior nuclei (VA), ventral lateral nuclei (VL), ventral
posterior nuclei (VP) and lateral geniculate nucleus (LGN)
and medial geniculate nucleus (MGN) as per the Hirai and
Jones (1989) nomenclature. Segmentation of the hippocampus
and its subfields was performed using five high-resolution
atlases developed and validated for use with MAGeT-Brain
(Winterburn et al., 2013; Pipitone et al., 2014). The hippocampus
was segmented into cornu ammonis (CA) 1, CA2-CA3,
CA4/Dentate gyrus, strata radiatum/lacunosum/moleculare, and
subiculum.

Surface-Based Shape Analyses
Striatal and thalamic shape analysis was performed by using
an adapted surface-based methodology (Magon et al., 2014;
Raznahan et al., 2014; Shaw et al., 2015). Briefly, surface-based
representations of the striatum and thalamus were defined on
the input atlas. The nonlinear portions of the transformations
that map each subject to the input template were concatenated
and then averaged to limit the effects of noise and error and to
increase precision and accuracy. Next, the dot product between
the nonlinear deformation vector (of the inverse of the averaged
atlas-to-subject transformation) and the surface normal at each
vertex (a unit vector describing the direction perpendicular to
the surface) was estimated. This measure provides an estimate
of the local measure of inward or outward displacement along
the normal. Then, surface-area values were blurred using a 5
mm surface-based diffusion smoothing kernel (Raznahan et al.,
2014; Chakravarty et al., 2015). Resulting inward and outward
displacements (measured in millimeters) were estimated relative
to a detailed subcortical atlas previously described (Chakravarty
et al., 2015). An inward displacement (contraction) represents
a surface that is deformed inwards relative to the model that
we were using and vice-versa for the outward displacement
(expansion).

Cortical Thickness Analyses
Cortical thickness was estimated by using the automated CIVET
pipeline (version 1.1.10; Montreal Neurological Institute at
McGill University, Montreal, Quebec, Canada). Briefly, the
native images were linearly registered to the symmetric ICBM
152 template (Collins et al., 1994; Mazziotta et al., 2001).
Intensity nonuniformities were corrected using the N3 algorithm
(Sled et al., 1998). The skull was removed (Smith, 2002), and
brain tissue was segmented into white matter, gray matter,
cerebrospinal fluid (CSF) using the Intensity—Normalized
Stereotaxic Environment for Classification of Tissues (INSECT)
algorithm (Zijdenbos et al., 1998; Tohka et al., 2004). Deformable
models were used to construct the inner white matter surface and
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TABLE 1 | Demographic information and cognitive measures for patient and control groups.

Group 1 p Group 2 p Group 3 p

HC MCI-S HC MCI-CB HC MCI-CC

N 23 23 10 10 10 10

Age, years 70.96 5.78 71.22 6.54 0.887 75.90 5.99 76.20 6.25 0.914 77.40 5.34 78.00 6.24 0.778

Education, years 14.35 2.69 14.17 3.01 0.672 14.70 4.03 13.40 3.40 0.376 13.30 2.41 13.40 3.41 0.804

Gender, M/F 12/11 12/11 1.000 2/8 1/9 1.000 3/7 1/9 0.582

FU time, monthsa 46.91 33.89 25.91 8.41 N/A 39.50 32.35 20.80 4.98 N/A 48.10 33.22 N/A N/A

MMSE, /30 29.83 0.38 28.09 1.67 0.000* 29.30 0.95 26.60 1.95 0.000* 29.30 1.06 23.50 2.55 0.000*

aMCI s/m N/A 0/23 N/A N/A 3/7 N/A N/A N/A N/A

EPISODIC MEMORY

VLMT learning 57.96 10.96 40.39 8.41 0.000* 54.80 12.12 27.86 6.49 0.000* 57.10 12.17 24.90 5.74 0.000*

VLMT recall 12.39 2.25 6.19 3.47 0.000* 11.50 2.50 1.71 1.49 0.000* 11.20 2.86 0.79 1.69 0.000*

EXECUTIVE FUNCTIONS

Animal fluency 25.48 5.55 19.04 5.11 0.000* 22.10 4.45 15.20 3.85 0.002* 23.40 3.80 11.80 4.31 0.000*

Letter fluency 33.09 11.33 22.78 11.00 0.003* 29.90 7.76 25.20 10.01 0.259 32.50 8.38 24.70 9.79 0.072

DigitSpan bw 6.87 1.79 5.13 1.68 0.001* 5.50 1.08 5.40 1.17 0.976 5.70 1.89 5.30 1.49 0.606

PSYCHOMOTOR SPEED/ATTENTION

TMT A 36.65 8.20 50.87 23.57 0.011* 44.50 7.05 43.90 10.82 0.885 39.50 12.32 58.50 20.11 0.020*

TMT B 87.52 25.80 156.39 60.8 0.000* 111.60 36.7 162.50 75.8 0.079 101.3 37.28 N/Ab N/Ab

LANGUAGE

BNT 14.74 0.45 13.61 1.15 0.000* 14.90 0.32 13.70 1.25 0.015* 14.80 0.42 12.80 1.47 0.000*

Values are means and standard deviations if not specified otherwise. HC, healthy control subjects; MCI-S, stable mild cognitive impairment at baseline; MCI-CB, mild cognitive impairment

converters at baseline; MCI-CC, mild cognitive impairment converters at time of conversion; M/F, male/female; FU, follow-up; MMSE, Mini Mental State Examination; aMCI s/m, amnestic

mild cognitive impairment single domain (s), multiple domain (d); VLMT, Verbaler Lern—und Merkfähigkeitstest; bw, backward; TMT, Trail Making Test; BNT, Boson Naming Test; N/A,

not applicable. *Significant p value test by ANOVA (normally distributed data), Mann U Whitney (not normally distributed data), and Pearson’s X2 test (categorical variables).
aTime from baseline MRI to the time of Alzheimer’s disease diagnosis for MCI-CB; time from baseline MRI to the last available visit for MCI-S; time from the first HC diagnosis to the last

available visit for HC.
bhigh percentage of missing values due to the subjects’ impairment did not allow statistical analyses.

gray matter-CSF interface in both hemispheres (Kim et al., 2005)
revealing 40,962 vertex points at each surface. Cortical thickness
was then measured as the distance, in millimeters, between each
vertex point at the inner and the corresponding point at the outer
surface using the method proposed by Lerch and Evans (2005).
The cortical thicknessmaps were blurred using a 20mmdiffusion
smoothing kernel to increase signal-to-noise ratio and statistical
power.

Intracranial Volume
The comparison of gray matter volumes across groups
requires taking into account interindividual variability in
brain morphology. Values of intracranial volume (ICV)
indicate premorbid brain volume, and thus are often used
to adjust volumes for subsequent volume analyses. When
examining volume reductions in neurodegenerative disease,
considering ICV allows for estimation of atrophy caused by
neurodegenerative mechanisms rather than by interindividual
differences in head size and brain morphology.

In the present work, the FreeSurfer pipeline (version
5.1.0) was used to calculate total intracranial volume (eTIV)
representing an estimate for ICV as described in Buckner et al.
(2004). Briefly, each individual is registered to an atlas template.
The Atlas Scaling Factor obtained by this transformation
represents the whole-brain volume adjustment that is required

to match each individual to the atlas template and is thus used to
automatically generate eTIV. This automated method has been
shown to be equivalent to manual correction (Buckner et al.,
2004) and has previously been used for normalization in several
AD studies (Westman et al., 2011, 2012, 2013).

Statistical Analyses
Group comparisons of demographic and conitive data were
applied using analysis of variance (ANOVA) or Mann-Whitney
U-Test. Pearson’s chi-square test was used for categorical
variables. Tests were performed with a significance level of
p < 0.05. Between-group differences in volumetric raw data
(MCI-S, MCI-CB and MCI-CC vs. matched HC) were examined
by including age and gender as covariates in the multiple
linear regression models. These analyses were repeated by
using volumes relative to eTIV (volume/eTIV∗100) in order to
adjust volumes for differences in head size. P-values resulting
from volume analyses were adjusted for multiple testing by
using Bonferroni-Holm correction (level of significance for
hippocampus, striatum and thalamus starting with p < 0.05/2;
level of significance for hippocampal subfields starting with p
< 0.05/10). The same models were performed for investigating
between-group shape and cortical thickness differences. Vertex-
wise analyses results are reported on a q-value corrected for
multiple testing, using a false discovery rate (FDR) of 10% as in
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previous publications in our group (Wheeler et al., 2013; Janes
et al., 2014). Receiver operating characteristic (ROC) curves were
computed to evaluate and compare the accuracy of striatal and
thalamic shape alterations, and of hippocampus total volumes
as established AD imaging marker for discriminating HC from
MCI-CB. ROC curves are produced by plotting the true positive
rate (sensitivity) against the false positive rate (1-specificity) for
different thresholds. The area under the curve (AUC) is then
calculated and provides information about the ability of the
morphometric data to discriminate between patients and HC.
AUC values of 1.0 indicate perfect discriminative abilities; values
of <0.6 indicate poor discriminative abilities. For these analyses,
between group t statistics from comparison between HC and
MCI-CB were used. More precisely, for all vertices whose t-
values constituted a local minimum (or maximum), the average
of the displacement values in mmwas computed for each subject.
This was done separately for each structure and hemisphere.
Statistical analyses were performed with IBM SPSS statistics 21
and RMINC package (R for Medical Imaging NetCDF; https://
github.com/Mouse-Imaging-Centre/RMINC), an image analysis
software library developed for the R statistical environment
(http://www.r-project.org).

RESULTS

Descriptive statistics for demographic information and cognitive
data is listed in Table 1.

Volumetric Analyses in MCI-S
Apart from reduced bilateral striatal volumes, and when
analyzing volumes relative to eTIV, there were no volume
differences in any of the investigated structures in MCI-S when
compared with HC (see Table 2). Significance and p-values were
similar when using raw volumes instead of volumes relative to
eTIV (seeTable 3). A segmentationmap of the thalamus is shown
in Figure 1, and of the hippocampus in Figure 2.

Volumetric Analyses in MCI-CB
In contrast, pronounced reductions in volumes relative to eTIV
were found in MCI-CB (see Table 2). In particular, and apart
from CA2-CA3 volumes, all bilateral hippocampal subfield
volumes were smaller in MCI-CB compared to HC (right CA1
t = 3.23, p= 0.005; subiculum t = 3.29, p= 0.005; CA4/Dentate
gyrus t = 3.80, p = 0.002; strata t = 4.55, p < 0.001/left CA1 t
= 5.18, p < 0.001; subiculum t = 4.96, p< 0.001; CA4/Dentate
gyrus t = 4.66, p< 0.001; strata t = 5.91, p< 0.001; df = 3,16)
after correction for multiple testing. With regard to thalamic
subnuclei, and although statistically significant, effects of volume
reductions in bilateral VP in MCI-CB (right p = 0.047, left p
= 0.015) did not survive the correction for multiple testing.
Significance and p-values were similar when using raw volumes
instead of volumes relative to eTIV. However, some of the right
hemispheric differences in hippocampal subfield volumes did
not quite achieve the level of significance (CA1 p = 0.057).
Additionally, and although statistically significant, two right
hemispheric effects did not survive the correction for multiple

comparisons (CA4/Dentate gyrus p = 0.017; subiculum p =

0.027) (see Table 3).

Volumetric Analyses in MCI-CC
Further extended reductions in volumes relative to eTIV revealed
in MCI-CC (see Table 2). More precisely, and after correction
for multiple testing, all bilateral hippocampal subfield volumes
were smaller in MCI-CC compared to HC (left CA1 t = 5.09,
p < 0.001; subiculum t = 5.00, p < 0.001; CA2-CA3 t = 4.01,
p = 0.001; CA4/Dentate gyrus t = 6.66, p < 0.001; strata t =
9.41, p < 0.001/right CA1 t = 3.24, p = 0.005; subiculum t =
3.91, p = 0.001; CA2-CA3 t = 2.18, p = 0.044; CA4/Dentate
gyrus t = 4.47, p < 0.001; strata t = 5.53, p = 0.000; df = 3,16).
Similar as in MCI-CB, effects of VP volume reductions in MCI-
CC (right p= 0.054, left p= 0.009) did not survive the correction
for multiple testing. Significance and p-values were similar when
using raw volumes instead of volumes relative to eTIV. However,
two right hemispheric effects in hippocampal subfield volumes
did not quite achieve the level of significance (CA1 p = 0.074;
CA2-CA3 p= 0.057) (see Table 3).

Vertex-Wise Cortical Thickness Analyses in
MCI Groups
Analyses on data corrected for multiple testing by using FDR at q
< 0.10 revealed no cortical thinning in MCI-S compared to HC.
Reduced cortical thickness, however, was found in MCI-CB and
MCI-CC compared to HC (Figure 3, Table 4). Significant effects
were limited to medial areas such as the left parahippocampal
cortex, left subgenual cingulate, and left region of the uncus in
MCI-CB. Similar regions revealed cortical thinning in the right
hemisphere, with significance only at q< 0.15 though (Figure 4).
Importantly, the pattern of cortical thinning extended to the
right hemisphere in MCI-CC, where cortical thinning in bilateral
parahippocampal cortices and bilateral regions of the uncus now
achieved an appropriate level of significance.

Vertex-Wise Subcortical Shape Analyses in
MCI Groups
Analyses on data corrected for multiple testing by using FDR
at q < 0.10 revealed no striatal or thalamic shape alterations in
MCI-S, but pronounced striatal and thalamic displacements in
MCI-CB and MCI-CC compared to HC.

Thalamic contractions and expansions are presented in
Figure 4A. In contrast toMCI-S, MCI-CB, andMCI-CC revealed
contractions which were limited to dorsal and medial parts, and
were more pronounced in the left than in the right hemisphere.
Specifically, MCI-CB exhibited contractions in bilateral dorsal
aspects of the pulvinar, bilateral dorsal aspects of VP, and in left
medial aspects of VP and medial dorsal nuclei. Again, the pattern
of alterations had further continued in MCI-CC, exhibiting more
pronounced contractions extending from dorsal aspects of the
pulvinar and VP to dorsal aspects of VL, lateral posterior nuclei,
and VA in the right hemisphere. In contrast, contractions in
the left hemisphere were now limited to dorsal aspects of VL,
VA, and medial dorsal nuclei. However, there was a tendency
toward significant contractions (q = 0.15) in dorsal aspects of
the pulvinar, VP and lateral posterior nuclei as well. Thalamic

Frontiers in Aging Neuroscience | www.frontiersin.org 5 March 2017 | Volume 9 | Article 38

https://github.com/Mouse-Imaging-Centre/RMINC
https://github.com/Mouse-Imaging-Centre/RMINC
http://www.r-project.org
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Kälin et al. Subcortical Shape Changes in MCI

T
A
B
L
E
2
|
V
o
lu
m
e
s
iz
e
s
re
la
ti
v
e
to

e
T
IV

fo
r
p
a
ti
e
n
t
a
n
d
c
o
n
tr
o
l
g
ro
u
p
s
.

G
ro
u
p
1

p
G
ro
u
p
2

p
G
ro
u
p
3

p

H
C

M
C
I-
S

H
C

M
C
I-
C
B

H
C

M
C
I-
C
C

e
T
IV
,
c
m
3

1
5
8
6
.3
3

1
7
7
.3
5

1
5
4
6
.7
1

1
5
5
.1
0

0
.4
2
4

1
4
9
9
.9
9

1
5
5
.0
0

1
4
9
8
.0
5

1
3
3
.5
8

0
.9
7
6

1
4
8
7
.7
2

1
3
2
.5
9

1
5
0
7
.6
6

1
3
3
.5
2

0
.7
4
1

H
ip
p
o
c
a
m
p
u
s
to
ta
l,
le
ft

0
.1
4
2
0
6

0
.0
1
6
7
0

0
.1
3
9
1
5

0
.0
2
5
1
0

0
.6
7
0

0
.1
4
9
9
5

0
.0
1
6
3
5

0
.1
1
2
3
6

0
.0
1
3
4
5
5

0
.0
0
0
*

0
.1
4
4
9
3

0
.0
0
7
8
0

0
.1
0
6
5
6

0
.0
1
2
7
8

0
.0
0
0
*

S
u
b
ic
u
lu
m

0
.0
2
1
0
3

0
.0
0
2
5
0

0
.0
1
9
7
2

0
.0
0
3
7
9

0
.1
6
2

0
.0
2
2
1
0

0
.0
0
2
4
3

0
.0
1
6
5
0

0
.0
0
2
3
0

0
.0
0
0
*

0
.0
2
0
6
0

0
.0
0
2
2
2

0
.0
1
5
7
9

0
.0
0
2
6
0

0
.0
0
0
*

C
A
1

0
.0
4
5
4
5

0
.0
0
5
0
9

0
.0
4
5
6
8

0
.0
0
7
7
3

0
.8
7
2

0
.0
4
8
3
4

0
.0
0
5
2
5

0
.0
3
6
4
8

0
.0
0
4
3
6

0
.0
0
0
*

0
.0
4
6
5
1

0
.0
0
3
4
8

0
.0
3
5
8
7

0
.0
0
5
0
9

0
.0
0
0
*

C
A
2
-C

A
3

0
.0
0
8
5
1

0
.0
0
1
8
0

0
.0
0
8
4
9

0
.0
0
2
0
0

0
.9
6
6

0
.0
0
8
8
2

0
.0
0
1
8
4

0
.0
0
7
5
2

0
.0
0
1
5
4

0
.0
8
8

0
.0
0
9
0
4

0
.0
0
0
8
8

0
.0
0
6
5
9

0
.0
0
1
6
2

0
.0
0
1
*

C
A
4
/D

e
n
ta
te

g
yr
u
s

0
.0
3
3
9
9

0
.0
0
4
6
0

0
.0
3
2
6
4

0
.0
0
6
1
1

0
.4
1
5

0
.0
3
5
9
4

0
.0
0
4
6
4

0
.0
2
7
5
6

0
.0
0
3
8
0

0
.0
0
0
*

0
.0
3
5
0
0

0
.0
0
2
8
2

0
.0
2
5
8
3

0
.0
0
3
5
4

0
.0
0
0
*

S
tr
a
ta

0
.0
3
3
0
8

0
.0
0
4
4
9

0
.0
3
2
6
2

0
.0
0
6
8
2

0
.8
2
1

0
.0
3
4
7
5

0
.0
0
4
1
7

0
.0
2
4
2
8

0
.0
0
3
3
5

0
.0
0
0
*

0
.0
3
3
7
7

0
.0
0
2
4
7

0
.0
2
2
4
9

0
.0
0
2
5
5

0
.0
0
0
*

H
ip
p
o
c
a
m
p
u
s
to
ta
l,
rig

h
t

0
.1
4
1
4
0

0
.0
1
5
5
7

0
.1
4
4
5
4

0
.0
1
7
9
6

0
.4
9
5

0
.1
4
9
9
1

0
.0
1
2
3
8

0
.1
2
4
2
9

0
.0
2
0
2
7

0
.0
0
1
*

0
.1
4
4
6
7

0
.0
0
8
2
5

0
.1
1
7
9
6

0
.0
1
6
5
1

0
.0
0
0
*

S
u
b
ic
u
lu
m

0
.0
1
9
3
6

0
.0
0
2
3
5

0
.0
1
9
0
7

0
.0
0
3
2
6

0
.7
5
3

0
.0
2
0
7
9

0
.0
0
2
5
4

0
.0
1
6
7
7

0
.0
0
3
2
1

0
.0
0
5
*

0
.0
1
9
9
8

0
.0
0
2
5
8

0
.0
1
5
9
0

0
.0
0
2
7
7

0
.0
0
1
*

C
A
1

0
.0
4
6
9
8

0
.0
0
5
3
8

0
.0
4
8
6
2

0
.0
0
6
0
7

0
.3
3
5

0
.0
5
0
0
2

0
.0
0
4
1
3

0
.0
4
2
6
0

0
.0
0
6
6
8

0
.0
0
5
*

0
.0
4
8
6
2

0
.0
0
3
3
5

0
.0
4
1
6
5

0
.0
0
6
2
6

0
.0
0
5
*

C
A
2
-C

A
3

0
.0
0
9
2
6

0
.0
0
1
2
5

0
.0
0
9
5
8

0
.0
0
1
6
2

0
.4
4
9

0
.0
0
9
6
1

0
.0
0
1
3
5

0
.0
0
8
4
8

0
.0
0
1
9
5

0
.0
6
8

0
.0
0
9
3
3

0
.0
0
1
7
9

0
.0
0
7
5
0

0
.0
0
2
1
0

0
.0
4
4
*

C
A
4
/D

e
n
ta
te

g
yr
u
s

0
.0
3
3
9
6

0
.0
0
4
1
4

0
.0
3
4
6
4

0
.0
0
3
9
6

0
.5
1
9

0
.0
3
5
6
0

0
.0
0
4
1
8

0
.0
2
9
7
3

0
.0
0
4
7
1

0
.0
0
2
*

0
.0
3
4
2
6

0
.0
0
2
6
1

0
.0
2
7
9
5

0
.0
0
3
6
0

0
.0
0
0
*

S
tr
a
ta

0
.0
3
1
8
4

0
.0
0
4
3
8

0
.0
3
2
6
3

0
.0
0
5
1
6

0
.5
3
4

0
.0
3
3
7
7

0
.0
0
2
6
6

0
.0
2
6
7
1

0
.0
0
5
1
7

0
.0
0
0
*

0
.0
3
2
4
9

0
.0
0
2
3
7

0
.0
2
4
9
7

0
.0
0
3
9
8

0
.0
0
0
*

T
h
a
la
m
u
s
to
ta
l,
le
ft

0
.3
2
4
3
0

0
.0
2
2
0
9

0
.3
2
5
2
5

0
.0
2
2
2
8

0
.8
8
2

0
.3
3
2
4
8

0
.0
1
8
4
6

0
.3
2
4
2
8

0
.0
2
4
8
4

0
.4
3
3

0
.3
2
9
9
8

0
.0
2
6
1
4

0
.3
1
8
4
3

0
.0
2
5
8
8

0
.4
3
1

L
G
N

0
.0
0
7
0
5

0
.0
0
0
8
4

0
.0
0
7
0
1

0
.0
0
0
6
6

0
.8
9
4

0
.0
0
7
2
7

0
.0
0
1
5
9

0
.0
0
6
8
8

0
.0
0
1
1
9

0
.4
7
5

0
.0
0
7
1
3

0
.0
0
0
8
5

0
.0
0
6
5
8

0
.0
0
1
1
5

0
.2
2
0

M
G
N

0
.0
1
0
0
9

0
.0
0
1
5
0

0
.1
0
1
0
3

0
.0
0
0
8
2

0
.8
9
8

0
.0
1
0
1
7

0
.0
0
1
3
3

0
.0
0
9
6
5

0
.0
0
1
2
6

0
.3
2
0

0
.0
1
0
8
1

0
.0
0
1
3
3

0
.0
0
9
8
1

0
.0
0
1
1
4

0
.1
0
6

A
n
te
rio

r
n
u
c
le
i

0
.0
0
5
4
8

0
.0
0
0
9
2

0
.0
0
5
3
9
.
0
0
0
8
6

0
.6
6
5

0
.0
0
5
3
1

0
.0
0
0
5
7

0
.0
0
5
5
5

0
.0
0
0
8
7

0
.3
2
8

0
.0
0
5
3
3

0
.0
0
0
7
2

0
.0
0
5
7
5

0
.0
0
1
0
0

0
.2
5
7

C
e
n
tr
a
ln

u
c
le
i

0
.0
1
5
7
8

0
.0
0
0
1
4

0
.0
1
5
3
8

0
.0
0
1
5
1

0
.4
4
7

0
.0
1
5
9
7

0
.0
0
1
3
7

0
.0
1
5
0
0

0
.0
0
1
4
3

0
.1
5
8

0
.0
1
6
2
4

0
.0
0
1
8
8

0
.0
1
4
9
1

0
.0
0
1
6
5

0
.1
7
7

L
a
te
ra
ld

o
rs
a
ln
u
c
le
i

0
.0
0
2
7
6

0
.0
0
0
7
3

0
.0
0
2
9
5

0
.0
0
0
8
0

0
.4
1
8

0
.0
0
2
8
3

0
.0
0
0
7
4

0
.0
0
3
2
4

0
.0
0
0
5
4

0
.0
8
6

0
.0
0
3
0
7

0
.0
0
0
7
2

0
.0
0
3
3
2

0
.0
0
0
6
9

0
.2
5
2

L
a
te
ra
lp

o
st
e
rio

r
n
u
c
le
i

0
.0
2
2
2
9

0
.0
0
2
9
9

0
.0
2
3
6
3

0
.0
0
2
7
5

0
.1
2
8

0
.0
2
2
7
6

0
.0
0
2
3
8

0
.0
2
4
3
2

0
.0
0
1
6
7

0
.1
0
8

0
.0
2
3
6
3

0
.0
0
1
9
7

0
.0
2
4
0
1

0
.0
0
2
3
3

0
.6
9
5

M
e
d
ia
ld

o
rs
a
ln

u
c
le
i

0
.0
5
2
2
2

0
.0
0
5
6
2

0
.0
5
0
8
5

0
.0
0
5
4
4

0
.4
1
5

0
.0
5
2
9
2

0
.0
0
4
2
7

0
.0
5
0
4
6

0
.0
0
6
2
6

0
.3
3
6

0
.0
5
2
7
6

0
.0
0
6
5
0

0
.0
4
9
2
0

0
.0
0
6
0
5

0
.2
9
0

P
u
lv
in
a
r

0
.0
7
6
8
3

0
.0
0
7
6
8

0
.0
7
7
3
2

0
.0
0
6
5
4

0
.7
9
8

0
.0
7
5
4
0

0
.0
0
5
7
0

0
.0
7
3
5
0

0
.0
0
8
4
8

0
.5
6
5

0
.0
7
4
7
4

0
.0
0
6
2
5

0
.0
7
1
6
2

0
.0
0
7
4
2

0
.5
5
6

V
A

0
.0
3
1
5
6

0
.0
0
2
9
7

0
.0
3
1
7
5

0
.0
0
4
0
4

0
.8
6
8

0
.0
3
2
8
8

0
.0
0
2
2
9

0
.0
3
3
4
3

0
.0
0
3
0
2

0
.5
5
0

0
.0
3
1
9
9

0
.0
0
3
4
0

0
.0
3
2
3
4

0
.0
0
3
5
0

0
.9
7
9

V
P

0
.0
2
5
2
0

0
.0
0
2
6
5

0
.0
2
4
8
4

0
.0
0
2
3
0

0
.6
3
1

0
.0
2
5
9
3

0
.0
0
2
6
4

0
.0
2
3
2
9

0
.0
0
2
4
4

0
.0
1
5

0
.0
2
5
4
7

0
.0
0
2
0
8

0
.0
2
2
0
2

0
.0
0
2
6
4

0
.0
0
9

V
L

0
.0
4
5
5
4

0
.0
0
4
4
4

0
.0
4
5
9
1

0
.0
0
5
5
1

0
.8
1
0

0
.0
4
8
5
8

0
.0
0
3
6
3

0
.0
4
5
7
8

0
.0
0
5
8
5

0
.1
5
6

0
.0
4
6
9
1

0
.0
0
3
5
1

0
.0
4
4
3
4

0
.0
0
6
7
4

0
.2
6
8

T
h
a
la
m
u
s
to
ta
l,
rig

h
t

0
.3
2
4
1
3

0
.0
2
3
3
6

0
.3
2
0
1
9

0
.0
2
0
7
6

0
.5
6
7

0
.3
3
1
2
4

0
.0
1
2
7
8

0
.3
1
8
2
7

0
.0
2
0
2
7

0
.0
8
3

0
.3
2
8
3
8

0
.0
2
4
7
0

0
.3
1
5
4
7

0
.0
2
1
8
9

0
.2
5
7

L
G
N

0
.0
1
1
3
6

0
.0
0
1
3
8

0
.0
1
1
4
3

0
.0
0
1
3
4

0
.8
6
1

0
.0
1
1
9
0

0
.0
0
1
2
5

0
.0
1
2
0
3

0
.0
0
2
1
0
8

0
.9
4
7

0
.0
1
1
7
7

0
.0
0
0
9
6

0
.0
1
1
6
0

0
.0
0
2
1
1

0
.6
2
6

M
G
N

0
.0
1
2
3
5

0
.0
0
1
4
2

0
.0
1
2
2
6

0
.0
0
1
0
9

0
.7
9
0

0
.0
1
2
6
8

0
.0
0
0
9
6

0
.0
1
2
6
2

0
.0
0
1
4
8

0
.8
7
5

0
.0
1
3
1
4

0
.0
0
1
2
0

0
.0
1
2
6
4

0
.0
0
1
8
1

0
.5
8
1

A
n
te
rio

r
n
u
c
le
i

0
.0
0
7
5
9

0
.0
0
1
0
9

0
.0
0
7
2
0

0
.0
0
1
4
6

0
.2
8
3

0
.0
0
7
4
9

0
.0
0
0
7
0

0
.0
0
7
9
2

0
.0
0
0
6
8

0
.2
0
9

0
.0
0
7
8
7

0
.0
0
0
9
9

0
.0
0
7
9
6

0
.0
0
0
5
5

0
.9
1
2

C
e
n
tr
a
ln

u
c
le
i

0
.0
0
9
7
9

0
.0
0
0
8
4

0
.0
0
9
4
8

0
.0
0
0
7
8

0
.2
1
8

0
.0
1
0
0
3

0
.0
0
0
6
0

0
.0
0
9
6
8

0
.0
0
0
7
5

0
.2
3
7

0
.0
1
0
2
1

0
.0
0
1
1
7

0
.0
0
9
6
0

0
.0
0
0
7
3

0
.2
2
4

L
a
te
ra
ld

o
rs
a
ln
u
c
le
i

0
.0
0
3
0
9

0
.0
0
0
8
9

0
.0
0
2
9
6

0
.0
0
0
7
7

0
.5
7
0

0
.0
0
2
9
9

0
.0
0
0
5
8

0
.0
0
3
2
9

0
.0
0
0
6
4

0
.1
8
0

0
.0
0
3
0
2

0
.0
0
0
6
3

0
.0
0
3
3
4

0
.0
0
0
6
0

0
.0
8
4

L
a
te
ra
lp

o
st
e
rio

r
n
u
c
le
i

0
.0
1
6
8
3

0
.0
0
2
4
7

0
.0
1
6
7
2

0
.0
0
2
1
6

0
.8
8
6

0
.0
1
5
9
4

0
.0
0
1
5
8

0
.0
1
6
8
7

0
.0
0
1
3
2

0
.2
1
3

0
.0
1
7
0
8

0
.0
0
1
4
7

0
.0
1
6
8
0

0
.0
0
1
2
4

0
.9
8
8

M
e
d
ia
ld

o
rs
a
ln

u
c
le
i

0
.0
4
7
8
5

0
.0
0
3
7
3

0
.0
4
6
3
0

0
.0
0
4
5
2

0
.2
2
6

0
.0
4
8
2
3

0
.0
0
4
3
0

0
.0
4
6
4
7

0
.0
0
4
3
5

0
.3
7
0

0
.0
4
9
2
8

0
.0
0
6
8
5

0
.0
4
6
1
0

0
.0
0
4
7
4

0
.2
2
2

P
u
lv
in
a
r

0
.0
9
3
8
8

0
.0
0
8
2
7

0
.0
9
5
0
4

0
.0
0
7
4
3

0
.5
6
9

0
.0
9
4
4
3

0
.0
0
5
5
3

0
.0
8
9
1
4

0
.0
0
7
9
9

0
.1
1
4

0
.0
9
2
2
8

0
.0
0
6
5
9

0
.0
8
7
6
9

0
.0
0
8
4
7

0
.3
0
7

V
A

0
.0
3
3
6
2

0
.0
0
2
8
5

0
.0
3
2
4
2

0
.0
0
4
0
0

0
.2
4
6

0
.0
3
5
3
2

0
.0
0
3
2
6

0
.0
3
4
0
5

0
.0
0
2
8
0

0
.2
6
1

0
.0
3
4
0
4

0
.0
0
3
2
3

0
.0
3
3
5
2

0
.0
0
2
9
7

0
.5
0
9

V
P

0
.0
3
7
9
5

0
.0
0
4
4
1

0
.0
2
3
3
1

0
.0
0
2
6
0

0
.7
5
3

0
.0
2
3
8
2

0
.0
0
1
8
0

0
.0
2
1
9
6

0
.0
0
2
5
7

0
.0
4
7

0
.0
2
3
3
7

0
.0
0
1
6
3

0
.0
2
1
3
5

0
.0
0
2
5
3

0
.0
5
4

V
L

0
.0
3
8
7
6

0
.0
0
3
4
9

0
.0
3
7
1
5

0
.0
0
4
3
5

0
.2
2
1

0
.0
4
0
7
1

0
.0
0
3
0
2

0
.0
3
8
1
8

0
.0
0
4
6
8

0
.1
0
9

0
.0
3
9
2
5

0
.0
0
3
8
8

0
.0
3
7
8
6

0
.0
0
4
8
5

0
.3
3
9

S
tr
ia
tu
m

to
ta
l,
le
ft

0
.5
1
9
1
4

0
.0
3
4
5
0

0
.4
9
6
5
9

0
.0
2
3
2
7

0
.0
1
3
*

0
.5
1
6
3
6

0
.0
3
5
4
0

0
.5
0
2
6
1

0
.0
3
2
0
2

0
.4
8
2

0
.4
9
7
8
3

0
.0
2
9
8
6

0
.5
0
0
5
0

0
.0
3
6
9
3

0
.9
3
6

S
tr
ia
tu
m

to
ta
l,
rig

h
t

0
.5
1
2
1
1

0
.0
3
5
4
3

0
.4
8
4
4
5

0
.0
2
9
2
0

0
.0
0
6
*

0
.5
0
5
2
1

0
.0
3
2
9
7

0
.4
9
6
7
9

0
.0
2
5
0
6

0
.5
5
7

0
.4
9
1
4
2

0
.0
2
7
7
4

0
.4
9
5
5
8

0
.0
2
7
6
7

0
.9
1
7

V
a
lu
e
s
re
p
re
s
e
n
t
m
e
a
n
s
a
n
d
s
ta
n
d
a
rd

d
e
vi
a
ti
o
n
s
o
f
vo
lu
m
e
s
re
la
ti
ve

to
e
s
ti
m
a
te
d
to
ta
l
in
c
ra
n
ia
l
vo
lu
m
e
*1
0
0
.
H
C
,
h
e
a
lt
h
y
c
o
n
tr
o
l
s
u
b
je
c
ts
;
M
C
I-
S
,
s
ta
b
le
m
ild

c
o
g
n
it
iv
e
im
p
a
ir
m
e
n
t
a
t
b
a
s
e
lin
e
;
M
C
I-
C
B
,
m
ild

c
o
g
n
it
iv
e
im
p
a
ir
m
e
n
t

c
o
n
ve
rt
e
rs
a
t
b
a
s
e
lin
e
;
M
C
I-
C
C
,
m
ild

c
o
g
n
it
iv
e
im
p
a
ir
m
e
n
t
c
o
n
ve
rt
e
rs
a
t
ti
m
e
o
f
c
o
n
ve
rs
io
n
;
e
T
IV
,
e
s
ti
m
a
te
d
to
ta
l
in
tr
a
c
ra
n
ia
l
vo
lu
m
e
;
C
A
,
c
o
rn
u
a
m
m
o
n
is
;
L
G
N
,
la
te
ra
l
g
e
n
ic
u
la
te
n
u
c
le
u
s
;
M
G
N
,
m
e
d
ia
l
g
e
n
ic
u
la
te
n
u
c
le
u
s
;
V
A
,
ve
n
tr
a
l

a
n
te
ri
o
r
n
u
c
le
i;
V
P,
ve
n
tr
a
lp
o
s
te
ri
o
r
n
u
c
le
i;
V
L
,
ve
n
tr
a
ll
a
te
ra
ln
u
c
le
i.
*S
ig
n
ifi
c
a
n
t
p
va
lu
e
te
s
t
b
y
u
s
in
g
vo
lu
m
e
s
re
la
ti
ve

to
e
s
ti
m
a
te
d
to
ta
li
n
tr
a
c
ra
n
ia
lv
o
lu
m
e
a
n
d
m
u
lt
ip
lie
d
b
y
1
0
0
a
s
d
e
p
e
n
d
e
n
t
va
ri
a
b
le
s
,
a
n
d
in
c
lu
d
in
g
a
g
e
a
n
d
g
e
n
d
e
r
in

th
e
m
o
d
e
l,
a
n
d
a
ft
e
r
c
o
rr
e
c
ti
o
n
fo
r
m
u
lt
ip
le
te
s
ti
n
g
.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 March 2017 | Volume 9 | Article 38

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Kälin et al. Subcortical Shape Changes in MCI

TABLE 3 | Raw volume sizes for patient and control groups.

Group 1 p Group 2 p Group 3 p

HC MCI-S HC MCI-CB HC MCI-CC

eTIV, cm3 1586.33 177.35 1546.71 155.10 0.424 1499.99 155.00 1498.05 133.58 0.976 1487.72 132.59 1507.66 133.52 0.741

Hippocampus total, left 2238.28 260.63 2150.25 434.33 0.390 2250.76 374.17 1687.81 274.65 0.003* 2156.61 223.12 1609.17 247.38 0.000*

Subiculum 332.02 44.55 304.09 62.10 0.052 331.47 51.73 248.01 43.84 0.001* 305.25 29.47 238.94 48.22 0.002*

CA1 716.61 83.99 706.75 141.74 0.785 727.14 132.45 548.12 89.81 0.004* 692.32 81.86 542.17 95.77 0.004*

CA2-CA3 133.94 27.55 130.89 31.18 0.729 132.45 31.93 111.93 21.82 0.150 134.26 16.94 98.11 20.69 0.001*

CA4/Dentate gyrus 534.68 64.87 503.78 101.15 0.215 538.14 86.87 414.63 75.53 0.006* 522.28 73.58 390.57 67.95 0.001*

Strata 521.03 69.33 504.74 118.25 0.564 521.85 93.31 365.12 67.27 0.001* 502.50 56.59 339.38 50.29 0.000*

Hippocampus total, right 2234.65 300.09 2232.02 340.64 0.993 2244.32 274.42 1858.63 335.92 0.019* 2149.88 196.89 1775.68 280.26 0.006*

Subiculum 304.93 34.75 293.59 52.12 0.377 311.29 45.88 251.38 54.78 0.027 296.18 38.27 239.80 47.82 0.009*

CA1 743.04 108.48 751.13 117.96 0.782 750.52 107.06 638.02 115.92 0.057 722.65 74.27 628.90 115.45 0.073

CA2-CA3 146.56 23.46 147.91 27.64 0.844 143.55 22.07 125.88 26.26 0.119 138.63 29.32 111.37 26.32 0.057

CA4/Dentate gyrus 536.26 73.05 534.87 76.72 0.980 531.92 70.60 443.88 73.45 0.017 509.88 61.47 420.12 57.92 0.008*

Strata 503.86 85.79 504.52 95.45 0.945 507.04 57.00 399.47 85.29 0.007* 482.54 45.84 375.49 64.85 0.001*

Thalamus total, left 5126.73 503.34 5036.59 652.23 0.565 4977.11 470.58 4854.86 547.58 0.886 4887.31 330.22 4792.43 195.68 0.870

LGN 111.36 15.48 108.48 15.57 0.522 108.08 19.89 102.21 14.05 0.525 105.67 13.19 98.15 11.26 0.258

MGN 159.11 24.28 156.87 22.00 0.706 151.80 18.91 143.73 15.72 0.404 160.02 17.57 146.96 12.99 0.148

Anterior nuclei 87.56 19.90 83.39 15.61 0.361 79.87 13.58 83.20 15.85 0.241 78.88 9.53 86.78 18.23 0.104

Central nuclei 248.49 27.52 237.58 31.05 0.147 239.37 30.15 224.34 25.28 0.335 240.92 30.16 223.86 23.09 0.871

Lateral dorsal nuclei 44.53 14.55 45.86 13.94 0.761 42.85 13.33 48.56 9.44 0.083 45.40 10.29 50.02 11.52 0.105

Lateral posterior nuclei 355.06 68.93 366.43 60.36 0.542 341.19 47.86 364.56 43.91 0.099 349.79 21.34 361.28 42.25 0.331

Medial dorsal nuclei 822.66 79.53 785.62 110.11 0.178 790.30 67.28 753.79 102.32 0.501 779.15 65.12 738.24 83.74 0.508

Pulvinar 1212.08 126.63 1195.09 146.50 0.655 1128.08 113.66 1101.08 160.98 0.940 1109.93 118.10 1079.69 146.41 0.800

VA 500.06 67.78 493.17 89.54 0.755 493.21 61.80 500.08 56.84 0.367 472.95 33.09 485.61 49.05 0.399

VP 396.65 33.99 383.97 50.83 0.275 386.85 34.62 348.36 44.33 0.050 377.78 34.68 331.26 44.02 0.041

VL 719.09 80.65 711.71 117.47 0.799 725.58 56.69 684.07 92.85 0.283 695.61 56.70 665.58 93.58 0.551

Thalamus total, right 5122.67 493.57 4958.83 643.05 0.280 4959.92 448.02 4758.09 417.01 0.423 4864.32 321.10 4742.79 377.55 0.839

LGN 179.37 23.03 176.95 28.31 0.763 177.46 14.77 178.81 25.88 0.873 174.31 10.92 173.45 23.64 0.928

MGN 195.04 25.38 190.02 29.13 0.439 189.86 19.72 188.17 20.73 0.882 195.39 25.37 189.52 24.60 0.956

Anterior nuclei 120.72 22.93 111.68 26.22 0.168 112.40 16.29 119.18 18.36 0.276 116.68 15.55 120.22 15.19 0.468

Central nuclei 154.73 17.33 146.89 21.11 0.118 150.24 16.51 144.89 16.56 0.648 151.41 18.34 144.54 14.79 0.625

Lateral dorsal nuclei 49.43 15.49 45.96 13.21 0.374 45.14 11.29 49.85 12.83 0.196 45.27 11.65 50.67 11.98 0.087

Lateral posterior nuclei 267.29 47.20 259.55 47.31 0.571 239.24 34.40 252.46 28.41 0.234 253.76 28.45 252.63 23.74 0.189

Medial dorsal nuclei 756.02 74.65 716.16 99.86 0.104 720.75 68.41 693.40 61.79 0.503 727.41 73.61 691.37 54.93 0.385

Pulvinar 1484.26 165.02 1469.57 183.34 0.749 1414.45 145.15 1331.68 137.33 0.227 1370.91 138.16 1316.74 122.95 0.781

VA 532.09 65.62 503.16 89.00 0.204 527.86 53.61 510.49 66.36 0.670 503.71 35.07 504.70 56.99 0.813

VP 366.80 32.69 357.21 50.58 0.402 356.18 34.07 327.49 34.56 0.069 346.68 29.03 320.19 32.51 0.123

VL 611.33 14.59 576.04 95.90 0.156 608.29 51.25 569.12 60.62 0.176 581.08 52.21 567.77 62.64 0.684

Striatum total, left 8208.75 818.54 7688.01 897.51 0.031* 7746.97 1003.05 7513.04 651.33 0.844 7389.66 615.77 7527.29 689.44 0.356

Striatum total, right 8095.68 805.24 7497.72 905.81 0.015* 7575.03 917.71 7432.17 645.25 0.989 7303.52 696.77 7453.16 554.69 0.382

Values represent means and standard deviations of raw volumes mm3. HC, healthy control subjects; MCI-S, stable mild cognitive impairment at baseline; MCI-CB, mild cognitive

impairment converters at baseline; MCI-CC, mild cognitive impairment converters at time of conversion; eTIV, estimated total intracranial volume; CA, cornu ammonis; LGN, lateral

geniculate nucleus; MGN, medial geniculate nucleus; VA, ventral anterior nuclei; VP, ventral posterior nuclei; VL, ventral lateral nuclei. *Significant p value test by using raw volumes as

dependent variable, and including age and gender in the model, and after correction for multiple testing.

expansions in turn were limited to ventral andmedial parts.MCI-
CB revealed expansions in bilateral ventral aspects of the central
nuclei, VA, VL, andVP.MCI-CC revealed the same, thoughmore
pronounced pattern of expansions in both hemispheres, with
additional expansion in the medial aspect of the medial dorsal
nuclei.

Striatal displacements are presented in Figure 4B. Again in
contrast to MCI-S, the other groups displayed contractions,
predominantly in the left hemisphere and most pronounced
in ventral (inferior) aspects. More precisely, MCI-CB revealed
contractions in medial parts of the putamen and anterior parts
of the striatum (caudate head). The same pattern was found
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FIGURE 1 | Surface labels for automated segmentation of thalamic

subnuclei (L = left hemisphere; R = right hemisphere), based on expert

neuroanatomical labeling of serial histology (Chakravarty et al., 2006).

Reprinted from Journal of Alzheimer’s Disease 49(1) Leh SE, Kälin AM,

Schroeder C, Park MT, Chakravarty MM, Freund P, Gietl AF, Riese F, Kollias S,

Hock C, Michels L “Volumetric and shape analysis of the thalamus and

striatum in amnestic mild cognitive impairment” 237–249, Copyright 2015,

with permission from IOS Press.

FIGURE 2 | Coronal views of the hippocampus and hippocampal

subfields in magnetic resonance images from a healthy control subject

(HC) and a mild cognitive impairment converter subject at time of

conversion (MCI-CC) of the present study.

in MCI-CC, with more pronounced alterations in left ventral
(inferior) medial parts of the putamen and with continued
spreading to the left dorsal medial striatum (caudate body) and
to right ventral (inferior) aspects of the anterior striatum (caudate
head). Similar to the contractions, striatal expansions were more

pronounced in the left hemisphere:MCI-CB showed pronounced
expansions in ventral aspects of the anterior striatum (caudate
head) and lateral putamen. MCI-CC showed a similar pattern,
but with further continued expansions to ventral (inferior)
aspects of the left striatum (caudate tail), and to ventral aspects
of the anterior striatum (caudate head) of the right hemisphere.

Discriminative Accuracy of Shape
Alterations and Hippocampus Volumes
For these analyses, between group t statistics from comparison
between HC and MCI-CB were used. More precisely, for
all vertices whose t-values constituted a local minimum (or
maximum), the average of the displacement values in mm was
computed for each subject. This was done separately for each
structure and hemisphere. The analyses revealed contractions
of the right thalamus and left striatum having an AUC of 0.98
(95% confidence interval [CI] 0.929-1.000, p < 0.001) and of
0.96 (95%CI 0.883-1.000, p < 0.001) for discriminating HC from
MCI-CB (Figure 5), both AUC confirming excellent accuracy
and high statistical significance similar to left hippocampus
volume (raw volume AUC= 0.95, 95%CI 0.861-1.000, p < 0.001;
volume relative to eTIV AUC = 0.95, 95%CI 0.848-1.000, p <

0.001) and increased accuracy and statistical significance when
compared to the right hippocampus volume (raw volume AUC
= 0.80, 95%CI 0.572-1.000, p < 0.05; volume relative to eTIV
AUC = 0.84, 95%CI 0.633-1.000, p < 0.05). The same AUC
analyses carried out for thalamic expansions (left AUC = 0.92
95%CI 0.767-1.000, p = 0.001; right AUC = 0.93 95%CI 0.816-
1.000, p= 0.001), thalamic contractions left (AUC= 0.86, 95%CI
0.685-1.000, p= 0.007) and striatal expansions left (AUC= 0.88,
95%CI 0.730-1.000, p= 0.004) revealed lower but still statistically
significant accuracy for discriminating HC fromMCI-CB.

DISCUSSION

In the current study, we used a combination of novel (thalamic
and striatal shape indices) andwell-established (cortical thickness
and the volume of the hippocampus and its subfields) structural
imaging techniques to characterize the neuroanatomy of MCI-
to-AD converters. We examined the neuroanatomy in the MCI-
to-AD converters using data acquired both at baseline and time
of conversion. In addition, we compared baseline data from
stable MCI subjects, comparing them with data from group-wise
matched HC in a cross-sectional manner.

Cortical Thinning in Future Converters
There was no significant difference in cortical thickness inMCI-S
compared to HC, but inMCI-CB in left parahippocampal regions
including the uncus with further propagation to bilateral regions
in MCI-CC. This pattern is consistent with the literature (Braak
and Braak, 1991b; Mitchell et al., 2002) and with morphometric
changes previously associated with early stages of AD (Mitchell
et al., 2002; Drago et al., 2011). Like others (Lebedev et al., 2013),
we also identified cortical thinning in the subgenual cingulate
region in MCI-CB. Functionally, this region has been related
to normal sadness reactions (Phan et al., 2002), and reduced
volumes have been observed in patients with major depressive

Frontiers in Aging Neuroscience | www.frontiersin.org 8 March 2017 | Volume 9 | Article 38

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Kälin et al. Subcortical Shape Changes in MCI

FIGURE 3 | Cortical thickness differences in patients with stable mild cognitive impairment (MCI-S), future converters at baseline (MCI-CB) and

converters at time of conversion (MCI-CC) when compared with healthy control subjects (HC). Images were generated after including age and gender in the

model, and after correction using FDR at q = 0.15 to better illustrate the anatomical localization. Bar shows FDR-values, with blue /light blue indicating reduced

cortical thickness.

TABLE 4 | Reduced cortical thickness in patient groups.

Anatomic localization MNI coordinates (peak) t statistic (peak)

x y z

A

Parahippocampal Cortex, left −30 −16 −27 −5.77**

Subgenual Cingulate, left −18 15 −14 −4.34**

Uncus, left −29 −29 −8 −6.53**

B

Parahippocampal Cortex, left −25 −13 −32 −7.13**

Uncus, left −31 −12 −23 −7.06**

Parahippocampal Cortex, right 29 −12 −28 −5.45*

Uncus, right 31 −10 −22 −5.20*

Anatomical localization of cortical thinning in mild cognitive impairment converters at

baseline (A), and in mild cognitive impairment converters at time of conversion (B). MNI:

Montreal Neurological Institute. *significant after including age and gender in the model,

and after correction using False Discovery Rate at q < 0.10. **significant after including

age and gender in the model, and after correction using False Discovery Rate at q< 0.01.

disorder (Drevets et al., 2008). Although clinically significant
depression was one of the exclusion criteria in our study, very
subtle and subclinical depressive symptoms that are difficult to
quantify may be related to this finding in MCI-CB, leaving the
exact mechanism unclear. This region has furthermore been
associated with the uptake of serotonin (Lanzenberger et al.,
2013). Serotonin is involved in the regulation of sleep (Portas
et al., 2000) which is disturbed in AD (Westerberg et al., 2012).

Hippocampal Atrophy in Future Converters
MCI-S revealed no global or local hippocampal volume
reductions compared to HC. However, in accordance with
the AD literature (Stepan-Buksakowska et al., 2014) and our
expectations, we found reduced volumes of bilateral hippocampi
in MCI-CB and MCI-CC as well as reduced local volumes of all
but one (CA2-CA3) bilateral subfields already in MCI-CB, and of
all bilateral subfields in MCI-CC.

Hippocampal atrophy represents the key imaging marker
in AD research. The successful identification of hippocampal
subfields by using high-field MRI, however, has offered a
more refined approach (Mueller and Weiner, 2009; Yushkevich
et al., 2009; Mueller et al., 2010; Antharam et al., 2012;
Wisse et al., 2014a). Advances in segmentation and analysis
techniques have now enabled the field to identify hippocampal
subfield alterations on images obtained from standard clinical
systems. Corresponding with the pattern of neurofibrillary tangle
formation, predominant CA1 atrophy has been found in MCI
(Apostolova et al., 2006a; Atienza et al., 2011; Pluta et al., 2012;
La Joie et al., 2013; Yushkevich et al., 2015a), with some of these
studies having reported additional subicular alterations (Atienza
et al., 2011; La Joie et al., 2013) and alterations in additional
subfields (Amaral et al., 2016). A more extended pattern also
including CA2 and CA3 or even CA4/Dentate gyrus has been
identified in AD (Apostolova et al., 2006a; Frisoni et al., 2008;
Frankó et al., 2013; Li et al., 2013). Importantly, alterations in
these subfields have been related to impaired memory functions
in amnestic MCI (Atienza et al., 2011; Ferrarini et al., 2014).

Frontiers in Aging Neuroscience | www.frontiersin.org 9 March 2017 | Volume 9 | Article 38

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Kälin et al. Subcortical Shape Changes in MCI

FIGURE 4 | Differences in thalamic (A) and striatal (B) shape alterations in future converters at baseline (MCI-CB) and at time of conversion (MCI-CC) when

compared with healthy control subjects (HC). Images were generated after including age and gender in the model, and after correction using FDR at q = 0.15 to

better illustrate the anatomical localization. Bars show FDR-values, with blue/light blue indicating inward displacements (contractions) and pink/light pink indicating

outward displacements (expansions).

Local analysis of the structure, therefore, has been suggested
advantageous for the early detection of dementia (Tang et al.,
2014).

Nevertheless, only a few studies have examined hippocampal
subfields in future converters. Even though they have applied
surface-based subfield imaging without providing volumetric
information, results of alterations in CA1 and/or subiculum in

future converters to MCI (Apostolova et al., 2010) or to AD
(Apostolova et al., 2006b; Chételat et al., 2008; Frankó et al., 2013)
are in agreement with our own findings. In line with further
progression of tangle accumulation (Braak and Braak, 1991b),
we found similar bilateral CA2-CA3 volumes in MCI-CB but
reduced bilateral CA2-CA3 volumes in MCI-CC compared to
HC. Additionally, we found bilateral CA4/Dentate gyrus volumes
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FIGURE 5 | Receiver operating characteristic curve analyses of contractions in the left striatum (area under the curve [AUC] = 0.96, p < 0.001) and the

right thalamus (AUC = 0.98, p < 0.001) for discriminating future converters at baseline from healthy control subjects. ————- ROC curvereference lines.

were lowered not only inMCI-CC but also inMCI-CB. Although
CA4/Dentate gyrus volume reduction has mainly been identified
in dementia stages (Frankó et al., 2013; Li et al., 2013), earlier
alterations in this subfield have also been reported by others
(Pluta et al., 2012). We also identified reduced volumes of
bilateral strata lacunosum/radiatum/moleculare in MCI-CB and
MCI-CC, and our results are supported by studies reporting
stratum radiatum and stratum lacunosum/moleculare of CA1
being affected by early tangle accumulation (Braak and Braak,
1997; Thal et al., 2000; Braak et al., 2006) and atrophy in mild AD
(Kerchner et al., 2010). It shoud be further noted that only a few
protocols exist allowing for the reliable, automated segmentation
of hippocampal subfields (see Wisse et al., 2014b for a critical
discussion; Yushkevic et al., 2015b). Here, we used a multi-
atlas based segmentation approach (Chakravarty et al., 2013;
Voineskos et al., 2015) that performs as well as other methods
used in the field (Pipitone et al., 2014).

Thalamic Alterations in Future Converters
MCI-S did not reveal any deviation from HC, neither in thalamic
total or subfield volumes nor in shape alterations. Contrary to our
expectation, the same was true for both total and local thalamus
volumes inMCI-CB andMCI-CC. Indeed reduced thalamic total
volumes have been reported in amnestic MCI (Hahn et al., 2016)
and MCI-CB (Bossa et al., 2011). However, thalamic atrophy
in AD is debated, particularly in early disease stages (Xuereb
et al., 1991; Braak and Braak, 1991a; Paskavitz et al., 1995), where
only a few regions are affected by a small number of isolated
neurofibrillary tangles (Braak and Braak, 1991b). Moreover, our
results are in agreement with other studies having observed
similar volumes in amnestic MCI, MCI and AD patients (Cho
et al., 2014).

But first and foremost, and despite the absence of volumetric
differences, we identified a widespread pattern of shape
alterations in MCI-CB andMCI-CC with displacements showing

similar if not improved discrimination between HC and MCI-
CB compared to hippocampus volume. These findings may
represent a critical MRI-based marker for AD. Confirming our
expectation, the pronounced thalamic shape alterations in VA
found in MCI-CB and MCI-CC cover regions that are affected
from early neurofibrillary tangles and later occurring amyloid
deposition (Braak and Braak, 1991b). Importantly, the thalamus
plays a crucial role in the Papez circuit with the anterior thalamus
and the pulvinar, both having shown shape alterations in MCI-
CB and MCI-CC, being directly connected to the hippocampus
(Zarei et al., 2010). Furthermore, frontostriatal circuits link
dorsolateral prefrontal, anterior cingulate, and orbitofrontal
cortex regions (Alexander et al., 1986) via the striatum / globus
pallidus (Haber, 2003) to VA and medial dorsal aspects of the
thalamus (Tekin and Cummings, 2002; Bonelli and Cummings,
2007), aspects that again have shown shape alterations in MCI-
CB and MCI-CC. Further significant shape alterations were
found in the VP, VL and lateral posterior nuclei connecting
the structure with the somatosensory, motor, premotor and
prefrontal and temporal and parietal cortices (Behrens et al.,
2003; De bourbon-Teles et al., 2014). Consistent with these
extensive connections, thalamic regions affected from shape
alterations in MCI-CB and MCI-CC have been linked with
memory and frontal executive, attention, visuospatial perception,
and emotion processing (Wilke et al., 2013; Saalmann, 2014;
De bourbon-Teles et al., 2014; Arend et al., 2015), with all of
these functions being impaired early in AD (Klekociuk et al.,
2014).

To our knowledge, there has been only one other study
investigating subcortical shape alterations in MCI-S and MCI-
CB, without a HC group (Tang et al., 2014). The contractions
found in the pulvinar and dorsal aspects of the VP in MCI-
CB are consistent with contractions that have been identified in
amnestic MCI by an earlier study of our group (Leh et al., 2015).
Additionally, the authors have documented contractions in
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regions that remained unaffected in the present MCI-CB sample
such as the VL and lateral posterior nuclei. These, however,
revealed contractions in the MCI-CC group. Our finding of
contractions in dorsal, medial dorsal and anterior regions with
more pronounced results in the left than in the right hemisphere
in MCI-CB andMCI-CC, contractions in the pulvinar and dorsal
as well as medial dorsal regions in MCI-CC in turn are consistent
with other study results (Qiu et al., 2009; Cho et al., 2014; Stepan-
Buksakowska et al., 2014; Hahn et al., 2016). The few results about
thalamic expansions in MCI and AD are inconsistent. In contrast
to expansions in ventral regions in both MCI-CB and MCI-
CC, the earlier study from our group has identified expansions
in more lateral aspects in amnestic MCI, whereas others have
reported expansions in medial or even dorsal aspects in MCI
and AD (Qiu et al., 2009). Further studies are warranted to find
out whether there is a typical AD-related pattern of thalamic
expansion.

Striatal Alterations in Future Converters
Against our expectation, we observed reduced bilateral striatal
volumes in MCI-S but similar volumes in MCI-CB and MCI-
CC when compared to HC. The most plausible explanation for
this seem to be age- and gender-related shrinking, or age-related
changes in dopamine and frontostriatal networks (Klostermann
et al., 2012) resulting in reduced striatal volumes. Due to age- and
gender-matched MCI-S and HC groups, however, this is rather
unlikely in the present study. Rather, the result may indicate
non-AD pathology in our MCI-S sample. This assumption is
further supported by cognitive profiles differing between MCI-
S and MCI-CB. In comparison with their respective HC group,
MCI-S showed significantly reduced cognitive scores not only
in memory tests but also in tests assessing executive functions,
attention and language abilities (see Table 1). In contrast, and
apart from impaired memory functions, MCI-CB performed
worse than their respective HC in the category fluency task and
in the boston naming test but not in attentional tasks. Both, the
category fluency task and the boston naming test have closely
been linked with semantic knowledge (Delis and Kaplan, 2001),
which in turn is thought to rely on temporal brain regions
(Levy et al., 2004) known to be affected early in AD (Tondelli
et al., 2012). Genereally speaking, MCI-S in our study might
indeed represent non-AD cognitive impairment mainly based
on attentional deficits influencing other cognitive processes and
leading to a more widespread pattern of cognitive impairment
whereas our MCI-CB group showed an AD-typical pattern of
cognitive impairment.

Normal striatal volumes in MCI-CB and MCI-CC in turn are
most likely attributable to the early disease stages of each group:
striatal amyloid deposition and tangle formation have evidenced
at late histopathological disease stages, andmainly after dementia
onset (Braak and Braak, 1990, 1991a,b; Thal et al., 2002; Beach
et al., 2012). Hence, the striatum in MCI-CB and MCI-CC may
still be free of typical AD pathology. Correspondingly, similar
volumes of the striatum, putamen and caudate inMCI and future
converters compared to HC have been reported by others (Bossa
et al., 2011; Roh et al., 2011).

As expected, however, shape analyses showed no alterations in
the striatum in MCI-S but pronounced displacements in MCI-
CB and MCI-CC. The observed shape alterations were limited to
the left striatum in MCI-CB, but displacements had propagated
within the structure and to the right hemisphere in MCI-
CC. Furthermore, and as with the thalamic shape alterations,
these striatal shape alterations revealed similar abilities for
discriminating HC from MCI-CB compared to hippocampus
volume. Aspects of the striatum showing most pronounced
contractions and expansions such as the caudate head, body and
tail as well as medial and lateral putamen have been linked to a
wide range of cognitive functions. These regions are involved in
attention, planning and memory (Cummings, 1995), all of which
are impaired early in AD (Klekociuk et al., 2014).

Again, the study from Tang et al. (2014) represents the only
study we are aware of having documented shape alterations
in MCI-S and MCI-CB; however no HCs were compared in
this study. In agreement with other studies, however, they
demonstrated patterns of striatal contractions in MCI and AD
patients (Qiu et al., 2009; Tang et al., 2014; De Jong et al.,
2014) that were comparable to the patterns found in the current
study. Interestingly, only a few studies have documented striatal
expansions in general (Tang et al., 2014; De Jong et al., 2014),
though these expansions were less pronounced than in the
present study (visual inspection).

It is beyond the aim of our study to draw direct inferences
about the neuronal correlate of shape alterations. Given the
pronounced connections with other disease-relevant structures
(Leh et al., 2008), however, striatal and thalamic shape alterations
may represent secondary downstream effects. A similar effect has
been proposed by Stepan-Buksakowska et al. (2014). Specifically,
volume reductions in the hippocampus and other early affected
cortical regions may have caused subsequent morphometric
changes in connected regions such as the thalamus and the
striatum, without generating volume reductions yet. Although
we cannot rule out the possibility of contractions representing
atrophy-related alterations, the applied surface-based shape
analyses provide local, but not fully comprehensive information
about the entire structure. Accordingly, and as it has been
shown in the present study, structural shape alterations are
not necessarily associated with corresponding volume changes.
Hence, our results of shape differences in the absence of
volume differences highlight the importance of considering shape
changes along with established volume measures.

LIMITATIONS

The authors are fully aware of other studies investigating
subcortical shape alterations in MCI and/or AD patients (Cho
et al., 2014; Stepan-Buksakowska et al., 2014; Tang et al., 2014;
Hahn et al., 2016). However, and apart from the study from
Tang et al. (2014), we are not aware of other studies investigating
thalamic and striatal shape abnormalities in MCI-S, MCI-CB,
and MCI-CC in a single comparative study, and of no study
comparing these shape abnormalities with measures from age—
and gender matched HC. More importantly, we are not aware
of any other study providing evidence of thalamic/striatal shape
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alterations at such early stages of AD (MCI-CB)—with absent
thalamic/striatal shape alterations in MCI-S at the same time.
Thus, our work provides support for these novel morphometric
measures representing a potential and very sensitive early
marker for AD. Additionally, and compared with emerging
techniques such as hippocampal subfield volume analysis and
already established techniques such as cortical thickness analysis,
shape analysis represents an advanced and novel technique.
Accordingly, the number of studies investigating subcortical
shape alterations in MCI/AD subjects is limited (i.e., Qiu et al.,
2009; Cho et al., 2014; De Jong et al., 2014; Tang et al., 2014; Hahn
et al., 2016). Furthermore, the comparability of results remains
difficult due to different imaging processing algorithms and
different MRI acquisition modalities (i.e., with field strength of
scanners varying from 1.5 T in our own study to 7 T in the study
from Tang et al., 2014, and with other high-sample studies using
images acquired from various scanners in the study from Qiu
et al., 2009). Thus, contractions and expansions represent a novel
way to quantify the morphometry of brain regions, with shape
alterations having been associated with memory performance in
our previous study (Voineskos et al., 2015).

Although other groups have also reported shape analysis
results obtained from studies consisting of similarly small
sample sizes (i.e., Stepan-Buksakowska et al., 2014, 12 AD, 13
HC), the small group sizes may have prevented the detection
of small effects in this study. However, we believe that the
reliability of our findings are supported by low standard
deviations across our measures (see Tables 2, 3) as well as by
the overall characteristic of the results obtained using well-
established analyses techniques (the volume of the hippocampus
and its subfields and cortical thickness) and being perfectly
in line with the literature. Furthermore, statistically significant
differences in shape alterations between small groups indicate
that even more pronounced effects might be expected in
future studies using larger sample sizes. In sum, and despite
the small group sizes, we consider the present study results
important to investigate whether shape alteration can help
localizing differences associated with the stability or progression
of cognitive impairment. However, further studies are required
to confirm our results in larger samples. This is also true for
our ROC analyses, whose AUC values were remarkably high for
measures of striatal and thalamic shape and left hippocampus and
may represent an overestimation of discriminative ability due to
small sample size.

The approach of using three different control groups might
indeed increase chances of coincidental findings, and thus
represent a limitating factor. However, and for the present
study, MCI subjects were selected from a study aiming to
characterize future converters to AD. The study did not consist
of HC. Therefore, it was necessary to recruit HC restrospectively,
rendering the acquisition of longitudinal data and performance
of longitudinal statistical analyses impossible. Furthermore,
MCI-CB differed from MCI-S with respect to age and gender,
both having previously been associated with morphometric
measures. Thus, and in order to prevent the use of a high number
of covariates in statistical analyses (and the risk to further reduce
statistical power), control subjects were recruited for group-wise

matching to each patient group with respect to these potentially
confounding factors.

Additionally, the comparison of the data between MCI-S
and MCI-CB, and between MCI-CB and MCI-CC would be
of high interest. However, and apart from the cross-sectional
nature of the present study, these analyses require accounting
for confounding variables (i.e., variable times to conversion), and
increase the number of comparisons. Generally speaking, and
in consideration of the rather low sample sizes in the present
study, additional analyses would further reduce the power of the
present results. Similarly, ROC analyses discriminating MCI-CB
from MCI-SB based on striatal and thalamic shape alterations
is relevant. However, and for similar reasons and consistency,
the main aim of the ROC analyses in the present study was
to demonstrate similar if not improved abilities of striatal /
thalamic shape alterations compared to hippocampal volumes
for AD to discriminate between MCI-CB from HC. But first
and foremost, the aim of the present study was to investigate
morphometric differences between patient and well matched
control groups to establish the sophisticated analysis techniques
on images obtained from a 1.5 Tesla scanner. Nevertheless,
further studies are now required to confirm our results in larger
samples allowing for additional and more advanced statistical
models.

MCI-S has been described as a potential early stage of AD
(Bossa et al., 2011). However, apart from slightly reduced striatal
volumes, MCI-S demonstrated no morphometric changes when
compared to HC in the present study, rendering this notion
unlikely. At the same time, MCI-S, consisting of amnestic MCI
multiple domain subjects only, showed a more widespread
pattern of cognitive impairment than MCI-CB, consisting of
both, amnestic MCI single domain (n = 3) and amnestic
MCI multiple domain subjects (n = 7). More precisely, both
MCI groups showed memory impairment and impairment in a
language-related function (confrontation naming) as well as in
semantic memory and executive functioning (animal fluency).
Interestingly, however, MCI-S but not MCI-CB showed further
impairments in additional executive tasks (letter fluency, digit
span backwards) as well as in attentional abilities (TMT A
and TMT B). These attentional deficits in MCI-S might be
at the basis of the other cognitive deficits in this group,
resulting in a more widespread and global pattern of cognitive
impairment when compared with MCI-CB–with remaining
abilities for everyday life at the same time. Generally speaking,
these findings might represent non-typical-AD pathology rather
than early stage AD in the present MCI-S group, and this
assumption is further supported by the morphometric findings
in this group (reduced striatal volumes, no other morphometric
abnormalities). However, the AD typical cognitive impairment,
the pattern of cortical thinning and hippocampal atrophy
in MCI-CB and MCI-CC, together with a cognitive profile
uncharacteristic for AD and the absence of morphometric
alterations in MCI-S, is supportive of AD pathology in MCI-
CB and MCI-CC. Additional markers of neurodegeneration
such as CSF levels of phosphorylated Tau together with
amyloid imaging may provide additional information on this
matter in future longitudinal studies. Also, vascular risk
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factors such as hypertension, diabetes mellitus, hyperlipidemia,
etc. represent main risk factors for the development of
dementia. This information, however, was not available for all
subjects and could therefore not be added in the statistical
models.

The similarity of patterns of morphometric alterations in
MCI-CB and MCI-CC is most likely due to both groups
consisting of the same subjects, with MCI-CC data having
been obtained at time of conversion. Hence, the time lag of
approximately 20.8 months between MRI at baseline and at time
of conversion might have been too short to reveal progression of
morphometric alterations.

CONCLUSION

In conclusion, the simultaneous presence of highly accurate
thalamic and striatal shape alterations, AD typical cortical
thinning and hippocampal atrophy in MCI-CB but not in MCI-
S highlights the value of subcortical shape alterations as early
marker for AD, and emphasizes the importance to consider
regional morphological information of subcortical structures.
It is necessary to find ways allowing the implementation of
advanced segmentation and analysis techniques in everyday
clinical practice in the near future.
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