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Disrupted iron metabolism has been implicated in the pathogenesis of Parkinson’s
disease (PD), a progressive neurodegenerative disorder that severely affects movement
and coordination, yet the molecular mechanisms underlying this association remain
unknown. To this end, we performed a transcriptomic meta-analysis of four blood
microarrays in PD. We observed a significant downregulation of genes related to
hemoglobin including, hemoglobin delta (HBD), alpha hemoglobin stabilizing protein
(ASHP), genes implicated in iron metabolism including, solute carrier family 11 member 2
(SLC11A2), ferrochelatase (FECH), and erythrocyte-specific genes including erythrocyte
membrane protein (EPB42), and 5′-aminolevulinate synthase 2 (ALAS2). Pathway and
network analysis identified enrichment in processes related to mitochondrial membrane,
oxygen transport, oxygen and heme binding, hemoglobin complex, erythrocyte
development, tetrapyrrole metabolism and the spliceosome. Collectively, we identified a
subnetwork of genes in blood that may provide a molecular explanation for the disrupted
hemoglobin and iron metabolism in the pathogenesis of PD.
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INTRODUCTION

Parkinson’s disease (PD) is a devastating movement disorder that is estimated to affect 7–10
million people worldwide according to the PD Foundation1. Clinical characteristics of PD include
bradykinesia, resting tremor, postural instability, and rigidity, which are caused by the progressive
loss of dopaminergic neurons in the substantia nigra. To date, there is no effective therapy to
halt the progression of the disease. A wide range of biological processes including, mitochondrial
dysfunction, endoplasmic reticulum stress, inflammation, impaired insulin signaling, oxidative
stress, and iron metabolism have been implicated in the pathogenesis of PD (Dawson and Dawson,
2003; Santiago and Potashkin, 2013b).

Disrupted iron homeostasis has been proposed to play a causative role in PD. This is not
surprising, since iron plays a crucial role in vital cellular processes including, mitochondrial
respiration, synthesis of myelin and neurotransmitters, nitric oxide metabolism and oxygen
transport (Crichton et al., 2011; Schneider et al., 2012). In this context, perturbed iron metabolism
has been shown to contribute to the generation of oxidative stress, alpha-synuclein (SNCA)
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accumulation, and dopaminergic cell death in PD (Salazar et al.,
2008; Crichton et al., 2011; Matak et al., 2016). Increased iron
deposits have been observed in brain regions of PD patients
and the extent of its accumulation have been correlated with
disease severity (Sofic et al., 1988; Gorell et al., 1995; Martin
et al., 2008), reviewed in Rhodes and Ritz (2008). Further,
excessive iron accumulation led to dopaminergic cell death
through the production of reactive oxygen species in animal
models of PD (Salazar et al., 2008; You et al., 2015). Strikingly,
the A53T mutation in SNCA, central in the pathogenesis of PD,
mediated iron accumulation and toxicity in neuroblastoma cells
(Ostrerova-Golts et al., 2000).

Several studies suggest that a systemic iron deficiency, rather
than an iron overload, may play an important role in the
pathogenesis of PD. Earlier studies showed that serum levels
of iron, ferritin, and transferrin were significantly lower in PD
patients compared to healthy controls (HCs) (Logroscino et al.,
1997). In support of this finding, the risk of PD was higher
among men who reported multiple blood donations, an indicator
of reduced iron stores (Logroscino et al., 2006). Interestingly,
anemia, a condition characterized by low hemoglobin levels and
sometimes associated with iron deficiency, has been correlated
with an increased risk of PD in several populations (Savica et al.,
2009; Hong et al., 2016). In addition, it has been proposed
that hemoglobin may play a role in the oxidative stress and
mitochondrial dysfunction in PD (Shephard et al., 2016).

Since high-throughput screening of RNA from blood has
been instrumental in elucidating important molecular pathways
underlying neurodegeneration in PD patients (Scherzer et al.,
2007; Mutez et al., 2011; Potashkin et al., 2012; Alieva et al.,
2014; Calligaris et al., 2015; Santiago et al., 2016; Simchovitz et al.,
2016), we hypothesized that analysis of the blood transcriptome
could provide clues for the disrupted iron metabolism observed
in PD patients. To this end, we performed a meta-analysis
of four independent blood microarrays from PD patients and
HCs. We identified a network of downregulated genes related
to hemoglobin and iron metabolism thus providing a molecular
evidence for the impairment of these pathways in PD.

MATERIALS AND METHODS

Microarray Meta-analysis Using NextBio
We used the curated database NextBio Research (Illumina, Inc.,
San Diego, CA, USA) (Kupershmidt et al., 2010) to search for

gene expression studies in PD. Meta-analysis was performed
according to the PRISMA guidelines (Moher et al., 2009)
(Supplementary Figure S1 and Table S1). Using the search terms
“PD,” “blood,” “human,” “RNA” and “microarray,” we identified
six studies in blood of PD. One study was a duplicate and
therefore removed. Only human microarray studies curated in
NextBio, including samples from sporadic PD and HCs were
used in the analysis. One study involving patients with a LRRK2
mutation was excluded from the analysis (GSE22491) since we
focused on sporadic PD. In the final selection, four microarrays
met our inclusion criteria. Description of microarray datasets
included in this study is provided in Table 1. Microarray
meta-analysis was perfomed in NextBio as described previously
(Santiago et al., 2016). Briefly, differentially expressed genes
were extracted from NextBio and negative values, if any, were
replaced with the smallest positive number in the dataset.
Genes whose mean normalized test and control intensities
were both less than the 20th percentile of the combined
normalized signal intensities were removed. The meta-analysis
tool in NextBio uses a normalized ranking approach, which
enables comparability across different gene expression datasets,
platforms, and methods, independently of the absolute values of
fold changes. The scoring and ranking of a gene are calculated
based on the activity of the gene in each dataset and the number
of datasets in which the gene is differentially expressed. Ranks are
then normalized to eliminate any bias owing to varying platform
size. Only genes with a p-value of 0.05 or less and an absolute fold-
change of 1.2 or greater were regarded as significant. Pathway
analysis was performed in NextBio using Gene Ontology (GO)
terms and the Molecular Signatures Database (MSigDB). Gene
network analysis was performed using the GeneMANIA (Warde-
Farley et al., 2010), an application for gene network and pathway
analyses accessed through Cytoscape v.3.0.3 (Shannon et al.,
2003), another publicly available bioinformatics software. We
used the default settings to include the 20 genes that have the
highest number of interactions and advanced settings to include
co-expression, physical, genetic, and pathways.

RESULTS

To investigate whether gene expression changes in blood could
provide insights into the disrupted iron metabolism in PD, we
performed a meta-analysis using NextBio (Kupershmidt et al.,
2010) (see Materials and Methods). Four microarrays met our
inclusion criteria and were included in the final meta-analysis

TABLE 1 | Microarray studies in blood of PD used in meta-analysis.

GEO accession no. No. of samples Description Platform Reference

GSE54536 PD = 4; HC = 4 Untreated sporadic PD Patients (mean Hoehn and
Yahr stage = 1)

Illumina HT-12 V4 Alieva et al., 2014

GSE72267 PD = 40; HC = 19 Untreated sporadic PD (mean Hoehn and Yahr
stage = 1.4)

Affymetrix Human Genome U133A 2.0
Array

Calligaris et al., 2015

GSE6613 PD = 50; HC = 22 Early stage sporadic PD patients (mean Hoehn and
Yahr = 2.3)

Affymetrix Human Genome U133A Scherzer et al., 2007

GSE57475 PD = 93; HC = 49 Early stage sporadic PD, treated Illumina HumanHT-12 V3.0 Locascio et al., 2015
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(Supplementary Figure S1 and Table S1). Meta-analysis using
the non-parametric ranking approach in NextBio identified 1,220
transcripts in blood of PD patients compared to HC. We observed
very little overlap in gene expression across the four datasets.
Only 24 genes were differentially expressed in at least two out
of the four studies and were the most highly ranked genes
(Table 2). The complete list of genes identified in meta-analysis
is provided in Supplementary Table S2. The two most highly
ranked genes identified in the meta-analysis were alpha synuclein
(SNCA) and hemoglobin delta (HBD) (Table 2). Genes associated
with hemoglobin, including alpha hemoglobin stabilizing protein
(AHSP) and hemoglobin gamma 2 (HBG2) were downregulated
in PD patients compared to HC (Table 2 and Supplementary
Table S2).

Erythrocyte-specific genes and genes involved in heme
biosynthesis and iron metabolism, including erythrocyte
membrane protein band 4.2 (EPB42), 5′-aminolevulinate
synthase 2 (ALAS2), solute carrier family 4 member 1 (SLC4A1),
glycophorin B (GYPB), solute carrier family 11 member 2
(SLC11A2), ferrochelatase (FECH), and hemochromatosis
(HFE), were downregulated in PD studies (Supplementary
Table S2).

Gene ontology and pathway analysis performed in NextBio
revealed that genes identified in the meta-analysis were enriched
in pathways related to oxygen binding and transport, tetrapyrrole
binding and metabolism, heme binding and metabolism,
erythrocyte development, hemoglobin’s chaperone, hemoglobin
complex, mitochondrial membrane, and the spliceosome. Genes
within these pathways were predominantly downregulated across
all the studies (Figure 1). Network analysis of the top 50
most highly ranked genes elucidated a network of genes related
to hemoglobin and iron metabolism including, HBB, HBD,
AHSP, SLC11A2, and genes involved in erythrocyte development,
EPB42 and GYPB (Figure 2). Interestingly, SNCA is highly
interconnected within this network (Figure 2).

DISCUSSION

Microarray studies have been valuable in identifying differential
gene expression patterns and perturbed biological processes in
blood of PD patients (Mutez et al., 2011; Potashkin et al.,
2012; Alieva et al., 2014; Calligaris et al., 2015; Santiago
and Potashkin, 2015; Santiago et al., 2016; Simchovitz et al.,
2016). For example, high-throughput screening of blood RNA
have provided molecular clues for some of the dysregulated
pathways in PD, including the impairment of insulin signaling
and glucose metabolism (Santiago and Potashkin, 2013a,b,
2015), aberrant RNA splicing (Potashkin et al., 2012; Soreq
et al., 2012; Alieva et al., 2014), and inflammation (Simchovitz
et al., 2016). Besides these pathways, disrupted iron metabolism
has been implicated in the pathogenesis of PD, but the
mechanisms underlying this association remain uncertain. In
this study, we utilized four independent microarray studies
to investigate whether gene expression changes in blood can
provide insights into the dysregulation of iron metabolism in PD
patients.

TABLE 2 | Highly ranked genes identified in meta-analysis.

Gene symbol Gene name Overall gene score

SNCA Synuclein, alpha (non A4 component of
amyloid precursor)

198.65

HBD Hemoglobin, delta 198.05

VNN2 Vanin 2 197.47

LILRA5 Leukocyte immunoglobulin-like receptor,
subfamily A (with TM domain), member 5

196.91

EPB42 Erythrocyte membrane protein band 4.2 194.19

MARCH8 Membrane-associated ring finger (C3HC4)
8, E3 ubiquitin protein ligase

193.09

DUSP6 Dual specificity phosphatase 6 190.62

RIOK3 RIO kinase 3 (yeast) 185.68

FOS FBJ murine osteosarcoma viral oncogene
homolog

176.01

FOSB FBJ murine osteosarcoma viral oncogene
homolog B

165.59

DUSP1 Dual specificity phosphatase 1 164.85

APBA2 Amyloid beta (A4) precursor
protein-binding, family A, member 2

163.30

TCEA1 Transcription elongation factor A (SII), 1 159.45

OASL 2′-5′-oligoadenylate synthetase-like 157.68

XAF1 XIAP associated factor 1 156.96

SLC11A2 Solute carrier family 11 (proton-coupled
divalent metal ion transporters), member 2

152.44

CA6 Carbonic anhydrase VI 151.13

LTBP3 Latent transforming growth factor beta
binding protein 3

146.04

SNRNP70 Small nuclear ribonucleoprotein 70 kDa
(U1)

142.52

LETM1 Leucine zipper-EF-hand containing
transmembrane protein 1

138.23

NAMPT Nicotinamide phosphoribosyltransferase 134.16

SSRP1 Structure specific recognition protein 1 127.97

TMEM19 Transmembrane protein 19 127.97

RPA4 Replication protein A4, 30 kDa 127.13

DDX17 DEAD (Asp-Glu-Ala-Asp) box helicase 17 99.91

Top 24 genes identified in meta-analysis. These genes were differentially expressed
in at least two out of the four studies. The overall gene score is calculated from a
non-parametric ranking in NextBio.

Transcriptomic meta-analysis using the non-parametric
ranking approach in NextBio identified several downregulated
genes associated with hemoglobin and iron metabolism.
Interestingly, HBD was the second most significant gene
identified in the meta-analysis after SNCA. Mutations in HBD
are associated with thalassemia, a blood disorder characterized by
abnormal formation of hemoglobin resulting in disrupted oxygen
transport, destruction of red blood cells, and anemia (Galanello
and Origa, 2010). Hemoglobin, a protein highly expressed in
red blood cells, is made up of four globulin molecules. Each
globulin molecule contains an iron-containing compound called
heme. Hemoglobin plays a pivotal role in oxygen transport
and delivery by carrying oxygen from the lungs and delivering
it to the peripheral tissues thereby maintaining cell viability
(Schechter, 2008). Altered expression levels of hemoglobin in
blood have been reported in several studies in PD but results
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FIGURE 1 | Pathway analysis of blood microarrays in PD. Biological and functional analysis of genes identified in the meta-analysis was performed in NextBio
using the Molecular Signatures Database (MSigDB) and gene ontology terms. Red and blue arrows indicate significant overlap in upregulation and downregulation,
respectively, of genes identified in the meta-analysis with the specific pathway. n.s. indicates not significant.

are inconsistent. For instance, high levels of hemoglobin in
blood of elderly men associated with an increased risk of
PD (Abbott et al., 2012). Given that hemoglobin provides the
most abundant source of peripheral iron, and that brain iron
can be modulated by its peripheral concentration, the authors
speculated that altered expression of hemoglobin in PD may be
a secondary response to an ongoing iron dysregulation in the
brain (Abbott et al., 2012). Conversely, low levels of hemoglobin
or the presence of anemia early in life were associated with a
later development of PD in both men and women (Savica et al.,
2009). Strikingly, individuals who developed PD had anemia or
low hemoglobin levels as early as 20 years before the onset of
motor symptoms (Savica et al., 2009) suggesting that the presence
of anemia or low hemoglobin levels may be one of the earliest
predictors of PD. Furthermore, low levels of hemoglobin have
been associated with disease severity in PD patients and late
stage PD patients had lower levels of iron, ferritin, and total
iron binding capacity compared to age-matched HCs (Deng
et al., 2016). A recent study in a Taiwanese cohort of 86,334
patients demonstrated that newly diagnosed anemic patients have
a higher risk of developing PD four or more years after the initial
diagnosis of anemia (Hong et al., 2016). Thus, the mechanisms

by which altered levels of hemoglobin and the presence of
anemia might lead to the development of PD warrants further
investigation.

Disruption of iron homeostasis has been linked to
neurodegeneration in PD (Jiang et al., 2016; Matak et al.,
2016). In this regard, the group of genes identified in the
meta-analysis involved in iron metabolism, including SLC11A2,
ALAS2, FECH, HEBP1, and HFE were downregulated in blood
of PD patients. Among these genes, SLC11A2, previously known
as DMT1, is the only known transmembrane transporter to
be involved in cellular iron uptake and it is also required for
normal hemoglobin production during erythrocyte development
(Gunshin et al., 2005). A mutation in SLC11A2 has been
documented in patients with anemia and hepatic iron overload
(Mims et al., 2005). In addition, dysregulation of SLC11A2
may play a pivotal role in iron-mediated neurodegeneration
in PD (Salazar et al., 2008). Another gene identified in the
meta-analysis, HFE, was significantly downregulated in PD.
Mutations in HFE have been associated with the development of
hemochromatosis, a disease characterized with an iron overload
in organs (Feder et al., 1996, 2003). Similarly, mutations in HFE
have been documented in PD studies (Akbas et al., 2006), but
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FIGURE 2 | Network analysis. (A) Gene network analysis was performed on the top 50 most highly ranked genes identified in the meta-analysis. Input genes are
shown in black circles and other genes with the greater number of interactions are displayed in gray circles. (B) Subnetwork of genes associated with hemoglobin
and iron metabolism (blue circles) formed a highly interconnected co-expression network. The sizes of the gray nodes represent the degree of association with the
input genes (i.e., smaller size represents low connectivity). Gene network analysis was performed in GeneMANIA using Cytoscape 3.0.3.

the findings are inconclusive (Greco et al., 2011). HFE is known
to modulate the levels of iron in blood (Ramos et al., 2011).
Multiple blood donations, an indirect indicator of reduced iron
levels, were associated with an increased risk of PD in men
(Logroscino et al., 2006). Thus, the downregulation of genes
associated with iron metabolism identified in meta-analysis may
explain the perturbed iron homeostasis in PD.

Further, ALAS2 and FECH, involved in heme and iron
metabolism, have been associated with PD (Rhodes and Ritz,
2008). For example, a study confirmed the presence of a tightly
correlated network of ALAS2, FECH, and SNCA in different
expression datasets from human blood comprising PD samples
thus proposing a molecular signature of PD (Scherzer et al.,
2008). Interestingly, mutations in SNCA have been shown to
increase cellular iron content and oxidative stress (Ostrerova-
Golts et al., 2000) and iron regulatory elements are present in the
5′ UTR of SNCA (Friedlich et al., 2007). In our study, network
analysis of the top 50 genes identified a coexpression network
of downregulated genes involved in erythrocyte development,
hemoglobin and iron metabolism. In the network, genes within
these pathways, including HBD, HBB, AHSP, and ALAS2 are
connected to SNCA. In this context, it has been demonstrated
in experiments with primates that SNCA form a complex with
hemoglobin in both brain and blood and that this complex

decreases mitochondrial function thus increasing the risk of
PD (Yang et al., 2016). While the function of SNCA in blood
remains unknown, several studies suggest that it may be involved
in hematopoiesis, the production of cellular blood components.
For example, snca knockout in mice resulted in hematologic
abnormalities including mild anemia and smaller platelets,
suggesting a potential role of SNCA in late stages of hematopoiesis
(Xiao et al., 2014). In addition to PD, altered expression of
hemoglobin genes, including HBB, HBA1, and HBA2 have been
found in the frontal cortex of multiple system atrophy patients,
an atypical parkinsonian disorder that is often misdiagnosed as
PD (Mills et al., 2016).

Genes identified in the meta-analysis were enriched in
pathways related to oxygen binding and transport, tetrapyrrole
binding and metabolism, heme binding and metabolism,
erythrocyte development, hemoglobin’s chaperone, hemogoblin
complex, mitochondrial membrane and spliceosome. In this
regard, oxygen transport, heme and tetrapyrrole binding are
intrinsic structural and functional properties of hemoglobin
suggesting the potential loss of function of hemoglobin in
PD. Further, most of these pathways were predominantly
downregulated in PD patients, thus supporting the previous
studies that found an association between lower levels of iron and
hemoglobin in blood of PD patients.
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Some of the genes identified in the meta-analysis are
currently being tested as diagnostic biomarkers for PD. For
example, altered expression of SNCA mRNA in blood has
been documented in several independent studies including
samples from early drug naïve PD patients (Locascio et al.,
2015). Similarly, NAMPT was proposed as a potential diagnostic
biomarker for de novo PD patients (Santiago et al., 2016).
Notably, a combination of increased NAMPT mRNA in blood
with hyposmia identified with the University of Pennsylvania
Smell Identification Test (UPSIT-40) achieved an overall
diagnostic accuracy of 86%. We expect that integration of data
from molecular markers and clinical tests could significantly
improve the current misdiagnosis of PD. Future studies will seek
to evaluate other markers identified in this meta-analysis in blood
samples obtained from drug naïve PD patients.

Collectively, the findings presented in this study provide a
molecular rationale for the epidemiological studies that suggest
an association between hemoglobin and iron metabolism in the
pathogenesis of PD. Nevertheless, the results from this study
need to be taken with caution. First, most of the hemoglobin
and iron related genes were identified in datasets from PD
patients receiving medication and it has been documented that
drug treatment can impact gene expression in blood studies
(Alieva et al., 2015). In this context, amantadine, a common
drug to treat PD, may cause anemia in PD patients (Foller
et al., 2008). Nonetheless, these studies alone do not explain
the cases where anemia developed before PD onset (Savica
et al., 2009). Future studies using gene expression datasets
performed on drug naïve PD patients will be important to
determine the validity of these findings. In addition, it should be
emphasized that PD is a multifactorial disorder where multiple
biological processes besides iron metabolism become disrupted
leading to the disease pathogenesis. For instance, metabolic and
neuropsychiatric disorders including, diabetes and depression,
have been proposed to be risk factors for PD. Therefore, a
condition of anemia alone may not put an individual at risk for
PD. The altered expression of genes associated with hemoglobin,
iron metabolism and anemia in blood of PD patients warrants
further investigation.
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FIGURE S1 | PRISMA flow chart for meta-analysis. NextBio Research was
searched for microarray studies in PD using the search terms “Parkinson’s disease
(PD),” “blood,” “human,” “RNA,” and “microarray.” Four studies were identified as
of August 09, 2016 that met our inclusion criteria.

TABLE S1 | PRISMA guidelines for meta-analysis.

TABLE S2 | Meta-analysis of blood microarrays from PD patients using
NextBio. Specificity indicates the number of datasets where the gene was
significantly differentially expressed. The overall gene score is calculated from a
non-parametric ranking in NextBio.
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