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Parkinson’s disease (PD) was characterized by late-onset, progressive dopamine neuron

loss and movement disorders. The progresses of PD affected the neural function and

integrity. To date, most researches had largely addressed the dopamine replacement

therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the

drug. And the mechanism of PD is so complicated that it’s hard to solve the problem by

just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson’s

disease, searching for new method that may affect the neurodegeneration processes in

it. In this paper, we reviewed current delivery methods used in gene therapies for PD,

we also summarized the primary target of the gene therapy in the treatment of PD, such

like neurotrophic factor (for regeneration), the synthesis of neurotransmitter (for prolong

the duration of L-dopa), and the potential proteins that might be a target to modulate

via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson’s

disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling

features of different gene therapies in the treatment of PD.
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INTRODUCTION

Treatment for PD
With the improvement of the medical care, people enjoyed a longer life span, but it also bring
about aging problems. The increasing healthy costs and the prevalence of Parkinson’s disease (PD)
are becoming more severe in modern society (von Campenhausen et al., 2009). But PD is so
complicated that treating PD is to treat a moving target, as the disease progressed, one therapy
could not solve all the problems (Simonato et al., 2013; Kakkar and Dahiya, 2015).

Treatment for PD can be classified as 3 different types: pharmacotherapy, functional
neurosurgery, transplantation and gene therapy.

Pharmacotherapy for Parkinson’s Disease
Among the treatments mentioned above, pharmacotherapy is the most effective one in the
early years of PD (Buttery and Barker, 2014). Pharmacotherapy can be divided into two
kinds: dopaminergic and non-dopaminergic way. The useing of dopamine receptor agonists,
catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) inhibitors were classified
as dopaminergic treatment for PD (Fang et al., 2015; Sharma et al., 2015). Using of COMT and
MAO inhibitors can reduce the motor fluctuations of patients. The MAO inhibitors prolonged the
duration of L-dopa action time (Muellner et al., 2015; Sari and Khalil, 2015). But with the disease
advancing and the appearance of L-dopa-induced dyskinesia (LID), these therapies shows their
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limitations (Behari and Singhal, 2011). In order to address the
problems, sustained or controlled release drugs are developed
to therapy the PD (Ren et al., 2011; Yang et al., 2012a,b; Xie
et al., 2014). The non-dopaminergic drug amantadine is a N-
methyl-D-aspartate (NMDA) receptor antagonist that have mild
symptomatic benefits and can decrease LID in a proportion of
patient (Paquette et al., 2012; Rascol et al., 2015), other non-
dopaminergic drug like antagonist of metabotropic glutamate
receptors (mGluRs) is still under animal experiment and clinical
trials (Johnson et al., 2009; Pahwa et al., 2015). Functional
neurosurgery was used in advanced PD, including deep brain
stimulation and lesion (Rowland et al., 2016; Verhagen Metman
et al., 2016). Surgical treatment for PD can be achieved by
pallidotomy and globus pallidus internus (GPi) deep brain
stimulation (DBS) and subthalamotomy and subthalamic nucleus
deep brain stimulation (DBS) (Poortvliet et al., 2015; Hamani
et al., 2016). The GPi surgery has a direct effect on dyskinesia
while the subthalamic nucleus (STN) deep brain stimulation
(DBS) has a benefit on reducing the dopaminergic drug dose
(Munhoz et al., 2014; Poortvliet et al., 2015).

But PD is far more complicated than commonly appreciated.
As the disease progressing, the effectiveness of the drugs declined,
it became incapable for patients to control the motor symptoms
(Olanow et al., 2009; Bartus et al., 2014). Thus, the nigrostriatal-
mediated motor impairment still lacked an adequate solution.

DELIVERY METHOD OF GENE THERAPY

The advantage of gene therapy was that we can deliver a gene
as an agent to the specific brain region to alter function and
treat PD (Stayte and Vissel, 2014), while avoiding the off-target
effects (Allen and Feigin, 2014). Although gene therapy is mainly
experimental at present, the promising future makes a lot of
researchers seeing it as a new class of drugs for PD. Before we
review the gene therapies for PD, we should pay some attention
to the delivery method of gene therapy first (Oertel and Schulz,
2016).

While the measures we adopted to fix PD needs a lot of
considerations, the measures themselves are limited by a lot of
factors, for example, the chose of the delivery vector. Basically, we
can divide the delivery method into two types: viral and non-viral
mediates ways (Latchman and Coffin, 2001; Muramatsu et al.,
2002; Lewis et al., 2014).

Viral Vectors Mediate Delivery Methods
When we talk about typical virus vector, we indicate adeno-
associate virus, retroviruses and adenovirus. Adeno-associate
virus (AAV) is the most utilized vector in brain (Mochizuki et al.,
2002; Fischer et al., 2016). The recombinant adeno-associate
virus vector (rAAV) remains the essence of the wild-type AAV.
Different subtype of AAV could enter different host-cells due
to its capsid structure (Burger and Nash, 2016). AAV mainly
transduces cells of nervous system, neurons, astrocytes and part
of the microglia. The AAV will not integrated to host-cells,
so it might dilution due to cell division. The sending of the
vectors can be divided into stereotaxic injection, ventricular

delivery and systematic delivery, which often require special
equipment. Production of rAAV is labor intensive (Benskey and
Manfredsson, 2016a).

The retroviruses include lentivirus and non-lentivirus
(Benskey and Manfredsson, 2016b). They were characteristic for
the ability to integrate with the host cells, thus it’ll not be dilute
while the host-cells dividing (Nasri et al., 2014). Compared with
the AAV, The retroviruses can carry more gene fragments, nearly
9 kb. The difference between lentivirus and non-lentivirus is
that the later cannot traverse the nuclei membranes, it impact
actively dividing cells only, while lentivirus impact both dividing
and non-dividing cells. And the retrovirus could transfect almost
all kinds of cells in nervous system, the production of them is
much more easier than AAV (Kumar and Woon-Khiong, 2011;
Kobayashi et al., 2016).

Recombinant adenovirus (rAd) had reduced the cytotoxicity
and immunogenicity to an acceptable extent. It could carry about
35 kb of genetic material. The large capacity has its own merits
and drawbacks (Uil et al., 2011), for it’ll require a certain mineral
amount of genes to keep the optimal packaging efficiency. The
rAd still have certain immunogenicity although this will not
impact the transgene expression. Furthermore, the production of
rAd is time consuming (Suzuki et al., 2011). Table 1a is the sum
of virus vector mediates gene therapy.

Non-viral Mediates Delivery Methods
In contrast to the viral vectors, non-viral mediates delivery
methods do not rely upon the evolved capabilities of viruses
to insert genetic material. The non-viral vector mediates
gene transfection were no longer limited by the capacity
of gene material. Non-viral mediates delivery methods
including electroporation, microneedles, polyethylenimine
(PEI), polymersomes, polyspermine, the use of branched
molecules and cationic lipid-mediates delivery (Boado, 2007; De

TABLE 1A | Virus vector mediates gene therapy.

Virus Capability Delivery method Limitation

Adeno-associate

Virus

4.7 ∼ 5 kb Stereotaxic injection Not integrate to host-cell

Intravenous injection Dilution due to cell division

Intracerebral

ventricular injection

Labor intensive and

special equipment in need

RETROVIRUSES

Lentivirus 9 kb Stereotaxic injection Safety concerns:

insertional mutagenesis,

Impact both dividing and

none dividing cell

Non-lentivirus Not traverse the nuclear

membrane

Impact actively dividing

cells

Adenovirus Roughly

35 kb

Stereotaxic injection Require a certain minimal

amount of gene

Acute inflammation

Ad product is time

consuming
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Vry et al., 2010; Duan et al., 2012; Xiang et al., 2012; Ma et al.,
2013; Chen et al., 2014, 2016a,b; Ge et al., 2014a,b; Peng et al.,
2014; Che et al., 2016; Song et al., 2016).

Electroporation is a physical transfection method. It created
temporary pores via electrical pulse in cell membranes through
which substances like nucleic acids can pass into cells.
Electroporation could almost target all the cells types in vitro,
including mammalian cells and bacteria (Ding and Fan, 2016).
Electroporation is time saving, labor saving, and cut the cost to
a low level. It shows less toxicity and immunogenicity (De Vry
et al., 2010; Yang B. et al., 2012; Gee et al., 2015).

Cationic lipid-mediated delivery is more rapid than viral ones.
It can pack large gene material. The expression onset of RNA is
much faster than that with DNA, for it needn’t transit the nuclear
membrane. RNA delivery is good at short-term transient gene
expression, for its quick onset (Hecker, 2016). Comparing with
RNA, DNA is benefit for it’s longer duration and higher mean
level of expression, although the onset of which is slower than
RNA (Bauer et al., 2002).

The branched molecules, such as polyethylenimine (PEI),
dendrigraft poly-L-lysine and chitosan are kind of physical power
(Corso et al., 2005; Trapani et al., 2011; Peng et al., 2014). Which
force the cell to take up the exogenous gene materials they
packed. The common advantage of them is less cytotoxicity and
high transfection rates, some can deliver from the ventricular
which simplify the procedure. Further more, some scientists
even use them to accomplish non-invasive imaging for tracking
(Batrakova et al., 2007; Liu et al., 2013). Table 1b is the sum of
alternative of viral vector-mediates gene transfection.

GENE THERAPY FOR PARKINSON’S
DISEASE

Gene Therapy for Delivery of Neurotrophic
Factors
Neurotrophic factors, such as glial cell-derived neurotrophic
factor (GDNF), neurturin are secreted proteins that play
regulatory roles in the development, survival and maintenance
of the nervous system (Hegarty et al., 2014). While the
neurodegeneration progressing, the progresses in the constructor
of viral vectors for gene transfer make gene therapy a realistic
form for PD treatment.

Gene Therapy of GDNF
GDNF has attracted a lot of attention for its neurogenerative
and neuroprotective effects. In vitro, it promoted the survival
of cultured ventral midbrain dopaminergic neuron (Lin et al.,
1993; Clarkson et al., 1997; Eggert et al., 1999). Then followed
some studies supporting the positive effect of GDNF expression
on nigrostriatal degeneration and related motor symptom in
PD model animals (Eslamboli et al., 2003, 2005). Considering
that the majority of the less advanced PD patients are still
fully responsive to L-dopa therapy, they might not accept the
irreversible measure. But very early interference of gene therapy
after diagnoses may have benefits on them. Some researchers
use mifepristone and AAV-5 vectors that expressing GDNF to
establish an intermittent and reversible mode to control the
expression of GDNF, in this system, mifepristone was used
as a gene switch to induce a transient impact on expression.

TABLE 1B | Alternative of viral vector-mediates gene transfection.

Non-virus Capability Delivery method Benefit compare to viral vector-mediates gene transfection

Electroporation >10 kb – Do not integrate/time saving/cost low

Less toxicity/less immunity

Higher efficiency/bigger capacity

CATIONIC LIPID MEDIATES DELIVERY

DNA Unlimited Longer duration

Stereotaxic injection Higher mean level of expression per cell

RNA Unnecessary of transit across the nuclei membrane

Onset of expression is faster than DNA

Preferable in some clinical applications

POLYETHYLENIMINE

Unlimited Bone-marrow derived macrophage system Less cytotoxicity

Increased cellular uptake and stability

Non-invasive imaging for tracking

Ventricular delivery

DENDRIGRAFTED POLY-L-LYSINE

Unlimited Ventricular delivery Cross the BBB by specific receptor mediated transcytosis

Targeted nanoparticles could accumulate in brain more efficiently

CHITOSAN WITH GRAFT WITH PEI

Unlimited Stereotaxic injection Improved water solubility

Low toxicity

High transfection efficiency
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Animals that were injected with the constitutively expressing
GDNF vectors showed a long-term and stable improvement on
GDNF level, while the animals that were injected mifepristone
to induce short–term expression also showed a robust but short-
term improvement (Kirik et al., 2016). These result shows that the
new intermittent, reversible methods also have a significant and
stable impact on the gene expression while compared with the
traditional irreversible way. For those less advanced PD patient, it
means that they will have amore safe and useful choice to prevent
neurodegeneration. Some scientists use MPTP-treated rhehus
monkeys and aged monkeys with parkinsonian symptom as the
model animals, both groups use AAV2-GDNF vector injected the
putamen, the result turns out that AAV2-GDNF enhanced the
locomotor activities and increased the dopaminergic terminals in
the putamen (Eberling and Kells, 2009; Johnston et al., 2009).
Although there is lot of benefits in the GDNF gene therapy,
significant weight loss induced by nigral GDNF expressing is
disturbing. The GDNF therapy needs more understanding and
further development at every level. Table 2a is the sum of gene
therapy of GDNF.

AVV-Neurturin
The gene of neurturin is a member of the GDNF gene family.
Neurturin (NTN) can rescue dopaminergic neurons damage
(Biju et al., 2013). 12 PD patients receive an injection of AAV-
NTN and their symptomatic syndrome showed a significant
improvement, although the dopaminergic terminal showed no
significant increases in PET imagination (Marks et al., 2008).
However, in an effort to validate the efficacy in the former trial,
researchers launched a randomized, sham surgery-controlled,
double-blind clinical trials which include 58 PD patients (Marks
et al., 2010). There is no significant improvement observed in
the NTN-treated patients until it comes to the 18 months, while
with the phase I trial only spent 12 months to meet its endpoint.

The outcome of the phase II trial is modest, but significant. In
the postmortem analysis of 2 deceased patients demonstrated
NTN expression in putamen rather than substantial nigra, shows
that there is still limitations in the retrograde transport of
AVV vector. In the purpose to solve the retrograde transport
problem, researchers use a more direct way, they directly target
the substantial nigra and injected higher dose to putamen, and
provide longer clinical follow-up. The result let them down, the
clinical trial only demonstrated the tolerability of treatment with
CERE-120, the drug was delivered to both parts of substantia
nigra pars compacta and putamen without safety complication
in a 2-year follow-up (Bartus et al., 2014), but in the subsequent
phase II, it failed to show its efficacy. It didn’t meet the primary
endpoint they expect (off-state motor UPDRS Scores). The result
of NTN-treatment was disappointing.

Gene Therapy for Modulating the Synthesis
of Neurotransmitter
Adeno-Associated Virus (AAV)-Glutamate

Decarboxylase (GAD)
We all know that in PD, the loss of the dopaminergic neuron can
result the imbalance in basal ganglia circuitry, for example, the
subthalamic nucleus (STN) will receive less GABAergic input. In
activation of neurons in the STN of the MPTP-treated monkey
model, animals had shown ameliorated parkinsonian motor
symptoms (Wichmann et al., 1994; Guridi et al., 1996). The
therapeutic effect is consistent with the notion STN hyperactivity
or dysfunction in PD (Bergman et al., 1994). Then some
researchers want to validate the therapeutic and neuronal effect of
blocking STN, they performed microinjection of local anesthetic
lidocaine and muscimol, (lidocaine has the none selectively
blocking axonal fibers of passage as well as neurons, while
muscimol selectively inhibited the cell body of neuron.), this

TABLE 2A | Gene therapy of GDNF.

Model animal Study duration Target area Interference of gene therapy

6-OHDA lesioned rats 17 weeks Striatum Constitutive GDNF expression AAV vector

Mifeprestone induced once

Mifeprestone induced twice

MPTP-rhesus monkeys monkeys 12 months Putamen AAV2-GDNF vector

aged naïve monkeys 6 months Putamen substrantial nigra AAV2-GDNF vector

Interference of gene

therapy

Restoration of the motor control Impact on dopaminergic pathway

Cylinder test APO-induced rotation

Constitutive GDNF

expression AAV vector

From 20 to 38%right

forepaw use

Stable reduction of the Apo induced

rotation by about 80%

DA level almost completely restored than the contralateral

hemisphere

Mifepristone induced

once

From 20 to38% right forepaw

use, then declined to 25% at 15

weeks after lesion

A reduction by about 50 ∼ 60%

which lasts 5 weeks, and then

increased at 7 weeks

Not significantly increased at the end of the experiment

Mifepristone induced

twice

From 20 to 35%right

forepaw use

Rotation behavior was stable reduced

over the time course of study

Significant lower than those achieved by constitutive GDNF

expression

AAV2-GDNF vector Enhanced locomotor activity Increased density of Dopaminergic terminals in the putamen

AAV2-GDNF vector An increase of basal locomotor activity Small increase of AADC activity
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study shows that microinjections of pharmacological blocking
agent in the STN of PD patients result in a transient anti-
Parkinsonian effect (Levy et al., 2001). Then a gene therapy
approach was investigated for increasing GABAergic tone in
STN. Some scientists use an AAV vector to transfer the gene of
GAD to STN. As the rate-limiting enzyme for the synthesis of
GABA, this approach could increase the level of GABA in STN
and improve the motor symptoms of PD. In the research of the
subsequent open label, safety and tolerability clinical trial, they
use viral vectors (AAV-GAD) injected 12 PD patients’ unilateral
subthalamic. The patients were divided into 3 groups; the main
efficacy measure was UPDRS. Significant improvement was seen
3 months after gene therapy and persisted up to 12 months. The
conclusion of the trial is that AAV-GAD gene therapy of the
subthalamic nucleus is safe and well tolerated by patients with
advanced PD (Kaplitt et al., 2007).

Aromatic Amino Acid Decarboxylase (AADC) and

Tyrosine Hydroxylase/Aromatic Amino Acid

Decarboxylase/Guanosine Triphosphate

Cyclohydrolase (AADC-TH-GCH) Gene Therapy
The beneficial effect of oral administration of L-dopa will soon
be complicated by motor symptoms. Olanow et al. find that
continuous dopamine stimulation might counter balance these
long-term effects of drug (Olanow et al., 2000, 2006a,b). Based
on these theories, researchers focused on increasing dopamine
level through enhancing the chemical synthesis of dopamine
from levodopa. The conversion of levodopa to dopamine needs
the enzyme acromatic L-amino acid decarbocylase (AADC)
(Christine et al., 2009; Muramatsu et al., 2010). With the PD
advancing, activities of AADC diminished, this further limiting
dopamine level and resulted a larger need for the dosage of
levodopa (Witt and Marks, 2011). The transduction of AADC
gene to intrinsic striatal neurons could enhance the synthesis of
dopamine and might improve the dopamine level in brain. The
continuous existence of DA might reduce the need of levodopa
in advancing PD (Allen and Feigin, 2014), and with the reduction
of levodopa, the side effect like LIDs might be alleviated. A phase
I clinical trial of gene transfer of AAV mediated gene delivery
of AADC into putamen of 6 PD patients was launched. using
multiple measures, including UPDRS, motor state diaries and
PET trace for AADC, 6 months after surgery, the off-state of
motor function was improved by 46% based on UPDRS scores,
PET shows a 56% increase in FMT activities, both effect last 96
weeks (Muramatsu et al., 2010).

The TH/AADC/GCH is a triple gene approach. The
production of dopamine needs these 3 genes to exert their
function. The TH and GCH catalyze the dietary tyrosine convert
to levodopa, AADC turns the levodopa to dopamine, the triple
gene vectors just like a molecular machinery for manufacturing
dopamine (Azzouz et al., 2002; Jarraya et al., 2009). The
trisictronic lenti-vector aims to improve the dopamine level
in striatal not only by restoring AADC activity, but also by
further increasing endo-levodopa in both dopaminergic and
non-dopaminergic neurons (Azzouz et al., 2002; Jarraya et al.,
2009). This approach brings the good news that it is safe and

tolerable, modest improvement in UPDRS-motors of scores was
seen at 6 to 12 month (Oxford biomedica).

Although the DA-synthetic strategies have yield encouraging
results, but take the small numbers of samples and the likelihood
of placebo effect into consideration, further study was awaited
(Christine et al., 2009; Palfi et al., 2014).

Gene Therapy for Modulate Proteins in PD
As we know, 6-OHDA-lesioned Parkinsonian rats had a multiple
protein- and brain region-specific changes. The dysregulation of
DA receptors induced by the 6-OHDA lesioning is believed to
underlie PD pathology and LID. Ahmed et al had reported that
the G-protein-coupled receptor kinases (GRKs) had abnormal
expression level and the subcellular distribution in the basal
ganglia of the 6-OHDA-lesioned parkinsonian rats, and these
changes were not normalized by L-dopa treatment. Furthermore,
they found that the up-regulation GRK6 (a subtype of GRKs)
is similar in both 6-OHDA-lesioned PD rats and in MPTP-
monkeys (Ahmed et al., 2008). It is know that G protein–
coupled receptor kinases (GRKs) control desensitization of DA
receptors. They set out to use a lentiviral system to increase
the availability of GRK6 in the purpose to facilitation of the
receptor desensitization, this measure ameliorates dyskinesia
and increase duration of the antiparkinsonian action of L-
dopa. The lentivirus-mediated overexpression of GRK6 is a
promising method to alliviating the motor complications of
PD (Ahmed et al., 2010, 2015). Recently, a lot of studies
demonstrated that glycogen synthase kinase-3 activities was up-
regulate while treated with high dosage of L-dopa. It was also
reported that in MPTP-treated monkeys, increased activation
of GSK-3β was combine with the LID (Morissette et al., 2010).
It’s believed that GSK-3β was involved in the development of
LID. Inhibiting the expression of GSK-3β via RNA interference
might also be a possible approach to reduce the motor
symptoms.

RNA Interference-Based Therapy: A
Promising Class of Drug Therapy for PD
As a very important and resent part of gene therapy, RNA
interference (RNAi) is a very useful experimental tool for
diagnosis and therapy in PD. RNAi could almost silence any
selected gene, via which, we can conclude the genetic reason of a
certain disease (Dykxhoorn and Lieberman, 2005;Waseem, 2006;
Jadiya et al., 2015; Chaudhuri et al., 2016). When a long double-
strand RNA (dsRNA) produced by an introduced transgene
encounter a cell, an enzyme called dicer cut the long dsRNA into
small pieces named siRNAs, and then siRNA induced silencing
complex (RISC) picked the complementary sequence to the target
gene for silencing, so that no protein is produced (Novina and
Sharp, 2004; Konno et al., 2016).

RNA Interference and Gene of SNCA,
PINK, and Parkin
Scientists have done a lot of experiments on RNA interference of
SNCA (Nagarajan et al., 2015; Takahashi et al., 2015). In vitro,
they use polyethylene glycol-polyethyleneimine as a vector for
α-synuclein siRNA delivery to PC12 cell. The polyethylene
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TABLE 2B | In vivo and In vitro study of RNA interference therapy for PD.

Complexes Model animal Level of SCNA

In brain

Restoration of motor

I: In vivo

shSCNA

_T1-2

PD model flies Decreased Motor dysfunction increased

Depending upon the

reduction of SNCA

AAV-mir30-

hSCNA

Decreased Protect against the forelimb

deficit

Complexes Model cell Level of SNCA

II: In vitro

siSNCA_T1-2 PD patients’

fibroblast

Decreased endogenous SCNA to an half

level

The half level of SCNA is similar to that in

normal

siSCNA4 SH-SY5Y cell 7.69-fold reduction of SCNA mRNA

2.43-fold reduction of SCNA protein

siSCNA1 1.59-fold reduction of SCNA mRNA

1.51-fold reduction of SCNA protein

PEG-PEI/siSCNA PC12 Suppress SCNA mRNA expression

glycol-polyethyleneimine (PEG/PEI) siSNCA complex were
well developed and with low cytotoxicity. It shows high
transfection efficiency, suppressing the SNCA mRNA expression
and preventing cell from death via apoptosis induced by 1-
methyl-4-phenylpyridine (mpp+) (Liu et al., 2014). In vivo,
down-regulations of α-synuclein shows a promising future
for synucleinopathies in PD. Human SNCA gene silencing
with AAV-micro30-hSNCA in rat substantia nigra could have
benefits on forelimb behavior and substantia nigra dopaminergic
neuron loss, but these positive effects was compromised by
the inflammation which was triggered by the co-expression of
either silencing vector and the reduced Tyrosin hydrocylase-
immunoreactive expression (Bonin et al., 2004; Khodr et al.,
2014). Table 2b is the sum of In vivo and In vitro study of RNA
interference therapy for PD.

Some other researchers use the RNAi technique help to form a
specific biomarker to detect sporadic PD. Some researchers even
use skin fibroblast from PD patients and the control lines with
knock-down of PINK1, to investigate the expression changes of
SCNA, they reveal that the expression changes detected from the
two lines of cell may have the potential to see as a biomarker that
allow physician to diagnosis objective PD in an non-invasive way

(Hoepken et al., 2008). Mutations in PINK1 associated with early

onset autosomal recessive PD, loss of it also caused CI deficiency
(Zhang et al., 2013; Ng et al., 2014; Min et al., 2015). Furthermore,
PINK1 together with another PD gene, Parkin, co-regulates the
mitochondrial morphology and mitophagy (Ivatt et al., 2014).

CONCLUSION

In recent years, PD and levodopa-induced dyskinesia remains
to be a hard nut to crack. While L-dopa replacement therapy
trapped in a dilemma, gene therapy showed its vigorous vitality
in biology research. Gene therapy has made several heart-
stirring progresses: Maddalena et al. (2013) and Tereshchenko
et al. (2014) has develop the irreversible gene therapy into a
controllable, and reversible manner via the mifepristone as a
gene inducer, it make the gene therapy became useful even in
the less advanced PD patient, this method can also promoted to
other neurodegenerative disease while treated with gene therapy.
Ahemd et al. had use the lentivirus–mediated overexpression
of GRK6 to desensization the DA receptors, this approach had
get lot of benefits that is unattainable while directly targeting
the signaling pathways. But a lot of problems still remain: the
gene therapy we discussed above is directly sent the complexes
to the target area, how can we avoid the inflammation. In
the gene therapy of GDNF, weigh loss is a disturbing thing
remained unsolved, and the development of some antibody
against the GDNF was observed. With the advancing of the
biology, we hope to see more help from RNAi that rescue gene
deficit than is observed in diagnosis. However, applications of
the RNAi technique in clinical practice still have a long way
to go.
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