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Aging has long been considered as the main risk factor for several neurodegenerative

disorders including a large group of diseases known as tauopathies. Even though

neurofibrillary tangles (NFTs) have been examined as the main histopathological hallmark,

they do not seem to play a role as the toxic entities leading to disease. Recent studies

suggest that an intermediate form of tau, prior to NFT formation, the tau oligomer,

is the true toxic species. However, the mechanisms by which tau oligomers trigger

neurodegeneration remain unknown. This review summarizes recent findings regarding

the role of tau oligomers in disease, including release from cells, propagation from

affected to unaffected brain regions, uptake into cells, and toxicity via mitochondrial

dysfunction. A greater understanding of tauopathies may lead to future advancements

in regards to prevention and treatment.
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INTRODUCTION

Neurodegenerative diseases are a leading cause of death and disability affecting millions of elderly.
As life expectancies rise, growing numbers of elderly become affected. This emerges as a major
global issue as there are currently no adequate remedies for these diseases. A large group of these
diseases, which are related to tau, a microtubule-associated protein, are known as tauopathies. Most
notably, tauopathies include Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), Pick’s
disease, frontotemporal dementia (FTD), corticobasal degeneration, and variants of Parkinson’s
disease (PD) and Lewy body dementia (LBD; Goedert et al., 2000; Hutton, 2000; Spillantini
et al., 2000). These share a common histopathological hallmark known as neurofibrillary tangles
(NFTs) that consist of an accumulation of fibrillar tau deposits initially produced from tau protein
aggregation (Ballatore et al., 2007).

While functional tau is an unfolded monomeric protein that stabilizes microtubules, regulates
neurite growth, and monitors axonal transport of organelles (Medina and Avila, 2014),
dysfunctional tau acquires a new toxic function.

TOXICITY OF TAU OLIGOMERS VS. NFTs

NFTs, although considered a histopathological hallmark in tauopathies, do not appear to be the
main toxic entities leading to disease (Gerson et al., 2014b). In AD, tau pathology and neuronal cell
loss coincide in the same brain regions, and as brain dysfunction progresses, NFTs are found in
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greater anatomical distributions (Ihara, 2001). However, the role
of NFTs in the progression of the disease is poorly understood.
Compared to non-demented controls, AD brains exhibit up to
50% of neuronal loss in the cortex, exceeding the number of NFTs
(Gómez-Isla et al., 1997). In addition, neurons containing NFTs
are functionally intact in vivo (Kuchibhotla et al., 2014) and have
been found in brains of cognitively normal individuals. Further,
intra-neuronal NFTs do not affect post-synaptic function and
signaling cascades responsible for long-term synaptic plasticity
in tauopathy mice overexpressing P301L mutant tau (Rudinskiy
et al., 2014), suggesting that synaptic deficits cannot be attributed
to NFTs.

While evidence has linked FTD with parkinsonism in patients
to tau mutations on chromosome 17 (FTDP-17), implying
that tau dysfunction alone can cause neurodegeneration (Reed
et al., 2001), studies in animal models have shown that
overexpression of tau can lead to cell death (Lee et al.,
2001; Tanemura et al., 2001, 2002; Tatebayashi et al., 2002)
and exhibit behavioral abnormalities and synaptic dysfunction
without the presence of NFTs (Wittmann et al., 2001;
Andorfer et al., 2003; Santacruz et al., 2005; Spires et al.,
2006; Berger et al., 2007; Yoshiyama et al., 2007; Cowan
et al., 2010). Others have noted neuronal loss without NFT
presence in a Drosophila model overexpressing tau (Wittmann
et al., 2001). These studies provide evidence that progressive
tau accumulation in neurodegeneration may not require
NFT formation (Maeda et al., 2006). Indeed, reducing tau
overexpression inmutant tau transgenic mice decreases neuronal
cell loss even though NFTs continue to form (Santacruz et al.,
2005). This indicates that NFT formation is not essential for
neuronal loss.

While evidence indicates that these deposits are not
toxic, many studies suggest that the tau oligomer, an
intermediate entity, is likely responsible for disease onset.
Hyper-phosphorylated tau assembles into small aggregates
known as tau oligomers in route of NFT formation. As hyper-
phosphorylated tau dislodges from microtubules, its affinity
for other tau monomers leads individual tau to bind each
other, forming oligomeric tau, a detergent-soluble aggregate.
These tau oligomers potentiate neuronal damage, leading
to neurodegeneration and traumatic brain injury (Hawkins
et al., 2013; Gerson et al., 2014a, 2016; Sengupta et al., 2015).
Moreover, they have been implicated in synaptic loss as shown
in studies of wild-type human tau transgenic mice (Spires
et al., 2006; Berger et al., 2007; Clavaguera et al., 2013). When
the oligomer lengthens, it adapts a β-sheet structure and
transforms into a detergent-insoluble aggregate with granular
appearance under Atomic Force Microscopy (AFM). As these
granular tau oligomers fuse together, they form tau fibrils, which
ultimately form NFTs (Takashima, 2013). These steps hint that
tau oligomers may be involved in neuronal dysfunction prior to
NFT formation (Maeda et al., 2006).

The onset of clinical symptoms in AD and PSP brains correlate
with elevated levels of tau oligomer (Maeda et al., 2006, 2007;
Patterson et al., 2011; Lasagna-Reeves et al., 2012b; Gerson et al.,
2014a). When tau oligomers, rather than tau monomers or
fibrils, are injected into the brain of wild-type mice, cognitive,

synaptic, and mitochondrial abnormalities follow (Lasagna-
Reeves et al., 2011; Castillo-Carranza et al., 2014b). Additionally,
studies have discovered that aggregated tau inhibits fast axonal
transport in the anterograde direction at all physiological tau
levels, whereas tau monomers have had no effect in either
direction (LaPointe et al., 2009; Morfini et al., 2009). This
suggests that monomers are not the toxic entity either. Most
noteworthy, tau oligomers induce endogenous tau to misfold
and propagate from affected to unaffected brain regions in mice,
whereas fibrils do not (Lasagna-Reeves et al., 2012a,b; Wu et al.,
2013). This indicates that tauopathies progress via a prion-like
mechanism dependent upon tau oligomers (Gerson and Kayed,
2013; Castillo-Carranza et al., 2014b). With this concept, tau
may be able to translocate between neurons and augment toxic
tau components; in fact, evidence suggests probability of tau
oligomer propagation between synaptically connected neurons
(Gendreau and Hall, 2013; Pooler et al., 2013b). If true, then
pathology begins in a small area and becomes symptomatic as
it spreads to other areas of the brain (Medina and Avila, 2014).
Studies show that tau pathology progresses from the entorhinal
cortex to the hippocampus, eventually leading to the limbic
and association cortex; this progression explains the individuals
clinical cognitive status (Nelson et al., 2012). Further, mice
injected with tau oligomers in the proximity of the hippocampus
experienced immediate memory impairment (Lasagna-Reeves
et al., 2011). These studies demonstrate that tau oligomers
may be the toxic entities responsible for neurodegeneration in
tauopathies (Ward et al., 2012).

CELLULAR TAU SECRETION AND
PROPAGATION

Tau predominantly presents as an axonal cytoplasmic protein,
however evidence has shown tau at the pre- and post-synapse
in human brains (Tai et al., 2012) as well as at the post-
synapse in mouse brains (Ittner et al., 2010). Further, tau
directly interacts with synaptic proteins, including the NMDA
receptor (Ittner et al., 2010; Mondragón-Rodríguez et al., 2012).
This hints that tau plays a role in monitoring intracellular
signaling pathways (Pooler and Hanger, 2010). Related evidence
indicates that synaptic activity leads to tau monomer release
(Pooler et al., 2013a; Yamada et al., 2014). Yet whether the
movement of aggregates across the synapse occurs easily from
nearby cells taking up released aggregated material at the axon
terminal or whether the movement depends on activity is
unknown.

Tau is also present outside the cell in brain fluids, including
cerebrospinal fluid. In AD, the quantity of tau identified in the
CSF increases with disease progression (Hampel et al., 2010).
However, the mechanism of tau propagation from the brain to
the CSF remains elusive. Recently, tau was discovered in the
interstitial fluid of awake, wild-type mice, suggesting its release
by neurons in the absence of neurodegeneration (Yamada et al.,
2011). This evidence suggests that tau secretion is an active
neuronal process separate from cell death (Saman et al., 2012;
Pooler et al., 2013a).

Frontiers in Aging Neuroscience | www.frontiersin.org 2 April 2017 | Volume 9 | Article 83

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Shafiei et al. Propagation of Tau Oligomers

In AD, misfolded and hyper-phosphorylated tau concentrates
in various components of the neuron: dendrites, cell body, and
axons (Avila et al., 2004). Hence, propagation of disease may
depend on transport within neurons. Further, transgenic mouse
lines expressing human tau aggregates in the entorhinal cortex
have shown that tau is mislocalized from axons to cell bodies
and dendrites as the mice age (Pooler et al., 2013b). Nevertheless,
given that tau is detected in both axons and dendrites, it is
possible that either region may be involved in its secretion
(Pooler et al., 2013b). Extracellular tau is implicated as the
primary agent during propagation of neurofibrillary lesions and
spreading of tau toxicity (Medina and Avila, 2014). In trans-
synaptic propagation, tau can be released and taken up by a
synaptically-connected neuron (Clavaguera et al., 2009; Dujardin
et al., 2014b; Dennissen et al., 2016). A recent study showed
that neuronal networks facilitate cell-to-cell transfer of tau via
synapses; using a microfluidic device they demonstrated that
decreasing synaptic connections weakens tau transfer and the
subsequent aggregation on the acceptor cell (Calafate et al., 2015).

Determining the mechanism behind the propagation of
misfolded tau protein from one cell to another is currently of
great significance in research. In AD, tau pathology has been
found to spread from the transentorhinal cortex to the neocortex
in a sequential pathway. This prion-like spreading of tau may
occur throughout neuronal connections. However, the method
of tau oligomer release via the cell and its spread is still unknown.

The prion concept suggests that a protein can be transformed
into a disease-causing form when in contact with a pathogenic
protein “seed.” The mechanism for the transformation is not
well-understood; however, it includes templated conformational
change (Telling et al., 1996) and is demonstrated to propagate
through neural networks. Thus, the prion hypothesis serves as a
useful model when testing ideas regarding propagation of protein
pathology.

In trans-cellular propagation, tau aggregates escape from
afflicted neurons into the extracellular space prior to entering
adjacent or synaptically-connected cells. This suggests that
extracellular tau may be susceptible to antibody-mediated
therapies. According to this model, misfolded tau is released
into the extracellular space and then gains entry into adjacent
or synaptically-connected cells to trigger further aggregate
formation via templated conformational change.

EXOSOMES AND ECTOSOMES AS A
MECHANISM OF TAU SPREADING

Recently, more evidence implies that the secretion of tau occurs
through unconventional cellular pathways via vesicles known as
exosomes (Saman et al., 2012) and ectosomes (Dujardin et al.,
2014a).

Exosomes are small membranous vesicles ranging from 30
to 100 nm, which are secreted from most cell types, including
neurons. Exosomes have been identified in several body fluids
(Witwer et al., 2013; Khalyfa and Gozal, 2014). They are made
by the endocytosis of molecules and can assist in spreading
pathology. Once taken up by a cell, the molecules inside

the exosomes are either recycled to the plasma membrane or
transported to multivesicular bodies (MVBs; Dujardin et al.,
2014a). The fusion of MVBs with the plasma membrane results
in exosomal release (Mathivanan et al., 2010). AD brain samples
contain exosomal proteins within amyloid plaques hinting that
exosomes play part in disease pathology (Rajendran et al.,
2006). Tau, like other amyloidogenic proteins, may be secreted
and spread via exosomal vesicles (Danzer et al., 2012; Asai
et al., 2015). In support, tau associated with exosomes and
phosphorylated at Thr-181 (AT270+ tau) has been identified
in human CSF samples of AD patients. More recently, patients
affected with FTD and AD, were found to have high levels of
total tau and phosphorylated tau (p-T181 and p-S396; Saman
et al., 2012). Further, peripheral exosomes extracted from AD
cases, propagate tau pathology in the brain of normal mice
(Winston et al., 2016). It was recently shown that microglial
cells may facilitate tau spreading via exosomes. The authors
speculated that microglia phagocytose tau-containing neurons or
synapses and secrete tau protein via exosomes (Asai et al., 2015).
Further investigation is needed to determine if predominant tau
aggregates are released via this unconventional pathway.

Exosomes are not the only vesicles that may spread pathology.
Ectosomes are also extracellular vesicles, but range from 50
to 1,000 nm. They directly shed from cells by budding from
the plasma membrane (Piccin et al., 2007; Cocucci et al.,
2009; Théry et al., 2009; Davizon et al., 2010). Ectosomes are
contenders in secreting tau protein since they are released via
cell membrane activation by fluctuating intracellular levels of
calcium, inflammatory molecules, or oxidative stress (Piccin
et al., 2007; Doeuvre et al., 2009). Significantly, evidence suggests
that tau secretion is partly mediated by ectosomal vesicles and
that pathological tau accumulation in cells leads to a deviation
toward tau secretion by exosomal vesicles (Dujardin et al.,
2014a). These studies provide further evidence that extracellular
vesicles play an important role in disease pathogenesis
(Figure 1).

CELLULAR UPTAKE OF TAU OLIGOMERS

Quite a few mechanisms involving tau uptake have been
proposed. These include (1) cell internalization of soluble,
uncoated tau via receptor-mediated endocytosis (Gómez-Ramos
et al., 2009), (2) dynamin-driven endocytosis of non-fibrillar,
soluble tau aggregates (Wu et al., 2013), and (3) actin-dependent,
proteoglycan-mediated macropinocytosis (Holmes et al., 2013;
Figure 2).

RECEPTOR-MEDIATED ENDOCYTOSIS

Tau may be endocytosed, promoting an increase in intracellular
calcium that results in neuronal death. In the former theory,
endocytosed tau may interact with various cellular products,
including tau itself, and can be secreted, uncoated or in a
membrane vesicle. Such secreted vesicles may interact with other
cells and be endocytosed in an unspecific way. In the latter
theory, during the secretion, vesicles and the cell membrane
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FIGURE 1 | Propagation of tau oligomers. Schematic representation of free or exosomal tau oligomers release, local or trans-synaptic. In local transmission, tau

oligomers are released from one neuron and taken up by another neuron in the vicinity. In trans-synaptic transmission, tau oligomers and/or exosomes containing tau

oligomers are passed across the synapse of two neighboring neurons.

FIGURE 2 | Mechanisms of tau oligomer internalization and mitochondrial damage. Schematic representation of the proposed mechanisms contributing to

tau oligomer internalization that may lead to mitochondrial dysfunction and cell death. Methods of tau oligomer internalization include (1) dynamin-driven endocytosis;

(2) muscarinic (M1 and M3) receptor-mediated endocytosis; (3) proteoglycan-mediated macropinocytosis (HSPGs); (4) exosomes; and (5) annular protofibrils.

Internalized tau oligomers interfere with the mitochondrial respiratory chain, inducing cytochrome c release and stimulating reactive oxygen species (ROS) production.

Tau oligomers induce mitochondrial fusion/fission imbalance by binding with dynamin-related protein 1 (DRP1). Tau oligomers interact with the outer membrane porin

protein.

can be fused and uncoated tau protein can be released to
the extracellular space (Clavaguera et al., 2009; Iba et al.,
2013).

Tau can interact with muscarinic receptors; more specifically,
M1 and M3 receptors have approximately a 10-fold higher
affinity for tau than acetylcholine. Overstimulation with tau (as
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opposed to acetylcholine) does not desensitize the muscarinic
receptors present on neurons of the hippocampus; hence, a
repeat stimulus via tau increases intracellular calcium every
time, thus altering intracellular calcium homeostasis and the
following hyper-phosphorylation and misfolding of tau. Coupled
with the fact that tau persists in the extracellular environment
for a longer time than acetylcholine, a neurotoxic effect may
occur. In other words, it is sensible to theorize that tauopathies
progress via interaction of extracellular tau with M1 and M3
receptors on neurons leading to cytotoxic effects (Gómez-Ramos
et al., 2009). Thus, blocking M1 and M3 receptors via receptor
antagonists can prevent cytotoxic effects (Gómez-Ramos et al.,
2008).

DYNAMIN-DRIVEN ENDOCYTOSIS

Exogenous tau aggregates may be taken up via an active process
attenuated by dynamin inhibition, supporting endocytosis-
mediated internalization. Dynamin is a GTPase essential for
multiple intracellular functions, including formation of vesicles
from the cell membrane, endocytosis, and synaptic vesicle
recycling among others (Kozlov, 1999). Evidence shows that tau
aggregates colocalize with dextran and HeLa cells, hinting that
internalized aggregates are transported in endosomal vesicles and
passed through the endosomal pathway to lysosomes (Wu et al.,
2013).

HEPARAN SULFATE
PROTEOGLYCANS–MEDIATED
MACROPINOCYTOSIS

Previous studies suggest that uptake of aggregated tau from
the extracellular space depends on interaction with heparan
sulfate proteoglycans (HSPGs; Holmes and Diamond, 2014).
HSPGs are cell-surface macromolecules of heparan sulfate
glycosaminoglycan chains covalently attached to a core protein.
HSPGs are ubiquitously expressed in many cell types including
neurons, and have been previously associated with dense core
plaques, cerebrovascular amyloid, and NFT formation (van
Horssen et al., 2001). Consistently, HSPGs have been implicated
in amyloid as well as tau fibril formation in vitro, presumably
facilitated by anionic moieties. Whether deposition of amyloid-b
or tau is preceded by HSPGs or vice versa, it is clear that
HSPGs play a role in the stabilization and uptake of these
aggregates.

The recruitment of exogenous tau starts with binding
HSPGs on the cell surface, stimulating macropinocytosis and
bringing pathogenic “seeds” into the cell to guide trans-cellular
propagation (Holmes et al., 2013). This uptake is necessary for
intracellular seeding and was previously described for the prion
protein uptake (Hooper, 2011). Even though the mechanism by
which HSPGs mediate tau uptake is unknown, it seems to be
confined to a specific “size” aggregate. Studies agree that small
misfolded tau oligomers are readily taken up by neuronal cells
(Wu et al., 2013; Mirbaha et al., 2015). However, regardless of
the multiple “sizes” of tau aggregates that interact with the cell

surface via HSPGs, it is likely that an assembly of at least three tau
molecules is required to initiate endocytosis via HSPGs (Mirbaha
et al., 2015). Interestingly, trimers were identified as the toxic
tau aggregate at low nanomolar concentrations in vitro (Tian
et al., 2013). Thus, tau oligomers may act as “seeds” inducing
endogenous tau misfolding, suggesting a unifying mechanism for
the propagation of protein amyloids (Mirbaha et al., 2015).

In other words, the HSPGs serve as a receptor for the
cellular uptake of tau, a critical step similar to prion-like
propagation. Basically, pathogenic tau aggregates use HSPGs
to bind the cell surface of a neuron. This actively stimulates
macropinocytosis, leading to propagation of aggregates between
cells in culture and aggregate uptake in vivo (Holmes et al., 2013).
Further, another study implied that exosomes depend on HSPGs
for internalization (Christianson et al., 2013). As delineated
above, exosomes are a distinct mechanism for propagation of
misfolded tau.

ANNULAR PROTOFIBRILS

A handful of proteins implicated in neurodegenerative diseases
have been found to produce pore-like amyloid structures
known as annular protofibrils (APFs). APFs are similar to
pore-forming protein toxins in that their properties lead to
membrane disruption. A recent study showed the existence of
tau APFs in human brain samples from patients with PSP and
LBD as well as in mice brain samples which overexpressed
mutated tau. The study discovered that APFs form after
tau oligomer formation and bypass higher NFT aggregate
formation. The findings showed that APF formation relies
on mutations in tau, phosphorylation levels, and cell type
(Lasagna-Reeves et al., 2014). Hence, tau APFs may play a
significant role in tauopathies by linking pore formation to cell
death.

TAU OLIGOMERS INSTIGATE
MITOCHONDRIAL DAMAGE

Oligomeric tau intermediates decrease cell viability (Flach et al.,
2012). In aging, a protein involved in mitochondrial fission,
dynamin-related protein 1 (DRP1), can bind tau abnormally,
inducing neurodegeneration via mitochondrial dysfunction
(Figure 2; DuBoff et al., 2012). Specifically, studies have shown
reduced levels ofmitochondrial proteins and activity in the brains
of AD patients (Kim et al., 2001). One study showed diminished
NADH-ubiquinone oxidoreductase (complex I) activity and
injury to mitochondrial respiration and ATP synthesis (complex
V) with age in P301L mice (David et al., 2005). Another study
showed that expression of tau (truncated at Asp-421 to mimic
caspase cleavage) caused mitochondrial dysfunction (Quintanilla
et al., 2009).

Recently, data has shown that injected tau oligomers co-
localize with the mitochondrial marker porin, suggesting a
pathological relationship. In fact, tau oligomers might disrupt
microtubule stability and trafficking, thus affecting organelle
distribution. Mitochondria navigate long distances to provide for
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synaptic energy demand; therefore, inhibiting transport systems
impairs energy production routes (Lasagna-Reeves et al., 2011).

Also, data shows low levels of complex I in brain hemispheres
injected with tau oligomers when compared to brains injected
withmonomers or fibrils. This implies that alterations of complex
I subunit mRNA, minimization in protein levels of complex I
subunits (Kim et al., 2001), and other effects of mitochondrial
damage (David et al., 2005) can be observed due to tau
accumulation without the presence of NFT formation. Further,
since tau oligomers hinder energy production through complex
I, alterations in synaptically-localized mitochondria may result.
However, recent data considering complex V levels suggested
that tau oligomers do not implicate ATP synthesis initially. These
results imply that tau oligomers initially affect complex I activity
and may directly or indirectly disturb the later stage of complex
V ATP synthesis (Lasagna-Reeves et al., 2011).

Mitochondrial damage can lead to activation of the apoptotic
pathway. Hemispheres injected with tau oligomers were found
to have increased levels of caspase-9 activation (Lasagna-Reeves
et al., 2011). Suggestively, as tau oligomers concentrate at the
mitochondrial membrane, cytochrome C is released, leading to
caspase-9 activation via a complex with apoptotic-peptidase-
activating-factor-1 (Apaf-1; Li et al., 1997). The relationship
between cytochrome C and caspase-9 has been noted for other
amyloidogenic proteins (Hashimoto et al., 1999; Simoneau
et al., 2007). Moreover, caspase activation occurs before NFT
formation, implying that a soluble tau entity may be the main
toxic moiety (de Calignon et al., 2010).

Overall, evidence suggests that tau oligomers are the
toxic entities in tau aggregation and that alteration of the
mitochondrial membrane, minimization in complex I levels, and

activation of the apoptotic-related caspase-9 can cause toxicity,

impeding synaptic energy production (Lasagna-Reeves et al.,
2011).

CONCLUSION

Discovering the pathological role of tau oligomers within
the brain along with related mechanisms of cellular tau
oligomer secretion, propagation, and uptake will allow for a
better understanding of tauopathies (Castillo-Carranza et al.,
2013, 2014a; Gerson et al., 2014b). Further, mitochondrial
dysfunction caused by internalized tau oligomers may
play an important role in pathogenesis. Admittedly, little
is known regarding cellular tau oligomer release. Yet
with greater knowledge regarding disease pathogenesis,
better therapeutic approaches can be generated. We
hypothesize that preventing tau oligomers from cellular
release and uptake via exosomal or ectosomal pathways
will relieve some toxic effects induced by tau oligomers in
tauopathies.
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