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Blood brain barrier (BBB) plays a crucial role in maintaining homeostasis of
microenvironment that is essential to neural function of the central nervous system
(CNS). When facing various extrinsic or intrinsic stimuli, BBB is damaged which is an
early event in pathogenesis of a variety of neurological diseases in old patients including
acute and chronic cerebral ischemia, Alzheimer’s disease and etc. Treatments that could
maintain the integrity of BBB may prevent neurological diseases following various stimuli.
Old people often face a common stress of sepsis, during which lipopolysaccharide (LPS)
is released into circulation and the integrity of BBB is damaged. Of note, there is a
significant decrease of melatonin level in old people and animal. Melatonin has been
shown to preserves BBB integrity and permeability via a variety of pathways: inhibition
of matrix metalloproteinase-9 (MMP-9), inhibition of NADPH oxidase-2, and impact on
silent information regulator 1 (SIRT1) and nucleotide-binding oligomerization domain-
like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. More important,
a recent study showed that melatonin supplementation alleviates LPS-induced BBB
damage in old mice through activating AMP-activated protein kinase (AMPK) and
inhibiting gp91phox, suggesting that melatonin supplementation may help prevent
neurological diseases through maintaining the integrity of BBB in old people.
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Abbreviations: AMPK, AMP-activated protein kinase; BBB, blood brain barrier; CNS, central nervous system; iNOS,
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INTRODUCTION

The Blood Brain Barrier Damage and
Neurological Diseases
The blood brain barrier (BBB) is a regulated interface between
the peripheral circulation and the central nervous system
(CNS; Jin et al., 2014). BBB, which is composed of cerebral
microvascular endothelial cells, neurons, astrocytes, pericytes
and the extracellular matrix, plays a key role in maintaining
homeostasis of microenvironment that is essential to neural
function of the CNS (Hawkins and Davis, 2005). When facing
various extrinsic or intrinsic stimuli (Weiss et al., 2009),
BBB is damaged and BBB dysfunction is an early event
in pathogenesis of a variety of neurological diseases in old
patients including vascular cognitive impairment, amyotrophic
lateral sclerosis, Alzheimer’s disease, neuropathic pain, brain
trauma, acute and chronic cerebral ischemia, multiple sclerosis,
and brain infections (Rosenberg, 2012; please see Figure 1).
Treatments that could maintain the integrity of BBB will have
important roles in preventing stimuli-produced neurological
diseases.

The tight junction proteins (TJPs), composed of occludin,
claudin and zo-1, are key components of the BBB (Hawkins
and Davis, 2005). It seals the interendothelial cleft forming
a continuous blood vessel, leads to high endothelial electrical
resistance, and allows low paracellular permeability of water-
soluble substances from the blood into brain parenchyma
(Stamatovic et al., 2008). Free radicals of oxygen and nitrogen
and the proteases, matrix metalloproteinases (MMPs) and
cyclooxgyenases, play key roles in the early and delayed BBB
disruption as the neuroinflammatory response progresses (Liu
and Rosenberg, 2005). During an injury, free radicals and
proteases attacked the cell membranes and degraded the TJPs
between endothelial cells and the integrity of BBB is damaged

FIGURE 1 | Structure of blood brain barrier (BBB) which is related to
neurological diseases.

(Jin et al., 2013; Liu et al., 2016; Wang et al., 2016). It is worth
of note, death of endothelial cells of microvessels is also a major
contributor to the disruption of BBB integrity (Simard et al.,
2007). Therefore, protective effect on intergrity of BBB should
consider both death of endothelial cells of microvessels and
degradation of TJPS.

BBB Disruption Induced by
Lipopolysaccharide (LPS)
Lipopolysaccharide (LPS) could produce neuroinflammation
(Shi, 2015), promoting the generation of reactive oxygen species
(ROS) in cerebral microvascular endothelial cells and BBB
disruption (Seok et al., 2013). Worth of note, LPS has been
shown to increase BBB permeability in vitro (Nonaka et al.,
2004) and compromise BBB integrity in young (Ruiz-Valdepeñas
et al., 2011; Zhou T. et al., 2014) and old mice (Wang et al.,
2017). More interesting, LPS has been shown to induce BBB
dysfunction via nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase-derived ROS (Liu et al., 2012; Zhao et al.,
2014). NADPH oxidases, a major source of ROS generation
in the brain, critically contributes to BBB disruption under
various neurological disorders (Kahles et al., 2007). Of note,
gp91phox is the catalytic subunit of NADPH oxidase and BBB
disruption is significantly reduced in gp91phox knockout mice
compared to wild-type mice after stroke (Kahles et al., 2007)
and reduction of gp91phox expression has shown protective effect
against ischemia-induced brain injury and BBB damage (Liu
et al., 2008, 2011). More importantly, Wang et al. (2017) showed
that LPS increased gp91phox expression in both endothelial cells
and in old mice, suggesting that gp91phox up-regulation may
be an important mechanism responsible for LPS-induced BBB
permeability increase in old mice.

Relationship between Melatonin and Aging
Melatonin, which is produced mainly in the pineal gland,
retina and the gastrointestinal tract, plays important roles in
many physiological and biochemical functions (Bubenik and
Konturek, 2011), such as acting as an anti-inflammatory and
immunoregulating molecule as well as a circadian rhythm
regulator (Manchester et al., 2015). Melatonin is a potent
free radical scavenger, lack of melatonin may result in
decreased antioxidant function in the old people which have
significant influence not only on aging per se but also on
the incidence or severity of age-related diseases (Karasek,
2004). In addition, oxygen radical detoxification processes was
significantly decreased during aging and there was a obvious
downregualtion in pineal biosynthetic activity in aging hamster
(Bubenik and Konturek, 2011). More interesting, melatonin
levels in serum and brain decline as a result of aging (Bubenik
and Konturek, 2011; Hill et al., 2013). In addition, melatonin has
been reported to regulate aging and neurodegeneration through
energymetabolism, epigenetics, autophagy and circadian rhythm
pathways (Jenwitheesuk et al., 2014).

Beneficial Role of Melatonin in Sepsis
Sepsis is a systemic inflammatory response to infection that
causes severe neurological complications (Zhao et al., 2015) and
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it is a common stress that old people often face (Martin et al.,
2006), in which LPS is released into circulation (Shukla et al.,
2014).

Melatonin has been shown to restore the mitochondrial
production of ATP in septic mice (López et al., 2006a), block
the septic response by disrupting connection of the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
with nucleotide-binding oligomerization domain-like receptor
family pyrin domain-containing 3 (NLRP3) in mice (El Frargy
et al., 2015) and improve survival in a zymosan A-induced
rat model of sepsis/shock (Reynolds et al., 2003). In addition,
melatonin has been shown to protect organs against sepis-
inuduced injury. For example, melatonin improved cardiac
mitochondria and survival rate in rat septic heart injury (Zhang
et al., 2013) through inhibition of inducible nitric oxide synthase
(iNOS) and preservation of neuronal nitric oxide synthase
(nNOS; Ortiz et al., 2014) and attenuated sepsis-induced cardiac
dysfunction via a PI3K/Akt-dependent mechanism (An et al.,
2016). Furthermore, melatonin protected liver bioenergetics
from sepsis-induced damage (Basile et al., 2004), modified
cellular stress in the liver of septic mice by reducing ROS and
increasing the unfolded protein response (Kleber et al., 2014),
protected against sepsis-induced functional and biochemical
changes in rat ileum and urinary bladder (Paskaloglu et al., 2004),
improved colonic anastomotic healing in a rat experimental
sepsis model (Ersoy et al., 2016) and counteracted inducible
mitochondrial nitric oxide synthase-dependent mitochondrial
dysfunction in skeletal muscle (Escames et al., 2006) and
diaphragm (López et al., 2006b) in septic mice.

Melatonin’s Effect on LPS-Induced Injury
Melatonin has been shown to ameliorate LPS-induced brain
injury in neonatal rats (Wong et al., 2014), alleviate LPS-induced
placental cellular stress response in mice (Wang et al., 2011)
as well as LPS-induced hepatic SREBP-1c activation and lipid
accumulation in mice (Chen et al., 2011). Of note, melatonin
shown protective effect against BBB damage induced by various
stimuli, including transient focal cerebral ischemia in mice
(Chen et al., 2006), excitotoxic injury in neonatal rats (Moretti
et al., 2015) and methamphetamine-induced inflammation
(Jumnongprakhon et al., 2016). Therefore, decreased levels of
melatonin in old mice may contribute to the BBB disruption
when facing various extrinsic or intrinsic stimuli because
melatonin has demonstrated its protective effects against
LPS-induced injury to the heart (Lu et al., 2015), brain (Carloni
et al., 2016), lung (Lee et al., 2009) and liver (Wang et al.,
2007) by scavenging a variety of free radicals (Manchester et al.,
2015). Interestingly, chronic melatonin treatment has also shown
reduction of age-dependent inflammatory process in senescence-
accelerated mice (Rodríguez et al., 2007). In a recent study,
Wang et al. (2017) showed that 1 week melatonin treatment
significantly alleviated LPS-induced BBB damage accompanied
by reduction of occludin and claudin-5 degradation, suggesting
that melatonin supplementation is important in decreasing sepsis
and neuroinflammation-induced TJPs degradation as well as
BBB damage.

Possible Molecular Mechanism Underlying
Melatonin’s Effect on LPS-Induced BBB
Damage in Old Mice
Melatonin has shown protective effect on BBB integrity via
a variety of pathways: inhibition of the toll like receptor 4
(TLR4)/NF-κB signaling pathway in neonatal rats (Hu et al.,
2017), inhibition of NADPH oxidase-2 (Jumnongprakhon et al.,
2016), inhibition of MMP-9 (Alluri et al., 2016), inhibiton of
AMP-activated protein kinase (AMPK) activation (Wang et al.,
2017) and impact on silent information regulator 1 (SIRT1; Zhao
et al., 2015) and NLRP3 inflammasome (Rahim et al., 2017).

AMPK Activation
AMPK activation has been shown to play important role
in maintaining the integrity of BBB (Liu et al., 2012)
and it is also reported that LPS inhibits the activation of
AMPK, a serine/threonine protein kinase regulating cellular
and organismal metabolism (Wang et al., 2017). Interestingly,
AMPK activation has been shown to alleviate LPS-induced
BBB disruption in both in vitro cell model (Zhao et al.,
2014) and in vivo mice model (Zhou X. et al., 2014;
Wang et al., 2017). Activation of AMPK also demonstrated
protective effect against diabetes-induced BBB damage by
inhibiting NADPH oxidase expression upregulation in brain
capillary endothelial cells (Liu et al., 2012). In a recent
study, Wang et al. (2017) showed that AMPK activation by
melatonin reduced LPS-induced BBB damage in old mice and
AMPK activation bymetformin decreased LPS-induced gp91phox

up-regulation in brain capillary endothelial cells (Figure 2).
AMPK activation might be important in maintaining the
integrity of BBB in old patients and AMPK dysfunction
might play a key role in the initiation and progression of
neurological disorders in old people. Therefore, activation of
AMPK may be a strategy to reduce neurological disorders
following sepsis and neuroinflamation-induced BBB damage in
old people.

FIGURE 2 | Schematic illustration of melation’s protective effect on
lipopolysaccharide (LPS)-induced damage of BBB integrity.
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Matrix Metalloproteinase-9 (MMP-9)
MMP-9 has been shown to play important role in BBB damage
(Jin et al., 2013, 2015; Cai et al., 2015) and melatonin has been
shown to bind to MMP-9 to act as its endogenous inhibitor.
Melatonin treatment provided protection against traumatic
brain injury (TBI)-induced BBB hyperpermeability via MMP-9
inhibition (Alluri et al., 2016), indicating its potential as a
therapeutic agent for BBB damage.

Silent Information Regulator 1 (SIRT1)
SIRT1 was reported to be beneficial in sepsis. Using EX527, a
SIRT1 inhibitor, the authors figured out that melatonin alleviated
BBB damage in mice which subjected to cecal ligation and
puncture via SIRT1 to inhibit inflammation, apoptosis and
oxidative stress (Zhao et al., 2015).

NLRP3 Inflammasome
Aging and sepsis triggered NLRP3 inflammasome activation
(Volt et al., 2016), which has been shown to be involved
in the innate immune response during inflammation
(Rahim et al., 2017). Furthermore, NLRP3 inflammasome
activation was showed to be associated with the upregulation
of apoptotic signaling pathway in various inflammatory
diseases (Volt et al., 2016) and melatonin attenuated
subarachnoid hemorrhage-induced BBB damage via
attenuating the expressions of NLRP3 (Dong et al.,
2016).

Dark Side/Downsides of Melatonin
Supplementation
Although acute toxicity of melatonin is extremely low in both
animal and human studies, melatonin may still cause minor
adverse effects, such as headache, insomnia and nightmares
(Malhotra et al., 2004). Based on previous studies, melatonin
could be used as a daily supplement to delay or prevent
changes associated with age. However, long-term side effect of
melatonin has to be tested, because melatonin has been used
as a contraceptive for women which could have reproduction
alterations by consumption of melatonin (Voordouw et al.,
1992). In addition, there was a decrease in spermmotility in male
rats (Gwayi and Bernard, 2002), and long-term administration

of melatonin inhibited testicular aromatase levels (Luboshitzky
et al., 2002). It does not matter to provide old people with
daily melatonin to prevent neurological diseases even if these
two side effects may happen as they would not have reproduction
anymore. Other side effects should be considered, for example,
melatonin may accelerate the development of autoimmune
conditions (Mattsson et al., 1994), increase atherosclerosis in
the aorta in hypercholesterolemic rats (Tailleux et al., 2002) and
produce opposite effects in cancer treatment with poorly timed
administration (Bartsch and Bartsch, 1981).

Conclusion
In conclusion, decreased melatonin levels may account for the
BBB damage in old people who often face the common stress of
sepsis and neuroinflammation. Melation supplementation
treatment significantly inhibits such events. Therefore,
continuous daily melatonin supplementation may help prevent
sepsis and neuroinflammation-related neurological diseases
through maintaining the integrity of BBB in old people.
Since melatonin has low toxicity profile and high efficacy in
many pathophysiological states, it should be more commonly
tested/used in the medical and veterinary arenas. Further studies
are needed to verify the important significance of daily melatonin
supplementation in old people.
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