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Both normal aging and Alzheimer’s disease (AD) have been associated with a reduction

in functional brain connectivity. It is unknown how connectivity patterns due to aging

and AD compare. Here, we investigate functional brain connectivity in 12 young adults

(mean age 22.8 ± 2.8), 12 older adults (mean age 73.1 ± 5.2) and 12 AD patients

(mean age 74.0 ± 5.2; mean MMSE 22.3 ± 2.5). Participants were scanned during 6

different sessions with resting state functional magnetic resonance imaging (RS-fMRI),

resulting in 72 scans per group. Voxelwise connectivity with 10 functional networks was

compared between groups (p < 0.05, corrected). Normal aging was characterized by

widespread decreases in connectivity with multiple brain networks, whereas AD only

affected connectivity between the default mode network (DMN) and precuneus. The

preponderance of effects was associated with regional gray matter volume. Our findings

indicate that aging has amajor effect on functional brain interactions throughout the entire

brain, whereas AD is distinguished by additional diminished posterior DMN-precuneus

coherence.

Keywords: Alzheimer’s disease, dementia, aging, brain connectivity, functional network, resting state fMRI,

functional connectivity

INTRODUCTION

When age progresses, the brain is subjected to many changes that are related to deterioration
of sensory, motor and intellectual functioning (Salthouse, 1996; Li and Lindenberger, 2002;
Fandakova et al., 2014). In Alzheimer’s disease (AD), a gradual worsening in memory and other
cognitive domains occurs, accompanied by a notable reduction in independency and daily life
functioning (McKhann et al., 2011). This age and dementia related decline in function is likely
to be associated with a loss of integrity of large-scale brain networks (Mesulam, 1998). Accordingly,
functional network connectivity as measured with functional magnetic resonance imaging (fMRI)
is diminished in normal aging and AD (Sperling, 2011; Hafkemeijer et al., 2012; Ferreira and
Busatto, 2013; Barkhof et al., 2014; Betzel et al., 2014; Sala-Llonch et al., 2015).

The default mode network (DMN) has been preferentially studied, as its core regions
(precuneus, posterior cingulate cortex) are relevant for episodic memory retrieval (Greicius et al.,
2004; Lundstrom et al., 2005) and susceptible to accumulation of β-amyloid (Buckner et al., 2005)
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in older adults and patients with AD. Both aging andAD aremost
prominently characterized by a reduction in DMN connectivity
(Greicius et al., 2004; Damoiseaux et al., 2008; Biswal et al.,
2010; Koch et al., 2010; Zhang et al., 2010; Pievani et al., 2011;
Hafkemeijer et al., 2012; Ferreira and Busatto, 2013; Dennis and
Thompson, 2014).

There are also indications for connectivity change in other
brain networks in aging (Andrews-Hanna et al., 2007; Wu et al.,
2007a,b; Allen et al., 2011; Yan et al., 2011; Mowinckel et al.,
2012; Onoda et al., 2012; Tomasi and Volkow, 2012) and AD
(Zhou et al., 2010; Agosta et al., 2012; Binnewijzend et al., 2012;
Brier et al., 2012; Sheline and Raichle, 2013). However, this has
been studied less well and results tend to be mixed. For example,
contradicting results have been found for the visual system in
older adults (Andrews-Hanna et al., 2007; Allen et al., 2011; Yan
et al., 2011; Mowinckel et al., 2012; Onoda et al., 2012).

Although previous work suggests overlap and differences in
functional connectivity patterns in normal aging and AD, it has
not yet been investigated how changes due to older age relate to
changes as seen in AD. Here, we compare voxelwise connectivity
between young and older adults and between older adults and
patients with AD with 10 standard functional networks as
obtained by imaging 36 subjects at rest (Smith et al., 2009). Since
aging and AD are primarily characterized by gray matter atrophy
(Sluimer et al., 2009), it is encouraged to evaluate whether group
differences in connectivity are explained by underlying gray
matter loss (Oakes et al., 2007). We therefore present our results
with and without correction for regional gray matter volume.

METHODS

Subjects and Design
We included 12 young subjects, 12 older adults, and 12
AD patients in this single center study (see Table 1 for
demographics and Supplementary Figure 1 for additional
background information on cognitive performance on the
computerized NeuroCart R© test battery). The clinical diagnosis
of probable AD was established according to the revised criteria
of the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) (McKhann et al.,
2011), including clinical and neuropsychological assessment. All
AD patients participating in this study were recently diagnosed
and had mild to moderate cognitive deficits with a Mini Mental
State Examination (MMSE) score of at least 18 (Burns, 1998).
Furthermore, they were assessed by a physician (i.e., neurologist,

TABLE 1 | Demographics of young and older adults and AD patients.

Young adults Older adults AD patients

N 12 12 12

Age (mean ± SD) 22.8 ± 2.8 73.1 ± 5.2 74.0 ± 5.2

Age range 18–27 64–79 65–81

Male/female 6/6 6/6 6/6

MMSE (mean ± SD) 29.9 ± 0.3 29.3 ± 0.9 22.3 ± 2.5

geriatrist) as mentally capable of understanding the implications
of study participation.

All subjects underwent a thorough medical screening to
investigate whether they met the inclusion and exclusion
criteria. They had a normal history of physical health and
were able to refrain from using nicotine and caffeine during
study days. Exclusion criteria included positive drug or alcohol
screen on study days, regular excessive consumption of
alcohol (>4 units/day), caffeine (>6 units/day) or cigarettes
(>5 cigarettes/day) and use of benzodiazepines, selective
serotonin reuptake inhibitors, cholinesterase inhibitors,
monoamine oxidase inhibitors or other medication that is likely
to alter resting state connectivity. The study was approved by
the medical ethics committee of the Leiden University Medical
Center (LUMC). Written informed consent was obtained from
each subject prior to study participation. To compensate for the
small sample sizes and increase the statistical power, six resting
state fMRI (RS-fMRI) scans were analyzed per subject, giving
72 RS-fMRI scan series per group. Subjects were scanned two
times (with 1 h in between) on three different occasions within 2
weeks. These data concern the baseline measurements that were
acquired as part of a project in which the same subjects were
measured before and after an intervention. The results of this
intervention study will be published elsewhere.

Imaging
“Scanning was performed at the LUMC on a Philips 3.0
Tesla Achieva MRI scanner (Philips Medical System, Best, The
Netherlands) using a 32-channel head coil. During the RS-fMRI
scans, all subjects were asked to close their eyes while staying
awake. They were also instructed not to move their head during
the scan. Instructions were given prior to each scan on all study
days. T1-weighted anatomical images were acquired once per
visit. To facilitate registration to the anatomical image, each
RS-fMRI scan was followed by a high-resolution T2∗-weighted
echo-planar scan. Duration was approximately 8 min for the
RS-fMRI scan, 5 min for the anatomical scan and 30 s for the
high-resolution scan.

RS-fMRI data were obtained with T2∗-weighted echo-planar
imaging (EPI) with the following scan parameters: 220 whole
brain volumes, repetition time (TR) = 2,180 ms; echo time (TE)
= 30ms; flip angle= 85◦; field-of-view (FOV)= 220× 220× 130
mm; in-plane voxel resolution= 3.44× 3.44 mm, slice thickness
= 3.44 mm, including 10% interslice gap. The next parameters
were used to collect T1-weighted anatomical images: TR = 9.1
ms; TE = 4.6 ms; flip angle = 8◦; FOV = 224 × 177 × 168 mm;
in-plane voxel resolution= 1.17× 1.17 mm; slice thickness= 1.2
mm. Parameters of high-resolution T2∗-weighted EPI scans were
set to: TR = 2,200 ms; TE = 30 ms; flip angle = 80◦; FOV = 220
× 220 × 168 mm; in-plane voxel resolution = 1.96 × 1.96 mm;
slice thickness= 2.0 mm (Klaassens et al., 2017, p. 311).”

Functional Connectivity Analysis

Data preprocessing
All analyses were performed using the Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library
(FSL, Oxford, United Kingdom) version 5.0.7 (Smith et al.,
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2004; Woolrich et al., 2009; Jenkinson et al., 2012). “Each
individual functional EPI image was inspected, brain-extracted
and corrected for geometrical displacements due to head
movement with linear (affine) image registration (Smith, 2002).
Images were spatially smoothed with a 6 mm full-width half-
maximum Gaussian kernel. Registration parameters for non-
smoothed data were estimated to transform fMRI scans into
standard space and co-registered with the brain extracted
high resolution T2∗-weighted EPI scans (with 6 degrees of
freedom) and T1 weighted images (using the Boundary-Based-
Registration method; Greve and Fischl, 2009). The T1-weighted
scans were non-linearly registered to theMNI 152 standard space
(the Montreal Neurological Institute, Montreal, QC, Canada)
using FMRIB’s Non-linear Image Registration Tool. Registration
parameters were estimated on non-smoothed data to transform
fMRI scans into standard space. Automatic Removal Of Motion
Artifacts based on Independent Component Analysis (ICA-
AROMA vs0.3-beta) was used to detect and remove motion-
related artifacts. ICA decomposes the data into independent
components that are either noise-related or pertain to functional
networks. ICA-AROMA attempts to identify noise components
by investigating its temporal and spatial properties and removes
these components from the data that are classified as motion-
related. Registration was thereafter applied on the denoised
functional data with registration as derived from non-smoothed
data. As recommended, high pass temporal filtering (with a high
pass filter of 150 s) was applied after denoising the fMRI data
with ICA-AROMA (Pruim et al., 2015a,b; Klaassens et al., 2017,
p. 311).”

Estimation of network connectivity
RS-fMRI networks were thereafter extracted from each individual
denoised RS-fMRI dataset (12 subjects × 3 groups × 6 scans
= 216 datasets) applying a dual regression analysis (Beckmann
et al., 2009; Filippini et al., 2009) based on 10 predefined standard
network templates as used in our previous research (Klaassens
et al., 2015, p. 442): “These standard templates have previously
been identified using a data-driven approach (Smith et al., 2009)
and comprise the following networks: three visual networks
(consisting of medial, occipital pole, and lateral visual areas),
DMN (medial parietal, bilateral inferior—lateral—parietal and
ventromedial frontal cortex), cerebellar network, sensorimotor
network (supplementary motor area, sensorimotor cortex, and
secondary somatosensory cortex), auditory network (superior
temporal gyrus, Heschl’s gyrus and posterior insular), executive
control network (medial—frontal areas, including anterior
cingulate and paracingulate) and two frontoparietal networks
(frontoparietal areas left and right). In addition, time series of
white matter (measured from the center of the corpus callosum)
and cerebrospinal fluid (measured from the center of lateral
ventricles) were included as confound regressors in this analysis
to account for non-neuronal signal fluctuations (Birn, 2012).
With the dual regression method, spatial maps representing
voxel-to-network connectivity were estimated for each dataset
separately in two stages for use in group comparisons. First, the
weighted network maps were used in a spatial regression into
each dataset. This stage generated 12 time series per dataset that

describe the average temporal course of signal fluctuations of the
10 networks plus 2 confound regressors (cerebrospinal fluid and
white matter). Next, these time series were entered in a temporal
regression into the same dataset. This resulted in a spatial map
per network per dataset with regression coefficients referring to
the weight of each voxel being associated with the characteristic
signal change of a specific network. The higher the value of the
coefficient, the stronger the connectivity of this voxel with a given
network. These individual statistical maps were subsequently
used for higher level analysis.”

Higher level analysis
To investigate whether voxel wise functional connectivity with
each of the 10 functional networks differed between groups,
ANOVA F-tests were performed on four contrasts of interest
(young > older adults, older > young adults, older adults >

AD patients and AD patients > older adults). Networks with
a significant outcome were followed by post-hoc unpaired two-
sample t-tests to investigate the four contrasts separately. These
tests were performed with and without correction for gray
matter (GM) volume. For correction, a voxelwise partial volume
estimate map of GM, as calculated from T1-weighted images
with FMRIB’s Automated Segmentation Tool (FAST) (Zhang
et al., 2001), was added as nuisance regressor. As the results of
this analysis may depend on the selection of the 10 functional
networks derived from 36 healthy adults (mean age 28.5) as
spatial regressors (Smith et al., 2009), we also explored a number
of data driven extracted networks with Independent Component
Analysis using FSL’s MELODIC vs3.14. Of 70 extracted networks,
the 20 networks that correlated highest with the 10 networks of
Smith et al. (2009) were chosen for group analyses in order to
compare these with the results of the 10 functional networks.
Therefore, these 20 networks were entered in a dual regression
analysis to obtain spatial connectivity maps per network per
dataset followed by higher level analysis as described below.

To test for differences in connectivity between young and
older adults and between AD patients and older adults across
the six repeated measures per subject we used non-parametric
combination (NPC) as provided by FSL’s Permutation Analysis
for LinearModels tool (PALM vs94-alpha; Pesarin, 1990;Winkler
et al., 2014, 2016). NPC is a multivariate method that offers
the possibility to combine data of separate, possibly non-
independent tests, such as our repeated measures (six scans
per subject), and investigate the presence of joint effects across
them, in a test that has fewer assumptions and is more powerful
than repeated-measurements analysis of variance (ANOVA)
or multivariate analysis of variance (MANOVA). To measure
these joint effects (combining the six scans per subject to one
composite variable), NPC testing first performs an independent
test for each repeated measure using 5,000 synchronized
permutations. These tests are then combined non-parametrically
via NPC using Fisher’s combining function (Fisher, 1932) and
the same set of synchronized permutations. A liberal mask
was used to investigate voxels of gray and white matter within
the MNI template, excluding voxels belonging to cerebrospinal
fluid. Threshold-free cluster enhancement was applied to each
independent test and after the combination, and the resulting
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voxelwise statistical maps were corrected for the familywise error
rate using the distribution of the maximum statistic (Smith and
Nichols, 2009; Winkler et al., 2014). Voxels were considered
significant at p < 0.05, corrected.

RESULTS

Significant F-test results pointed to differences in connectivity in
AD patients vs. elderly controls and in older vs. young adults for
all networks, except the cerebellar network.

Resting State Connectivity without
Correction for GM Volume
Differences in resting state functional connectivity were most
apparent between young and older adults (see Figure 1A). For all
functional networks, except the cerebellar network, connectivity
was decreased in the older compared to the young adults,
involving most cortical and subcortical regions. AD patients and
elderly controls differed in connectivity with the DMN, that
showed lower connectivity with the precuneus in AD patients
compared to older adults (see Figure 2A). None of the networks
showed higher connectivity in the older as opposed to young
adults or in AD patients as opposed to the elderly controls.
Specifications of effects (sizes of significant regions and peak
z-values) are provided in Table 2. These results using 10 pre-
defined networks as spatial regressors were largely similar to
the results using independent component analysis to extract 70
networks from the current data, of which 20 were used as spatial
regressors (see methods).

Figure 3 shows connectivity for all three groups, where
Figure 3A corresponds to the mean connectivity of significant
voxels across all networks in Figure 1A (young vs. older adults).
This illustrates that the average connectivity in these regions is
significantly different between young and older adults but not
between elderly controls andADpatients. Figure 3B corresponds
to the mean connectivity of significant voxels for the DMN in
Figure 2A (elderly controls vs. AD patients). This illustrates that
the average connectivity in this region (posterior precuneus) is
significantly different between AD patients and elderly controls
but not between young and older adults.

Resting State Connectivity after Regional
Correction for GM Volume
After correction for regional GM volume, differences in resting
state functional connectivity between young and older adults
were less profound with a reduction in the number of significant
voxels of 58.9% (see Figure 1B). Reduced connectivity with the
same functional networks in the group of older compared to
young adults mainly involved midline regions (posterior and
anterior cingulate cortex, precuneus), occipital, temporal, and
frontal areas. The difference between elderly controls and AD
patients was more restricted after correction as well (reduction
of 65.8% in the number of significant voxels) but still involved
a decrease in connectivity of the DMN with the precuneus in
AD patients (see Figure 2B). Specifications of effects (sizes of
significant regions and peak z-values) are provided in Table 3.

DISCUSSION

We investigated how functional brain connectivity patterns in
aging relate to connectivity as seen in AD. Brain connectivity as
measured with RS-fMRI was most profoundly different between
young and older adults. In contrast to the widespread disruptions
in connectivity due to normal aging, the only altered network
in the group of AD patients was the DMN, showing a decline
in connectivity with the precuneus. This connotes that on top
of reductions due to normal aging, there was an additional
decrease in connectivity between the DMN and precuneus in
our AD sample. A comparable effect (reduced precuneus-DMN
connectivity) was found in our older adults compared to young
subjects, even after GM volume control, indicating that both
aging and, to a greater extent, AD compromise DMN-precuneus
connectivity. The precuneus area that showed differences
between groups did not exactly overlap for both comparisons.
This is illustrated by Figure 3B, showing that DMN-precuneus
connectivity for this specific part of the precuneus significantly
differs between AD patients and older control adults but not
between older and young adults. In AD patients vs. elderly
controls, the effect was located more posteriorly than for the
older vs. young subjects. Correspondingly, it is especially the
posterior part of the precuneus that seems to be implicated
in episodic memory retrieval (Cavanna and Trimble, 2006).
However, considering the small sample size and possible disease
specific reorganization of cortical boundaries (Sohn et al., 2015),
this lack of overlap does not conclusively point to AD specific
connectivity alterations.

Although there are some indications for connectivity change
in frontoparietal, executive (Agosta et al., 2012), visual sensory,
cerebellum/basal ganglia (Binnewijzend et al., 2012), dorsal
attention, sensory-motor, control, and salience (Zhou et al., 2010;
Brier et al., 2012) networks, the most consistent and frequent
finding in AD is a reduction in DMN connectivity (Greicius et al.,
2004; Zhang et al., 2010; Pievani et al., 2011; Hafkemeijer et al.,
2012). Brier et al. (2012) showed that more networks become
affected with increasing disease severity, which might declare the
lack of alterations in networks beyond the DMN in our mild
AD group. The relevance of the DMN in AD is explained by
its core regions (precuneus, posterior cingulate cortex) being
the target of β-amyloid deposition, one of the hallmarks of
dementia (Buckner et al., 2005; Adriaanse et al., 2014). The
precuneus comprises a central region of the DMN (Utevsky et al.,
2014), with the highest metabolic response during rest (Gusnard
and Raichle, 2001) and strong connections with adjacent and
remote regions (Achard et al., 2006). Altered connectivity with
the precuneus in AD patients has frequently been observed
(Wang et al., 2006; He et al., 2007; Sheline et al., 2010; Zhou
et al., 2010; Binnewijzend et al., 2012; Damoiseaux et al., 2012;
Kim et al., 2013; Tahmasian et al., 2015). The precuneus seems
to play a significant role in episodic memory retrieval, self-
consciousness and visual-spatial imagery (Cavanna and Trimble,
2006; Zhang and Li, 2012) and structural and task-related
functional MRI studies have shown its association with memory
problems and visual-spatial symptoms in AD (Rombouts et al.,
2005; Karas et al., 2007; Sperling et al., 2010). Involvement of the
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FIGURE 1 | Differences in network connectivity between young and older adults. (A) Reduced functional connectivity in older compared to young adults

between the default mode network, three visual networks, the auditory network, the sensorimotor network, the left and right frontoparietal network and the executive

control network (shown in green) and regions as shown in red-yellow (at p < 0.05, corrected). (B) Reduced functional connectivity in older compared to young adults

when including regional gray matter volume as regressor.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 April 2017 | Volume 9 | Article 97

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Klaassens et al. Connectivity in Aging and Dementia

FIGURE 2 | Differences in network connectivity between AD patients

and elderly controls. (A) Reduced functional connectivity in AD patients

compared to elderly controls between the default mode network (shown in

green) and the precuneus (shown in red-yellow at p < 0.05, corrected). (B)

Reduced functional connectivity in AD patients compared to elderly controls

when including regional gray matter volume as regressor.

precuneus in early AD has also been demonstrated by inflated
uptake of Pittsburgh compound B ([11C]PIB) in this area during
positron emission tomography (PET), indicating increased levels
of beta amyloid compared to non-demented subjects (Mintun
et al., 2006). Studies that investigated pharmacological effects
in AD show the importance of precuneus connectivity in AD
as well. Memantine, an N-methyl-d-aspartate (NMDA) receptor
antagonist and galantamine, a cholinesterase inhibitor, both used
for treatment of early AD symptoms, increased resting-state
functional connectivity between the DMN and precuneus in
AD (Lorenzi et al., 2011; Blautzik et al., 2016), pointing to a
normalizing effect of these compounds on AD symptomatology.

In contrast to the restricted DMN-precuneus disconnections
in AD, aging effects on connectivity were extensive, involving
multiple networks and regions. These findings indicate that
functional network coherence is more sensitive to aging than
AD. Reduced connectivity in the older adults was demonstrated
for networks that pertain to language, attention, visual, auditory,
motor and executive functioning as well as the DMN. The
widespread decreases in connectivity in the older adults
compared to the young group may be representative of age-
related cognitive, sensory and motor decline. Hearing, vision
and balance-gait problems arise and a gradual decrease in
processing speed, episodic and working memory takes place
during the process of normal aging (Salthouse, 1996; Li and
Lindenberger, 2002; Fandakova et al., 2014). The effects for the
sensorimotor and frontoparietal networks are in line with studies
of Allen et al. (2011), Andrews-Hanna et al. (2007), Tomasi
and Volkow (2012), and Wu et al. (2007a,b), showing an age-
related decrease of connectivity between and within motor and
attention networks. The cognitive function of the DMN is not
fully understood, but diminished connectivity of this network
is likely accompanied by a general disturbance in switching to
higher-order cognitive processes as (autobiographical) episodic

memory, introspection and attention (Grady et al., 2010; Mevel
et al., 2011). The reduced coherence of DMN regions might
reflect an inability to shift from a task-negative to a task-
positive mode and hence hinder cognitive performance. This
is concordant with results of Andrews-Hanna et al. (2007) and
Damoiseaux et al. (2008), who demonstrated that alterations
of the DMN in elderly subjects were associated with memory,
executive functioning, and processing speed.

It is questionable whether group differences in connectivity
are fully or partly explained by reductions in GM volume.
Although exact causal mechanisms are not completely clear,
connectivity alterations are possibly representative of structural
atrophy (Seeley et al., 2009). A global decrease in GM has been
found with advancing age, affecting frontal, parietal, temporal
and occipital cortices, precuneus, anterior cingulate, insula,
cerebellum, pre-, and post-central gyri (Good et al., 2001; Giorgio
et al., 2010; Habes et al., 2016). It has been proposed that
ignoring structural information in voxelwise analyses could bias
interpretation of functional outcomes (Oakes et al., 2007), as
apparent functional differences might be solely the consequence
of anatomical variation. However, consistent with our outcome,
it has also been demonstrated that age-related differences in
functional connectivity cannot merely be explained by local
decreases in GM volume (Damoiseaux et al., 2008; Glahn
et al., 2010; Zhou et al., 2010; Onoda et al., 2012). When we
added voxelwise GM volume maps as confound regressor to
account for its possible mediating effect, a substantial portion
of results (41.1%), involving equal networks, was maintained.
For those areas, GM partial volume fraction is expected to be
homogeneous among groups and functional effects are strong
enough to persist after correction. Although the earliest atrophy
in Alzheimer’s disease (AD) occurs in medial temporal structures
as the hippocampus (Chan et al., 2001; Matsuda, 2013), the
precuneus has also been discovered as an area where atrophy
appears in AD patients (Baron et al., 2001; Karas et al., 2007;
Bailly et al., 2015). The observed difference between AD patients
and elderly controls partly survived correction for GM volume
(34.2%), suggesting that this finding is related to differences in
cortical volume as well. More important, as the remaining effect
on connectivity was unrelated to local structural differences,
reduced DMN-precuneus connectivity might be an indicator
of AD.

The small sample size (n = 12 per group) is an obvious
limitation of our study as this reduces the power of the
statistical analyses. It is possible that with a larger sample size,
the DMN-precuneus connectivity change would show more
overlap between the two group comparisons. However, we
collected six RS-fMRI scans per subject, leading to a dataset
of 72 scans per group. In addition to a gain in power, this
offered us the possibility of investigating intrasubject as well as
intersubject variation. The difference in effect for both group
comparisons may partially be explained by higher within and
between subject variance at older age and in AD (Huettel
et al., 2001; Mohr and Nagel, 2010). An exploration of the
average connectivity (in z-values) across networks and voxels
per scan did not show prominent differences in connectivity
variance between the three groups (young subjects: mean =
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TABLE 2 | Overview of significant differences in functional connectivity without gray matter correction as estimated with threshold-free cluster

enhancement (p < 0.05, corrected).

Network Contrast Region (Harvard-Oxford) z* x y z #

voxels

Default mode network Older < young adults L/R/M Precuneus, PCC, ACC, cuneal cortex, lingual

gyrus, supracalcarine cortex, lateral occipital

cortex, parahippocampal gyrus, hippocampus

9.60 0 −42 20 7,814

M Frontal pole, frontal medial cortex, ACC,

paracingulate gyrus

9.27 4 56 −6 2,600

R Middle and superior temporal gyrus, parietal

operculum cortex, central opercular cortex,

insular cortex, Heschl’s gyrus, pre- and

post-central gyrus

6.95 50 −20 12 2,382

R Lateral occipital cortex 7.04 −38 −70 54 1,436

R Middle and superior temporal gyrus 7.60 56 −8 −26 561

L Middle and superior temporal gyrus 6.97 −58 −34 −8 328

L Middle and inferior temporal gyrus 7.43 −58 −10 −18 299

R Parahippocampal gyrus, temporal fusiform

cortex

5.48 20 −40 −14 154

R Temporal pole 5.71 50 20 −22 102

Default mode network AD patients <

controls

M Precuneus, PCC 7.39 0 −70 44 415

Executive control network Older < young adults L/R/M Frontal pole, ACC, PCC, precuneus, thalamus,

putamen, SMA, post- and pre-central gyrus,

temporal pole, frontal orbital cortex, superior

frontal gyrus

10.90 0 −28 28 21,857

M Precuneus, lateral occipital cortex 6.84 8 −78 52 735

R Lateral occipital cortex, occipital fusiform gyrus 5.94 42 −82 4 323

R Cerebellum 5.65 40 −54 −36 153

R Pre- and postcentral gyrus, precuneus, PCC 5.48 −12 −36 46 103

Sensorimotor network Older < young adults L/R/M PCC, precuneus, lingual gyrus, paracingulate

gyrus, pre- and postcentral gyrus, SMA, central

opercular cortex, caudate, thalamus

7.66 64 −10 42 32,668

R Frontal pole, middle frontal gyrus 6.18 38 46 32 442

Visual network 1 Older < young adults L/R/M Intracalcarine cortex, supracalcarine cortex,

occipital pole, precuneus, cerebellum, PCC,

pre- and post-central gyrus, brain stem,

thalamus, parahippocampal gyrus, planum

temporale, Heschl’s gyrus, middle and inferior

temporal gyrus

7.81 14 −42 −6 35,606

R Frontal pole 8.88 38 48 28 869

Visual network 2 Older < young adults M Frontal pole, paracingulate gyrus 6.75 2 56 32 1,143

M Occipital pole, intracalcarine cortex, lingual

gyrus

7.62 8 −94 6 258

Visual network 3 Older < young adults R Supramarginal gyrus, pre- and postcentral

gyrus, superior and middle temporal gyrus,

temporal occipital fusiform cortex,

6.86 46 −32 40 8,644

L Supramarginal gyrus, superior and middle

temporal gyrus, temporal occipital fusiform

cortex, hippocampus

7.55 −18 −94 4 4,065

L/R/M Putamen, accumbens, frontal orbitol and

medial cortex

7.35 16 22 −6 1,160

L Postcentral gyrus 6.62 −30 −50 72 838

(Continued)
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TABLE 2 | Continued

Network Contrast Region (Harvard-Oxford) z* x y z #

voxels

Auditory network Older < young adults L/R/M Heschl’s gyrus, planum polare, supracalcarine

cortex, caudate, putamen, hippocampus,

parahippocampal gyrus, precuneus, middle

and superior temporal gyrus, insular cortex,

inferior and middle frontal gyrus

8.69 66 −30 20 31,540

M Precuneus, lateral occipital cortex 6.85 12 −76 56 1,082

R Superior parietal lobule, angular gyrus 7.73 46 −48 54 399

M PCC, ACC 7.00 8 −8 26 138

Frontoparietal network R Older < young adults R Frontal pole, middle and superior frontal gyrus,

precentral gyrus,

8.80 38 50 23 9,850

R/M Angular gyrus, superior parietal lobule,

supramarginal gyrus, precuneus

8.13 48 −52 52 5,209

L Planum temporale, precentral gyrus, Heschl’s

gyrus

5.72 −58 −2 2 621

M Occipital fusiform gyrus, cerebellum 5.82 −14 −84 −26 549

M Superior parietal lobule, supramarginal gyrus 6.43 −42 −50 54 451

M PCC, ACC 4.98 −22 −36 36 182

R Middle and superior temporal gyrus 4.83 62 −26 −12 142

R Planum temporale 5.73 60 −20 12 136

Frontoparietal network L Older < young adults L/R/M Middle, inferior and superior frontal gyrus, ACC,

caudate, thalamus, pre- and postcentral gyrus

8.83 −4 34 62 17,586

R Pre- and postcentral gyrus 5.73 42 8 24 2,362

M Middle and inferior temporal gyrus 7.16 −66 −54 −2 1,460

R Frontal pole, middle frontal gyrus 6.65 42 48 26 1,052

M Frontal orbitol cortex, insular cortex 6.30 −30 20 −26 455

L, left; R, right; M, midline; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; SMA, supplementary motor area; Voxel dimension = 2 × 2 × 2 mm (voxel volume 0.008

mL). *Standardized z-value of the uncorrected peak Fisher (NPC) statistic within regions (for regions with > 100 voxels).

FIGURE 3 | Boxplots of the average functional connectivity (z-values) in young and older adults and AD patients between (A) regions and networks as

shown in Figure 1A with reduced connectivity in elderly compared to young subjects; (B) the precuneus and DMN as shown in Figure 2A with reduced connectivity

in AD patients compared to elderly controls. Asterisks indicate a significant difference between groups (at p < 0.05, corrected).

4.12, variancebetween = 0.90 and variancewithin = 0.86; older
adults: mean = 4.37, variancebetween = 1.63, and variancewithin

= 1.29; AD patients, mean = 4.28, variancebetween = 0.86 and
variancewithin = 1.26), largely ruling out this possibility. Further,
although all older adults were intensively screened before study

participation, no information on AD-associated biomarkers was
available. As alterations in brain connectivity might also be due
to beta-amyloid deposition in older people without AD (Brier
et al., 2014; Elman et al., 2016), the healthy elderly subjects in
this study might unexpectedly include subjects in a preclinical
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TABLE 3 | Overview of significant differences in functional connectivity with gray matter correction as estimated with threshold-free cluster

enhancement (p < 0.05, corrected).

Network Contrast Region (Harvard-Oxford) z* x y z #

voxels

Default mode network Older < young adults M PCC, precuneus, lingual gyrus 7.92 −2 −40 20 3,214

L Lateral occipital cortex 8.08 −48 −58 42 244

L Lateral occipital cortex 6.31 −42 −64 58 113

Default mode network AD patients < controls M Precuneus, PCC 7.52 0 −70 44 142

Executive control

network

Older < young adults L/R/M Frontal pole, middle frontal gyrus, ACC, PCC,

precuneus, thalamus, SMA

10.70 0 −28 28 14,548

M Lateral occipital cortex, precuneus 5.94 10 −78 50 161

Sensorimotor network Older < young adults L/R/M PCC, precuneus, lingual gyrus, paracingulate gyrus, pre−

and postcentral gyrus, SMA, central opercular cortex,

caudate, thalamus

7.40 4 −38 24 12,667

L Postcentral gyrus 7.83 −62 −12 46 525

Visual network 1 Older < young adults L/R/M Precuneus, PCC, lateral occipital cortex, precentral

gyrus, supramarginal gyrus, lingual gyrus,

parahippocampal gyrus, hippocampus, thalamus

7.42 24 −54 −2 16,775

L Frontal pole 7.68 −34 50 30 664

R Frontal pole 8.21 36 48 28 205

Visual network 2 Older < young adults M Frontal pole, superior frontal gyrus 6.66 6 48 46 167

M Occipital pole 7.86 8 −94 6 103

Visual network 3 Older < young adults R Temporal occipital fusiform cortex, lateral occipital

cortex, cerebellum

7.37 44 −42 −16 3,016

L Temporal occipital fusiform cortex, inferior temporal

gyrus, cerebellum

6.18 −46 −54 −24 1,207

L Occipital pole 7.49 −18 −94 4 1,013

R Supramarginal gyrus 5.82 52 −26 32 289

L Subcallosal cortex, medial frontal cortex 6.66 −10 26 −6 270

R Cerebellum 5.74 32 −58 −42 250

R Frontal orbital cortex 6.27 16 24 −8 242

L Supramarginal gyrus 5.60 −58 −36 34 151

Auditory network Older < young adults R Superior temporal gyrus, planum temporale, Heschl’s

gyrus, supramarginal gyrus, insular cortex, inferior frontal

gyrus

7.58 66 −30 10 7,741

L Parietal operculum cortex, Heschl’s gyrus, supramarginal

gyrus, insular cortex, middle and inferior temporal gyrus

7.86 −54 −26 16 6,219

L Lingual gyrus, PCC, parahippocampal gyrus 5.55 −22 −62 −2 603

R Lingual gyrus, precuneus, PCC, parahippocampal gyrus 5.55 22 −44 −4 471

M Precuneus, lateral occipital cortex 6.34 0 −74 50 361

M PCC, ACC 7.04 8 −8 26 134

R Temporal occipital fusiform cortex 4.62 36 −46 −20 100

Frontoparietal network R Older < young adults R Frontal pole, middle frontal gyrus 8.54 42 50 28 3,948

R/M Postcentral gyrus, PCC, precuneus, superior parietal

lobule

5.5 36 −26 42 1,153

R Angular gyrus 6.56 50 −48 50 505

R Temporal pole, inferior frontal gyrus 8.21 54 18 −10 353

R/M Lateral occipital cortex, precuneus 5.71 10 −76 56 104

(Continued)
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TABLE 3 | Continued

Network Contrast Region (Harvard-Oxford) z* x y z #

voxels

Frontoparietal network L Older < young adults M Precuneus, PCC, caudate, thalamus 5.97 0 −62 42 1,115

L Frontal pole 6.74 −20 66 16 1,070

R Frontal pole 6.44 42 48 26 277

R Occipital pole 6.71 10 −92 −4 228

L Inferior temporal gyrus, temporal occipital fusiform cortex 6.44 −48 −56 −12 194

M ACC 5.91 6 2 32 134

L Lateral occipital cortex, superior division 7.01 −28 −74 56 122

L, left; R, right; M, midline; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; SMA, supplementary motor area Voxel dimension = 2 × 2 × 2 mm (voxel volume 0.008 mL).

*Standardized z-value of the uncorrected peak Fisher (NPC) statistic within regions (for regions with > 100 voxels).

AD stage, leading to AD- instead of age-related connectivity
change.

In conclusion, differences in functional connectivity between
young and older adults are more extensive than differences
between AD patients and controls. We found reduced
connectivity throughout the entire brain in older compared
to young adults, which is potentially reflective of a normative
decline in sensory, motor and cognitive function during
senescence. In AD patients vs. elderly controls, the detected
effect was restricted to further diminished connectivity of the
DMN with the precuneus. Although the majority of these
connections was associated with regional brain volume, effects
were maintained for all networks after correction for GM
volume. Our findings imply that posterior precuneus-DMN
disconnections may act as a marker of AD pathology.
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