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Structural connectivity (SC) of white matter (WM) and functional connectivity (FC) of

cortical regions undergo changes in normal aging. As WM tracts form the underlying

anatomical architecture that connects regions within resting state networks (RSNs), it

is intuitive to expect that SC and FC changes with age are correlated. Studies that

investigated the relationship between SC and FC in normal aging are rare, and have

mainly compared between groups of elderly and younger subjects. The objectives of this

work were to investigate linear SC and FC changes across the healthy adult lifespan,

and to define relationships between SC and FC measures within seven whole-brain

large scale RSNs. Diffusion tensor imaging (DTI) and resting-state functional MRI

(rs-fMRI) data were acquired from 177 healthy participants (male/female = 69/108;

aged 18–87 years). Forty cortical regions across both hemispheres belonging to seven

template-defined RSNs were considered. Mean diffusivity (MD), fractional anisotropy

(FA), mean tract length, and number of streamlines derived from DTI data were used

as SC measures, delineated using deterministic tractography, within each RSN. Pearson

correlation coefficients of rs-fMRI-obtained BOLD signal time courses between cortical

regions were used as FC measure. SC demonstrated significant age-related changes in

all RSNs (decreased FA, mean tract length, number of streamlines; and increased MD),

and significant FC decrease was observed in five out of seven networks. Among the

networks that showed both significant age related changes in SC and FC, however, SC

was not in general significantly correlated with FC, whether controlling for age or not.

The lack of observed relationship between SC and FC suggests that measures derived

from DTI data that are commonly used to infer the integrity of WM microstructure are

not related to the corresponding changes in FC within RSNs. The possible temporal lag

between SC and FC will need to be addressed in future longitudinal studies to better

elucidate the links between SC and FC changes in normal aging.
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INTRODUCTION

It is widely accepted that the normal human aging process
involves changes in the brain’s structural and functional
connections. Understanding these changes will greatly improve
our ability to diagnose and treat age-related neurodegenerative
diseases, such as Alzheimer’s Disease (AD), amyotrophic lateral
sclerosis (ALS), and Parkinson’s Disease (PD) (Pievani et al.,
2014; Iturria-Medina and Evans, 2015; Gao andWu, 2016). Non-
invasive neuroimaging techniques including diffusion tensor
imaging (DTI) and resting-state functional MRI (rs-fMRI)
permit the investigation of white and gray matter connectivity
in the brain. Metrics derived from DTI are used to quantify
the white matter (WM) microstructure [termed structural
connectivity (SC)], and correlations of the blood oxygen level
dependent (BOLD) time signals computed from rs-fMRI are used
to quantify the strength of resting state functional connections
between distinct gray matter (GM) regions [termed functional
connectivity (FC)].

Several studies have independently used DTI and rs-fMRI
to demonstrate changes in SC and FC over the healthy
human lifespan. In general, DTI studies have observed a non-
linear inverted U-shaped trajectory association between age
and fractional anisotropy (FA), and an U-shaped trajectory
(opposite to FA) for axial, mean, and radial diffusivity (AD,
MD, RD, respectively; Westlye et al., 2010; Lebel et al.,
2012; Chen et al., 2013). Furthermore, previous studies have
also used DTI to demonstrate that the degree of age-related
cognitive decline correlates with WMmicrostructural alterations
(Madden et al., 2012; Hawkins et al., 2015). On the other
hand, rs-fMRI studies have reported both negative and positive
(as well as both linear and non-linear) associations between
age and FC, which were dependent on the brain region
under investigation (Wang et al., 2012; Cao et al., 2014;
Fjell et al., 2015a). In addition, rs-fMRI studies have also
demonstrated that cognitive decline is related to decreased FC
in the salience network (Onoda et al., 2012). As functionally
linked cortical regions are connected anatomically via the
underlying WM architecture (van den Heuvel et al., 2009),
investigating SC and FC simultaneously to determine their
interrelationship has the potential to provide a better, more
comprehensive, understanding of the brain changes associated
with aging.

The relationship between SC and FC, however, is not
straightforward. For example, in one case following complete
commissurotomy, FC was preserved across hemispheres between
regions associated with the default mode network (Uddin et al.,
2008). Similarly, another study showed no statistical differences
in inter-hemispheric FC between subjects with complete agenesis
of the corpus callosum and normal controls of comparable
age, gender and IQ (Tyszka et al., 2011). Hence, multiple
underlying (and possibly indirect) structural architectures must
exist to support functional networks. Indeed, studies of healthy
subjects have demonstrated strong FC between cortical regions
with direct structural (i.e., WM) connections, as well as
between regions in the absence of a direct WM pathway

(Koch et al., 2002; Honey et al., 2009). Furthermore, Honey
et al. (2009) also demonstrated that FC between indirectly
connected regions was mediated by WM tract distance. Hence,
these studies provide evidence that functionally connected
cortical regions of a resting-state network (RSN) are either
connected anatomically via a direct WM pathway or indirectly
via WM tracts through one or more intermediate cortical or
subcortical regions. However, whether the change in SC and
FC measures with age are correlated within multiple large-scale
RSNs across the healthy lifespan remains unknown or poorly
understood.

The first study to adopt a multi-modal analysis of SC and
FC demonstrated that FC between medial prefrontal cortex and
the posterior cingulate/retrosplenial cortex (regions associated
with the default mode network) was positively correlated with
mean FA of the superior longitudinal fasciculus and cingulum
WM tracts in elderly subjects (Andrews-Hanna et al., 2007).
Subsequent multi-modal studies that compared data between
two groups of subjects (i.e., young vs. elderly) demonstrated
that FA and MD were significantly correlated with FC (Fjell
et al., 2015b; Marstaller et al., 2015). To our knowledge, only
three recent studies have examined SC and FC data from
healthy subjects across the adult lifespan (Betzel et al., 2014;
Lee et al., 2015; Fjell et al., 2016). Using a graph theory analysis
approach, Betzel et al. showed that on average, FC remained
relatively constant over the adult lifespan for regions with
direct structural connections, but the change in FC with age
was progressively greater as the structural connection distance
between regions increased. Lee et al. demonstrated significant
increases in SC and FC with age between prefrontal cortex and
posterior regions of the parietal and temporal lobes, suggesting
the brain adapts to neural challenges during normal aging.
The study by Fjell et al. demonstrated a weak relationship
between SC and FC measures for certain major WM tracts and
their associated regions of the default mode network. While
these studies provided important insights into SC and FC
changes associated with normal aging, it remains unclear if WM
microstructural changes over the adult lifespan are correlated
with the corresponding FC changes within multiple large-scale
RSNs. As there are only few studies in literature that investigated
the relationship between SC and FC over the adult lifespan,
and the results reported are related to certain specific GM
regions and WM tracts, a study that investigates more broadly
across multiple commonly described RSNs and the associated
WM tracts is warranted in normal subjects over a wide age
span.

In this study, we hypothesized that WM SC (using
measurements of MD, FA, mean tract length, and number of
streamlines) derived from DTI data across the adult lifespan
are correlated with corresponding FC measures within seven
commonly described large-scale RSNs. The aims of this work
were to investigate (1) the relationship in SC and FC measures
with age, (2) sex differences of these measures with age, and
(3) the relationship between SC and FC measures, within seven
commonly described RSNs in healthy participants across the
adult lifespan.
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MATERIALS AND METHODS

Participants
As part of an on-going normative study (the Calgary Normative
Study) that was approved by the University of Calgary
Research Ethics Board, healthy community-dwelling participants
were recruited, initially screened over the phone, and only
those who indicated no known neurological diseases and
no contraindications to MR imaging were enrolled in the
study. Informed written consent and basic medical history
were obtained from each eligible participant prior to imaging.
Participants were excluded from the analysis if there were
medically significant incidental findings found on their MR
images. In addition to MR imaging, the Montreal Cognitive
Assessment (MoCA) was administered to each participant as a
brief screening tool for mild cognitive impairment or dementia.
Two hundred and twenty-one participants provided data for
this study. Five subjects were excluded from our analysis due to
incidentally discovered, potentially medically significant findings
(1 subject), incomplete scan or missing data (2 subjects), or poor
quality DTI data (2 subjects). Furthermore, 39 (male/female =

17/22) participants who obtained scores of <26 (out of 30) on
the MoCA were excluded, as this falls outside the normal range.
Subsequently, 177 subjects (aged 18–87 years; male/female =

69/108; Table 1) were included in the study.

Image Acquisition
MR imaging was performed on a 3.0 T clinical scanner
(Discovery MR750; GE Healthcare, Waukesha, WI) using a 12-
channel phased-array head coil. The image acquisition protocol
included DTI, rs-fMRI, T2-weighted FLAIR, and T1-weighted
imaging sequences. DTI acquisition employed a single-shot spin-
echo echo-planar imaging (EPI) sequence [echo time (TE) =

80 ms; repetition time (TR) = 9,000 or 10,000 ms; 48–52
contiguous 3-mm thick slices; field of view (FOV) = 240 ×

240 mm; acquired matrix = 80 × 80 interpolated to 256 ×

256; reconstructed in-plane resolution = 0.94 × 0.94 mm]
with diffusion sensitizing gradients applied in 31 non-collinear
directions (b = 1000 s/mm2) and 4 b = 0 s/mm2 volumes. rs-
fMRI acquisition consisted of a single-shot gradient-echo EPI
sequence (TE = 30 ms; TR = 2,000 ms; 37 contiguous 3.8-mm
thick slices; acquired matrix = 64 × 64; FOV = 240 × 240 mm;
reconstructed voxel size = 3.8 mm isotropic) and acquired 150
whole brain volumes over a 5-min interval. T2-weighted FLAIR
images were acquired using an inversion recovery prepared fast
spin echo sequence [flip angle = 111◦; inversion time (TI) =
2,250 ms; TE = 141.4 ms; TR = 9,000 ms; 48 contiguous 3-mm
thick slices, FOV = 240 × 240 mm; reconstructed voxel size =

0.94× 0.94 mm]. T1-weighted anatomical images were acquired
using a 3D inversion recovery prepared spoiled gradient-echo
sequence [flip angle = 8◦; inversion time (TI) = 650 ms; TE
= 2.5 ms; TR = 6.3 ms; acquired matrix size = 256 × 256
× 166; phase FOV = 85%; reconstructed voxel size = 1 mm
isotropic].

Image Processing
Identification of Cortical Regions
Images from each subject were processed using an in-house
automated pipeline developed from freely available software
packages and a semi-automated tool (Cerebra-WML; Gobbi
et al., 2012) for WM hyper-intensity mask identification (see
Figure 1). A cortical parcellation atlas (Yeo et al., 2011) was used
to define cortical regions related to seven resting-state networks
(RSNs). The atlas was constructed by processing rs-fMRI data
acquired from 1,000 healthy participants and used a clustering
algorithm to parcellate the cortex into multiple RSNs. There
are other whole-brain atlases available with cortical parcellation
including (Auzias et al., 2016; Fan et al., 2016) that can also be
used in such multi-modal analysis, but the template by Yeo et al.
was chosen as it is widely adopted by many previous studies.
The coarse-resolution seven RSNs parcellation was chosen
from the selected template atlas over the fine-resolution 17
networks parcellation simply to reduce computing resources and
processing times. Nevertheless, the coarse parcellation accurately
reflects seven distinct and commonly identified RSNs. Regions
within each network were extracted based on four pre-specified
anatomical lobes (i.e., frontal, parietal, temporal, occipital) and
resulted in the identification of 40 cortical regions across both
hemispheres. Specifically, cortical regions in each hemisphere for
the seven networks were

(1) visual network: occipital, intraparietal, inferior temporal
regions;

(2) somato-motor network: posterior frontal, anterior parietal,
superior, and anterior temporal regions;

(3) dorsal attention network: superior frontal, superior parietal,
posterior temporal regions;

(4) ventral attention network: inferior medial frontal, inferior
lateral and superior medial parietal, superior temporal
regions;

(5) limbic network: inferior prefrontal, inferior temporal
regions;

(6) frontal-parietal network: lateral frontal, superior posterior
parietal, inferior temporal regions; and

(7) default mode network: medial lateral frontal, inferior
parietal, lateral temporal regions.

TABLE 1 | Summary of study subject characteristics.

Age 18–29 30–39 40–49 50–59 60–69 70–87

Number 38 30 27 33 30 19

Male/Female 15/23 14/16 8/19 16/17 11/19 5/14

MoCA score (mean ± SD) 28.9 ± 1.2 28.4 ± 1.2 28.2 ± 1.2 28.1 ± 1.5 27.9 ± 1.2 27.3 ± 1.3
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FIGURE 1 | In-house developed pipeline used to process MR imaging data of each subject. Data processing and analysis through this pipeline was

performed on an iMac (2.9GHz quad-core Intel Core i5; 32GB 1600MHz DDR3 memory) and high performance computing clusters (https://www.westgrid.ca; used to

generate cortical surface labels—explained above). SC and FC measures were derived for each resting-state network (RSN). Subsequently, the values of each

connectivity measure were averaged in each network.

Cortical surface labels using T1-weighted images were obtained
from each subject (FreeSurfer; http://surfer.nmr.mgh.harvard.
edu) and were used to transform each region from the atlas space
to the subject native space. Subsequently, the 40 cortical regions
were transformed to the subject DTI and rs-fMRI spaces for
analysis.

Measurement of Structural Connectivity (SC)
DTI data were first corrected for motion and eddy current
distortion using FSL (FMRIB Software Library, version 5.0.8;
http://www.fmrib.ox.ac.uk/fsl; Jenkinson et al., 2012). Maps of
MD and FA were computed from the DTI data (Diffusion
Toolkit; http://trackvis.org/dtk/), as well as statistics of mean
tract length and number of streamlines were extracted from the
tractography algorithm. Whole brain WM tracts were delineated
by deterministic tractography using the second order Runge-
Kutta algorithm (Basser et al., 2000) with the FA threshold set
to 0.20 to exclude gray matter voxels and the angle threshold
set to 35◦ to exclude tracks with sharp curvature. The 40
cortical regions from the template were first dilated and used
as seeding/target regions to delineate WM tracts that either
originate or terminate at each cortical GM region of the seven
RSNs (TrackVis; http://trackvis.org). Example of the cortical

seeding regions used for the visual network and the associated
WM tracts delineated is shown in Figure 2. WM hyper-intensity
voxels were excluded from FA and MD maps using the masks
defined from FLAIR images.

Measurement of Functional Connectivity (FC)
The rs-fMRI data were first processed using the FSL package
and included skull stripping (Brain Extraction Tool, BET;
Smith, 2002), interleaved slice timing correction and motion
correction (MCFLIRT algorithm; Jenkinson et al., 2002),
spatial smoothing (6-mm full width at half maximum), and
temporal high-pass filtering (>0.01 Hz) to eliminate low
frequency artifacts. Noise components in the pre-processed data
were removed using independent component analysis-based
methods (FSL Xnoiseifier, FIX; Salimi-Khorshidi et al., 2014).
In addition, the time-points of large motion perturbations in
the original four-dimensional resting-state time series dataset
were identified (FSL Motion Outliers) using a threshold of 0.2
mm (a stringent threshold for scrubbing; Power et al., 2014)
applied for frame-wise displacement. A confound matrix was
created for the large motion time-points and was included as
additional event variable in the analysis to remove nuisance
variables from the resting-state dataset (FMRI Expert Analysis

Frontiers in Aging Neuroscience | www.frontiersin.org 4 May 2017 | Volume 9 | Article 144

https://www.westgrid.ca
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://www.fmrib.ox.ac.uk/fsl
http://trackvis.org/dtk/
http://trackvis.org
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Tsang et al. Brain Connectivity in Healthy Adults

FIGURE 2 | Delineation of WM tracts using TrackVis in the visual resting-state network (RSN). The red, yellow, and green regions are the occipital, parietal,

and temporal regions of the visual RSN, and the voxels in blue represent the WM voxels of all the tracts that are part of the RSN.

FIGURE 3 | Representative plots of SC and FC measures for all subjects (blue asterisk, male; red circle, female) for the ventral attention network. The

blue and red dash lines in each plot represent the linear trajectory to model the change of SC and FC measures with age for all male and female subjects, respectively.

The Pearson correlation coefficient (r), and the corresponding uncorrected p-value, for each connectivity measure with age by sex is also shown.
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Tool, FEAT). Cerebrospinal fluid (CSF) and WM masks were
manually drawn on T1-weighted images from each subject
and then transformed into the rs-fMRI image space. Six
motion parameters and the average time series from CSF
and WM masks were regressed out as nuisance variables
(FEAT) from the pre-processed noise reduced (FIX) four-
dimensional rs-fMRI dataset. The time-point volumes with
motion greater than the threshold were removed from the
“cleaned” rs-fMRI dataset. Average rs-fMRI-obtained BOLD
signal of all voxels within individual regions from this processed
dataset was computed for all time points for subsequent
analysis (MATLAB R2015b; MathWorks, Natick, MA). Pearson
correlation coefficients (r) of the averaged BOLD signal time
series between pairs of regions in each network were converted
to z-scores using Fisher’s r-to-z transformation {z = 0.5 × ln [(1
+ r)/(1− r)]}.

Statistical Analyses
Average SC and FC measures were computed for each network,
and these data were used for all the statistical analyses (SPSS
version 22.0; IBM Corp, Armonk, NY). In all analyses, the
critical value was chosen as α = 0.05 and multiple comparison
corrections were applied across the seven networks using the
Bonferroni method (Holm, 1979). Therefore, p < α/7 ≈ 0.007
were considered to be significant.

The following statistical tests (T1 to T4) were performed to
address the three objectives of this study:

T1: Pearson correlations of each SC and FC measure with age in
each network.

T2: Pearson correlations of each SC and FC measure with age
in each network for male and female subjects separately.
Following this, the slope of the linear regression line for each
connectivity measure was tested for sex differences using t-
tests provided in the Real Statistics Resource Pack software
(Release 4.3; Zaiontz, 2013–2015).

T3: In addition to testing the age relationship with SC and
FC measures above, we tested whether sex is a significant
predictor of SC and FC using multiple linear regression.
Both age and sex were added into a model (SC or FC= β0 +

β1
∗ age+ β2

∗ sex) using stepwise selection input method.
T4: Pearson correlations between each SC measure and FC

in each network. In addition, partial correlations were
performed to control for the effect of age thatmay affect both
SC and FC.

RESULTS

SC and FC Changes with Age (T1)
A representative example of the relationships between SC and FC
measure changes with age for the ventral attention network is
shown in Figure 3. All four SCmeasures (i.e., FA,MD,mean tract
length, number of streamlines) were significantly correlated with
age in all networks (Table 2). FA, mean tract length, and number
of streamlines were decreased with age, while MD was increased
with age. On the other hand, there was a general trend of FC
decrease with age in all networks. FC was significantly negatively

TABLE 2 | Pearson correlation coefficients (r) and slopes of the linear

regression lines of SC (i.e., MD, FA, mean tract length, number of

streamlines) and FC (i.e., Fisher’s r-to-z transformed Pearson correlation

coefficient) measures with age in each resting-state network (RSN).

RSN Connectivity measure Slope r p

Visual MD (mm2/s) 6.53E-07 0.42 <0.001*

FA −4.08E-04 −0.54 <0.001*

Tract length (mm) −1.67E-01 −0.42 <0.001*

Num streamlines −1.12E+02 −0.42 <0.001*

FC −6.31E-04 −0.06 0.403

Somato-motor MD (mm2/s) 3.81E-07 0.35 <0.001*

FA −1.94E-04 −0.31 <0.001*

Tract length (mm) −1.24E-01 −0.41 <0.001*

Num streamlines −1.28E+02 −0.37 <0.001*

FC −2.75E-03 −0.22 0.003*

Dorsal attention MD (mm2/s) 2.76E-07 0.24 0.001*

FA −3.49E-04 −0.49 <0.001*

Tract length (mm) −1.94E-01 −0.50 <0.001*

Num streamlines −1.08E+02 −0.42 <0.001*

FC −2.28E-03 −0.24 0.001*

Ventral attention MD (mm2/s) 6.11E-07 0.48 <0.001*

FA −2.99E-04 −0.44 <0.001*

Tract length (mm) −1.43E-01 −0.47 <0.001*

Num streamlines −1.17E+02 −0.43 <0.001*

FC −3.35E-03 −0.29 <0.001*

Limbic MD (mm2/s) 5.94E-07 0.40 <0.001*

FA −3.88E-04 −0.50 <0.001*

Tract length (mm) −1.45E-01 −0.43 <0.001*

Num streamlines −1.04E+02 −0.49 <0.001*

FC −2.21E-03 −0.21 0.004*

Frontal-parietal MD (mm2/s) 6.04E-07 0.47 <0.001*

FA −4.55E-04 −0.57 <0.001*

Tract length (mm) −2.12E-01 −0.62 <0.001*

Num streamlines −1.95E+02 −0.51 <0.001*

FC −1.90E-03 −0.21 0.006*

Default mode MD (mm2/s) 6.90E-07 0.50 <0.001*

FA −4.28E-04 −0.57 <0.001*

Tract length (mm) −1.87E-01 −0.57 <0.001*

Num streamlines −2.86E+02 −0.54 <0.001*

FC −1.89E-03 −0.18 0.016

*statistically significant after multiple comparison correction using the Bonferroni method.

correlated with age in five out of seven RSNs (somato-motor,
dorsal attention, ventral attention, limbic, and frontal-parietal).

Sex Differences in SC and FC Changes
with Age (T2)
The slope of the linear regression lines for all SC and FCmeasures
with age were not statistically different between male and female
subjects in any network (Table 3).
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Other Predictors of SC and FC (T3)
Multiple linear regression analysis found that both the age and
sex terms were significant for FA, mean tract length, and number
of streamlines in all networks except in the visual network (only
the age term was significant for FA). ForMD and FC, only the age
term was significant in all cases except in the visual network (FC
remained unchanged with age; Table 4).

Relationships between SC and FC (T4)
An example of Pearson correlations between SC and FC in
the somato-motor network is shown in Figure 4. The four SC
measures were not correlated with FC in all networks, except
that the mean tract length in the somato-motor and ventral
attention networks, and number of streamlines in the frontal-
parietal network, were significantly related to FC (Table 5).

TABLE 3 | Pearson correlation coefficients (r) and slopes of the linear regression lines of SC (i.e., MD, FA, mean tract length, number of streamlines) and

FC (i.e., Fisher’s r-to-z transformed Pearson correlation coefficient) measures with age for male and female subjects in each resting-state network (RSN).

RSN Connectivity measure Male Female

Slope r p Slope r p t p

Visual MD (mm2/s) 5.57E−07 0.39 0.001* 7.11E−07 0.43 <0.001* 0.68 0.499

FA −3.64E−04 −0.48 <0.001* −4.23E−04 −0.57 <0.001* −0.59 0.553

Tract length (mm) −7.57E−02 −0.21 0.083 −2.09E−01 −0.52 <0.001* −2.43 0.016

Num streamlines −8.54E+01 −0.30 0.012 −1.18E+02 −0.50 <0.001* −0.90 0.372

FC −1.17E−04 −0.01 0.921 −8.27E−04 −0.08 0.402 −0.45 0.655

Somato-motor MD (mm2/s) 2.82E−07 0.26 0.029 4.37E−07 0.40 <0.001* 0.96 0.337

FA −1.65E−04 −0.25 0.043 −1.94E−04 −0.35 <0.001* −0.32 0.753

Tract length (mm) −8.42E−02 −0.31 0.011 −1.37E−01 −0.46 <0.001* −1.26 0.209

Num streamlines −1.03E+02 −0.30 0.013 −1.28E+02 −0.43 <0.001* −0.53 0.596

FC −2.94E−03 −0.24 0.047 −2.52E−03 −0.20 0.039 0.21 0.832

Dorsal attention MD (mm2/s) 1.51E−07 0.13 0.290 3.46E−07 0.30 0.002* 1.10 0.273

FA −2.69E−04 −0.36 0.003* −3.79E−04 −0.56 <0.001* −1.12 0.263

Tract length (mm) −1.29E−01 −0.34 0.004* −2.23E−01 −0.58 <0.001* −1.77 0.079

Num streamlines −8.40E+01 −0.31 0.010 −1.12E+02 −0.50 <0.001* −0.79 0.433

FC −2.57E−03 −0.25 0.037 −1.97E−03 −0.22 0.022 0.41 0.681

Ventral attention MD (mm2/s) 4.81E−07 0.39 0.001* 6.83E−07 0.53 <0.001* 1.14 0.256

FA −2.84E−04 −0.40 0.001* −2.94E−04 −0.46 <0.001* −0.11 0.912

Tract length (mm) −1.40E−01 −0.48 <0.001* −1.38E−01 −0.45 <0.001* 0.06 0.950

Num streamlines −1.05E+02 −0.39 0.001* −1.12E+02 −0.47 <0.001* −0.22 0.829

FC −3.44E−03 −0.29 0.016 −3.12E−03 −0.28 0.003* 0.18 0.855

Limbic MD (mm2/s) 5.00E−07 0.34 0.004* 6.42E−07 0.43 <0.001* 0.67 0.507

FA −3.35E−04 −0.43 <0.001* −4.03E−04 −0.54 <0.001* −0.65 0.517

Tract length (mm) −1.10E−01 −0.33 0.006* −1.55E−01 −0.48 <0.001* −0.96 0.339

Num streamlines −1.02E+02 −0.44 <0.001* −9.75E+01 −0.54 <0.001* 0.15 0.881

FC −3.35E−04 −0.03 0.812 −3.25E−03 −0.34 <0.001* −1.83 0.069

Frontal-parietal MD (mm2/s) 5.30E−07 0.42 <0.001* 6.51E−07 0.49 <0.001* 0.66 0.510

FA −4.16E−04 −0.51 <0.001* −4.63E−04 −0.59 <0.001* −0.45 0.656

Tract length (mm) −1.87E−01 −0.60 <0.001* −2.20E−01 −0.63 <0.001* −0.78 0.439

Num streamlines −1.82E+02 −0.48 <0.001* −1.87E+02 −0.57 <0.001* −0.11 0.910

FC −1.62E−03 −0.17 0.172 −1.91E−03 −0.22 0.023 −0.20 0.840

Default mode MD (mm2/s) 5.72E−07 0.44 <0.001* 7.58E−07 0.53 <0.001* 0.96 0.337

FA −4.18E−04 −0.54 <0.001* −4.21E−04 −0.59 <0.001* −0.03 0.975

Tract length (mm) −1.43E−01 −0.47 <0.001* −2.05E−01 −0.62 <0.001* −1.49 0.139

Num streamlines −2.51E+02 −0.45 <0.001* −2.85E+02 −0.62 <0.001* −0.53 0.598

FC −2.27E−03 −0.21 0.078 −1.59E−03 −0.15 0.112 0.41 0.682

The t-statistics (female–male) and corresponding p-values are shown to indicate sex differences between the slopes.

*statistically significant after multiple comparison correction using the Bonferroni method.
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TABLE 4 | Multiple linear regression of SC (i.e., MD, FA, mean tract length, number of streamlines) and FC (i.e., Fisher’s r-to-z transformed Pearson

correlation coefficient) measures in each resting-state network (RSN).

RSN Connectivity measure Model Coefficients

β1 p β2 p R2

Visual MD a 6.53E−07 <0.001 – – 0.173

FA a −4.08E−04 <0.001 – – 0.291

Tract length (mm) b −1.62E−01 <0.001 2.17E+00 0.018 0.206

Num streamlines b −1.07E+02 <0.001 2.70E+03 <0.001 0.261

FC – – – – – –

Somato-motor MD a 3.81E−07 <0.001 – – 0.124

FA b −1.84E−04 <0.001 4.94E−03 0.001 0.151

Tract length (mm) b −1.19E−01 <0.001 2.57E+00 <0.001 0.230

Num streamlines b −1.19E+02 <0.001 4.35E+03 <0.001 0.277

FC a −2.75E−03 0.003 – – 0.048

Dorsal attention MD a 2.76E−07 0.001 – – 0.057

FA b −3.41E−04 <0.001 4.10E−03 0.011 0.264

Tract length (mm) b −1.90E−01 <0.001 2.21E+00 0.011 0.275

Num streamlines b −1.02E+02 <0.001 2.94E+03 <0.001 0.283

FC a −2.28E−03 0.001 – – 0.057

Ventral attention MD a 6.11E−07 <0.001 – – 0.231

FA b −2.91E−04 <0.001 4.18E−03 0.008 0.227

Tract length (mm) b −1.38E−01 <0.001 2.34E+00 0.001 0.266

Num streamlines b −1.09E+02 <0.001 3.72E+03 <0.001 0.341

FC a −3.35E−03 <0.001 – – 0.085

Limbic MD a 5.94E−07 <0.001 – – 0.163

FA b −3.79E−04 <0.001 4.33E−03 0.012 0.279

Tract length (mm) b −1.39E−01 <0.001 2.90E+00 <0.001 0.244

Num streamlines b −9.90E+01 <0.001 2.25E+03 <0.001 0.332

FC a −2.21E−03 0.004 – – 0.046

Frontal-parietal MD a 6.04E−07 <0.001 – – 0.217

FA b −4.46E−04 <0.001 4.24E−03 0.013 0.344

Tract length (mm) b −2.08E−01 <0.001 1.68E+00 0.016 0.402

Num streamlines b −1.85E+02 <0.001 4.87E+03 <0.001 0.402

FC a −1.90E−03 0.006 – – 0.043

Default mode MD a 6.90E−07 <0.001 – – 0.246

FA b −4.20E−04 <0.001 3.92E−03 0.013 0.353

Tract length (mm) b −1.83E−01 <0.001 2.07E+00 0.003 0.359

Num streamlines b −2.73E+02 <0.001 6.17E+03 <0.001 0.400

FC a −1.89E−03 0.016 – – 0.033

aSC/FC ∼ β1*age.
bSC/FC ∼ β1*age + β2*sex.

Partial correlations did not reveal any significant relationship
between SC and FC after controlling for the effect of age.

DISCUSSION

In this study, the four SC measures demonstrated significant
age-related changes in all seven RSNs across the healthy adult
lifespan, while FC demonstrated significant age-related changes

in four of the seven networks. In general, SC measures were not
related to FC suggesting that WM microstructure as inferred
from the SC measures derived from DTI data do not correlate
with the corresponding cortical FC changes within a RSN.

SC and FC Changes with Age
The observed correlations of SC and FC measures with
age among all seven networks are consistent with published
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FIGURE 4 | Plots showing the linear relationship between SC (i.e., MD, FA, mean tract length, number of streamlines) and FC measures for the

somato-motor network. The Pearson correlation coefficient (r), and the corresponding uncorrected p-value, for each SC measure with FC is also shown. In this

network, only mean tract length was significantly correlated with FC.

independent DTI (Westlye et al., 2010; Lebel et al., 2012; Chen
et al., 2013) and rs-fMRI (Mevel et al., 2013; Cao et al., 2014; Fjell
et al., 2015a) human brain aging studies. In these studies, other
trajectories, such as quadratic or Poisson trajectories, were used
to model age-related changes in SC (FA, MD, AD, RD) or FC
across wider age ranges that included children and adolescents.
Visual inspection of these published results for SC and FC
changes in adulthood (≥18 years, the age range of participants
in this study) shows the trend to more closely resemble a linear
trajectory, which serves as a good approximation for SC and
FC measures in this work. However, longitudinal and/or larger
studies that include child and adolescent participants may better
be able to elucidate the exact trajectories. Results for the other
two SC measures in this study (i.e., mean tract length and
number of streamlines) are also consistent with literature. A
recent study that analyzed DTI data from 121 subjects between
age 4 and 40 years demonstrated significant decrease in the
number of streamlines, and the loss of streamlines occurred
earlier in females than in males (Lim et al., 2015). The mean tract
length decrease observed in this study was also consistent with
two earlier studies that demonstrated WM fiber bundle length
decrease in healthy adults over 50 years of age (Baker et al., 2014;
Behrman-Lay et al., 2015).

Sex Differences in SC and FC
A significant effect of sex in the regression model was observed
for FA, tract length, and number of streamlines across all
networks except for FA in the visual network (Table 4). These
three SC measures demonstrated significantly higher mean

values in males. There was no significant difference between
male and female subjects observed for MD. Our results agree
with sex differences in FA (higher in male over female) of
certain major WM tracts reported in previous studies (Hsu et al.,
2008; Lebel et al., 2012). Higher mean FC was observed for
males, though the sex term in the regression model was not
significant for FC in any network. Sex differences in FC in
healthy adults have been reported in previous studies using graph
theory (Cao et al., 2014; Scheinost et al., 2015), however, not in
previous rs-fMRI aging studies in normal adults that used the
same FC metric as this work (i.e., z-transformed correlation of
the averaged BOLD time signal; Wang et al., 2012; Fjell et al.,
2015a).

Relationship between SC and FC
In general, SC measures for WM tracts were not correlated
with FC. However, some measures had correlations that
were significant at a trend level, before multiple comparison
correction (i.e., p < 0.05), suggesting that a weak relationship
may exist between SC and FC in this sample (Table 5).
Spatial averaging of metrics within a network could mask
possible relationships between SC and FC in more spatially
localized areas. Further analysis was performed to address
this concern. All combinations of pairs of regions in each
network were used as seed regions in the tractography
algorithm, but only those with delineated WM tracts
connecting them were considered in this analysis. The
more spatially specific correlations of SC (i.e., FA, MD,
tract length, number of streamlines) and FC for relevant
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TABLE 5 | Pearson and partial (removing the age effect) correlation

coefficients (r) of SC (i.e., MD, FA, tract length, num streamlines) with FC

(i.e., Fisher’s r-to-z transformed Pearson correlation coefficient) measures

in each resting-state network (RSN).

RSN Structural

connectivity

measure

Pearson correlations Partial correlations

r p r p

Visual MD (mm2/s) 0.04 0.565 0.08 0.310

FA 0.00 0.986 −0.04 0.578

Tract length (mm) 0.04 0.563 0.02 0.806

Num streamlines 0.09 0.238 0.07 0.362

Somato-

motor

MD (mm2/s) −0.07 0.383 0.01 0.875

FA 0.03 0.727 −0.05 0.554

Tract length (mm) 0.25 0.001* 0.18 0.018

Num streamlines 0.14 0.059 0.07 0.377

Dorsal

attention

MD (mm2/s) 0.03 0.706 0.09 0.229

FA 0.11 0.160 −0.01 0.875

Tract length (mm) 0.16 0.030 0.05 0.490

Num streamlines 0.19 0.012 0.10 0.189

Ventral

attention

MD (mm2/s) −0.07 0.345 0.08 0.280

FA 0.07 0.353 −0.07 0.368

Tract length (mm) 0.21 0.004* 0.09 0.227

Num streamlines 0.19 0.012 0.07 0.332

Limbic MD (mm2/s) −0.05 0.529 0.04 0.570

FA 0.07 0.342 −0.04 0.579

Tract length (mm) 0.01 0.918 −0.09 0.213

Num streamlines 0.02 0.763 −0.10 0.209

Frontal-

parietal

MD (mm2/s) −0.01 0.917 0.10 0.175

FA 0.11 0.166 −0.02 0.836

Tract length (mm) 0.10 0.209 −0.04 0.569

Num streamlines 0.21 0.005* 0.12 0.101

Default

mode

MD (mm2/s) −0.15 0.048 −0.07 0.359

FA 0.14 0.071 0.04 0.595

Tract length (mm) 0.12 0.111 0.02 0.778

Num streamlines 0.14 0.068 0.05 0.513

*Indicate statistical significance after multiple comparison corrections.

pairs of regions in each network are shown in Table 6.
Both network-averaged and more spatially specific results
showed a lack of significant relationship between SC and
FC, which is contrary to our hypothesis, and suggest that
the changes in WM microstructure do not play a significant
role in the corresponding changes in FC within large-scale
RSNs.

The relationship between SC and FC has been explored
previously within younger and elderly healthy participants in
different studies (Andrews-Hanna et al., 2007; Fjell et al., 2015b;
Marstaller et al., 2015; Hirsiger et al., 2016), however, results
have been inconsistent. The first study by Andrews-Hanna
et al. demonstrated a significant positive linear relationship
between FC and FA (FC measured for the prefrontal cortex

and retrosplenial/posterior cingulate cortex in the default
mode network, and FA measured in a large WM region that
included tracks connecting anterior to posterior regions) in
elderly subjects. Similarly, subsequent studies by Fjell et al.
and Marstaller et al. demonstrated that in younger subjects,
FA of the uncinate was negatively correlated with FC between
hippocampus and cortical regions (Fjell et al.), and global FA
was negatively correlated with FC in the prefrontal regions of
frontal-parietal and salience networks (FPN and SN; Marstaller
et al.). In elderly subjects, MD of the cingulate bundle was
positively correlated with FC between caudate and cortical
regions (Fjell et al.), and global MD was positively correlated
with FC in the prefrontal regions of FPN and SN (Marstaller
et al.). While these studies demonstrated significant relationships
between FC and FA or MD, a recent study by Hirsiger
et al. did not find any significant relationships between FC
(measured between posterior cingulate cortex and medial
prefrontal cortex) and either AD, MD, RD, or FA (measured
from the cingulum bundle) in healthy elderly subjects. During
the preparation of this manuscript, another study similar
to our present study was published (Fjell et al., 2016) and
demonstrated modest relationship between SC and FC measures
only within certain regions of the default mode network.
It should be pointed out that the results reported by Fjell
et al. were essentially derived from data obtained between
two age groups of participants between 20 and 40 years and
above 60 years, with only one participant around 50 years of
age.

The results from the present cross-sectional study across the
adult lifespan with relatively even number of participants in each
decade of adulthood, rather than comparing between groups
of elderly and younger subjects, show that the change in WM
microstructure is not significantly related to the corresponding
change in FC within the seven RSNs tested, contrary to our
expectation.

Study Limitations
This study has a number of limitations. First there is a gender
imbalance, which is most pronounced in the middle aged
(40–49 years) and elderly (>60 years) groups. Sex differences
were observed in SC in most networks, but there were no
significant age-sex interactions. Therefore, we believe that results
are generalizable to both women and men, though future
studies should investigate sex differences further. Second, the
question related to whether WM microstructural changes in
normal aging precede FC changes cannot be addressed in this
cross-sectional study. Future longitudinal studies will need to
test age-related changes within individuals to better elucidate
the relationships of SC and FC. Third, we used template-
defined RSNs that do not allow for potential changes in
the topography of these networks with age. It would be
an interesting avenue for future study to incorporate spatial
and temporal lifespan changes into networks defined by age
group or at an individual level. Furthermore, we have not
comprehensively investigated the relationship of SC and FC
in all RSNs, for example, the salience network that was
not part of the template was not included in the analysis.
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TABLE 6 | Pearson correlation coefficients (r) of SC with FC measures for individual pairs of regions in each resting stating network (RSN).

MD vs. FC FA vs. FC Tract length vs. FC Number of streamlines vs. FC

RSN Region pair r p r p r p r p

Visual lh_OL—lh_PL 0.12 0.114 −0.12 0.111 0.00 0.988 0.11 0.145

lh_OL—lh_TL 0.00 0.957 0.11 0.144 0.05 0.492 0.14 0.067

lh_OL—rh_OL −0.15 0.045 0.06 0.455 0.11 0.139 0.19 0.013

lh_OL—rh_PL 0.18 0.017 −0.02 0.797 0.07 0.337 −0.08 0.307

lh_PL—rh_OL −0.07 0.389 −0.09 0.240 −0.02 0.796 0.11 0.160

lh_PL—rh_PL −0.12 0.118 −0.02 0.826 0.07 0.379 0.02 0.806

rh_OL—rh_PL 0.13 0.081 −0.18 0.018 −0.11 0.138 0.05 0.501

rh_OL—rh_TL −0.05 0.506 0.05 0.517 0.14 0.068 0.19 0.010

rh_PL—rh_TL −0.01 0.920 0.04 0.618 0.10 0.220 −0.04 0.593

Somato-motor lh_FL—lh_PL 0.08 0.288 −0.02 0.842 0.02 0.842 −0.04 0.553

lh_FL—rh_FL 0.08 0.314 −0.01 0.885 0.02 0.814 0.17 0.028

lh_FL—rh_PL 0.10 0.204 −0.03 0.713 0.10 0.201 0.07 0.403

lh_PL—lh_TL −0.11 0.142 −0.05 0.523 −0.03 0.714 0.03 0.659

lh_PL—rh_FL 0.03 0.711 0.06 0.450 0.07 0.389 −0.06 0.421

lh_PL—rh_PL 0.02 0.828 −0.03 0.735 0.13 0.108 0.07 0.354

rh_FL—rh_PL 0.09 0.247 0.11 0.137 0.15 0.050 0.11 0.133

rh_PL—rh_TL −0.12 0.107 0.05 0.546 −0.02 0.751 −0.06 0.429

Ventral attention lh_FL—lh_PL 0.05 0.509 −0.02 0.786 −0.02 0.752 −0.07 0.325

lh_FL—rh_FL −0.04 0.602 0.13 0.079 −0.05 0.488 0.17 0.022

lh_PL—lh_TL 0.01 0.862 0.09 0.256 0.13 0.107 0.13 0.108

lh_PL—rh_PL 0.08 0.281 0.02 0.777 0.12 0.115 0.02 0.839

rh_FL—rh_PL −0.07 0.387 −0.06 0.460 0.00 0.962 0.04 0.612

rh_PL—rh_TL 0.03 0.687 0.03 0.663 0.10 0.194 0.10 0.186

Limbic lh_FL—lh_TL −0.01 0.889 0.08 0.284 0.08 0.294 −0.06 0.422

lh_FL—rh_FL −0.19 0.015 0.15 0.054 0.15 0.044 0.01 0.944

rh_FL—rh_TL −0.07 0.346 0.06 0.416 0.04 0.637 −0.11 0.172

Frontal-parietal lh_FL—lh_PL 0.05 0.530 0.00 0.999 0.03 0.665 0.09 0.266

lh_FL—rh_FL 0.05 0.543 0.08 0.286 0.19 0.012 −0.07 0.358

lh_PL—rh_PL −0.01 0.882 0.08 0.313 0.07 0.339 0.02 0.779

rh_FL—rh_PL −0.12 0.113 0.04 0.643 0.02 0.790 0.09 0.211

rh_PL—rh_TL 0.03 0.705 −0.04 0.581 −0.06 0.430 0.18 0.016

Default mode lh_FL—lh_PL 0.05 0.550 0.02 0.812 0.02 0.764 0.02 0.821

lh_FL—lh_TL −0.05 0.499 −0.03 0.676 0.09 0.277 0.04 0.640

lh_FL—rh_FL 0.04 0.635 0.09 0.230 0.08 0.276 0.06 0.447

lh_PL—lh_TL −0.05 0.500 0.17 0.026 0.12 0.123 0.14 0.070

lh_PL—rh_PL −0.09 0.222 0.06 0.402 0.14 0.057 0.05 0.501

rh_FL—rh_PL −0.16 0.040 −0.04 0.566 0.04 0.605 0.15 0.047

rh_FL—rh_TL −0.22 0.005 0.18 0.020 0.15 0.056 0.12 0.117

rh_PL—rh_TL −0.06 0.445 0.02 0.745 −0.02 0.743 0.11 0.130

lh, left hemisphere; rh, right hemisphere; FL, frontal lobe; OL, occipital lobe; PL, parietal lobe; TL, temporal lobe.

Future studies are needed to explore other networks that have
been omitted in this work. Finally, despite the importance
of DTI based tractography algorithms to provide quantitative
measures to characterize WM microstructure integrity and
architecture, these algorithms are limited to provide accurate

delineation of the anatomical structural connections (Thomas
et al., 2014). This latter observation may lead to spurious or
missed WM tracts that belong to RSNs. Furthermore, one
difference across studies of SC and FC relates to the choice of
tractography algorithm used. It was shown recently that both
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deterministic and probabilistic tractography algorithms yielded
similar relationships between SC with FC in regions associated
with the default mode network (Khalsa et al., 2014). However,
another study showed that both deterministic and probabilistic
tractography algorithms underestimated the corticospinal tract
connections to the sensorimotor cortex but a more complex
algorithm based on constrained spherical deconvolution (CSD)
reliably delineate the tracts that closely resembled to known
anatomy of that brain region (Farquharson et al., 2013). Future
studies should compare different tractography approaches and
evaluate the impact on the relationships between SC and FC in
normal aging.

CONCLUSIONS

A multi-modal analysis approach using DTI and rs-fMRI data
was used to investigate SC and FC within seven commonly
described RSNs. SC measures demonstrated significant age-
related changes in all networks, while FC demonstrated
significant age-related changes in four of the seven networks.
Despite significant age correlations in both SC and FC
parameters, however, these were in general not significantly
related to each other, suggesting that the change in WM
microstructure measures with age is too weak to reflect the
corresponding cortical FC change in resting-state networks.
These results help further understand healthy brain aging,
and lay the foundation for future studies to investigate age-
related changes in connectivity in adults with neurodegenerative
diseases.
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