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Microglia, the immunocompetent cells of the central nervous system (CNS), act

as neuropathology sensors and are neuroprotective under physiological conditions.

Microglia react to injury and degeneration with immune-phenotypic and morphological

changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled

microglial response secondary to sustained CNS damage can put neuronal survival

at risk due to excessive inflammation. A neuroinflammatory response is considered

among the etiological factors of the major aged-related neurodegenerative diseases of

the CNS, and microglial cells are key players in these neurodegenerative lesions. The

retina is an extension of the brain and therefore the inflammatory response in the brain

can occur in the retina. The brain and retina are affected in several neurodegenerative

diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and glaucoma.

AD is an age-related neurodegeneration of the CNS characterized by neuronal and

synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia.

The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of

hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits

are also found in the retina and optic nerve. PD is a neurodegenerative locomotor

disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This

is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates.

PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial

neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell

loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected

in retina. These neurodegenerative diseases share a common pathogenic mechanism,

the neuroinflammation, in which microglia play an important role. Microglial activation

has been reported in AD, PD, and glaucoma in relation to protein aggregates and

degenerated neurons. The activated microglia can release pro-inflammatory cytokines
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which can aggravate and propagate neuroinflammation, thereby degenerating neurons

and impairing brain as well as retinal function. The aim of the present review is to

describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD,

and glaucomatous neurodegeneration.

Keywords: microglia, neuroinflammation, Alzheimer’s Disease, Parkinson, glaucoma, retina, beta-amyloid,

synuclein

INTRODUCTION

Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) are the
most common neurodegenerative disorders (de Lau and Breteler,
2006). AD involves progressive memory loss and dementia
(Sharma and Lipincott, 2017), while the PD is a chronic and
progressive movement disorder (Orr et al., 2002). Glaucoma, a
neurodegenerative disease of the optic nerve, is characterized
by death of retinal ganglion cells (RGCs) (de Hoz et al., 2016).
Recently, neurodegenerative lesions have been detected in the
intracranial optic nerve, the lateral geniculate nucleus, and the
visual cortex (Gupta et al., 2006, 2007), suggesting that this
pathology could be grouped as a neurodegenerative disease
(Yucel et al., 2003).

AD is a neurodegenerative disorder related to age, in
which neuronal and synaptic losses in the cerebral cortex
lead to cognitive impairment, behavioral deficits and
dementia (Ghiso et al., 2013). The major pathology related
to AD is the extracellular deposit of β-amyloid (Aβ) in
the form of parenchymal plaques and cerebral amyloid
angiopathy co-existing with intraneuronal accumulations of
hyperphosphorylated tau (pTau) (neurofribillary tangles) (Ghiso
et al., 2013).These deposits can induce neuronal death by
apoptosis (Garcia-Ospina et al., 2003). Initially, it was thought
that age was the main risk factor for this disease. However, it
is now known to have a multifactorial origin and it seems to
result from a complex interaction of multiple environmental
and genetic factors (Wostyn et al., 2010). AD has been related
to genetic mutations, among them in the gene encoding the Aβ

precursor protein peptide, mutations in the presenilins genes
(Calabrese et al., 2001) and the presence of the APOE ε4 allele
(Martínez-Lazcano et al., 2010). In addition, AD is frequently
associated with vascular dysfunctions and inflammation
(Dudvarski Stankovic et al., 2016).

PD is characterized by the progressive loss of dopaminergic
neurons in the substantia nigra pars compacta and the nerve
terminals in the striatum (Dauer and Przedborski, 2003).
The clinical symptoms of PD are mainly motor problems,
including bradykinesia, rigidity, tremors, and postural instability.
In addition, PD presents non-motor symptoms including
disorganized speech and altered moods (Fakhoury, 2016). The
loss of neurons is accompanied by abnormal intracytoplasmic
filamentous aggregates called Lewy bodies. These aggregates
(deposited in somas and axons) are constituted by α-syn,
parkin, phosphorylated neurofilament and components of the
protheosomic-ubiquitin pathway (Orr et al., 2002). The main
etiological factors proposed for PD are aging, environmental
toxins, and genetic factors. Neurodegeneration could be due to

exposure to dopaminergic neurotoxins e.g., herbicides (MPTP),
insecticides (Rotenone), and metals (Hernández-Montiel, 2006).
Genetic factors include mutations in α-syn (Olanow and
Tatton, 1999; Pérez and Arancibia, 2007), while mitochondrial
dysfunction and oxidative stress may also act by causing the
accumulation of misfolded proteins (Dauer and Przedborski,
2003).

Glaucoma is an age-related multifactorial neurodegenerative
disease of the optic nerve, with an irreversible decrease in
RGCs, causing a visual-field loss and cupping of the optic nerve
head (Quigley et al., 1988). In glaucoma, increased intraocular
pressure (IOP), vascular dysregulation, and the immune system
activation can trigger several changes in retina and optic
nerve including: disrupted axonal transport and neurofilament
accumulation, microvascular abnormalities, extracellular matrix
remodeling, and glial cell activation. These alterations can
lead to secondary damage such as, excitotoxicity, neurotrophin
deprivation, oxidative damage, mitochondrial dysfunction, and
eventually RGC death (Nickells, 1999; Gallego et al., 2012). In
addition, there is a dendritic atrophy of the lateral geniculate
nucleus, the site to which the RGC axons project (Gupta et al.,
2007; Park and Ou, 2013).

The AD, PD and glaucoma share certain biological features,
for example: (i) they are slow and chronic neurodegenerative
disorders with a strong age-related incidence; (ii) they have
similar mechanisms of cell injury and deposition of protein
aggregates in specific anatomical areas (Wostyn et al., 2010;
Kaarniranta et al., 2011; Ghiso et al., 2013); and (iii) death occurs
in one or more populations of neurons (RGCs in glaucoma,
hippocampal and cortical neurons in AD and nigrostriatal
dopaminergic neurons in PD) (Mattson, 2000). Although the
exact mechanism bringing about this neuronal death remains
unknown, these neurodegenerative disorders seem to have
pathogenic mechanisms in common. These mechanisms include:
oxidative stress (Uttara et al., 2009), mitochondrial dysfunction
(Lee et al., 2011; Lascaratos et al., 2012; Chrysostomou et al.,
2013), alterations in the ubiquitin-proteasome system (Campello
et al., 2013), abnormal accumulation of misfolded proteins,
glutamate excitotoxicity (Gazulla and Cavero-Nagore, 2006;
Guimaraes et al., 2009), and glial activation and inflammation
(Verkhratsky et al., 2014; Brown and Vilalta, 2015). These
mechanisms could act individually or synergistically (Ghiso et al.,
2013).

Inflammation is a defensive process of the body against
damage that seeks to restore tissue integrity. Neuroinflammation,
the inflammation of central nervous system (CNS), is essential
to protect the tissue. However, uncontrolled and prolonged
neuroinflammation is potentially harmful and can cause cellular
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damage. The astrocytes and microglia could play a major role
in the neuroinflammation associated with neurodegenerative
diseases (Cherry et al., 2014). The presence of reactive astrocytes,
the microglial activation, and the release of inflammatory
mediators such as cytokines, reactive oxygen species (ROS), nitric
oxide (NO), and Tumor Necrosis Factor-α (TNF-α) could cause
a state of chronic inflammation that may exert neurotoxic effects
(Cuenca et al., 2014).

The neuroinflammatory process occurs not only in the brain,
but also in the retina, which is a projection of the CNS. The
retina and brain are associated over a range of neurological and
neurovascular conditions of varying etiologies, because the retina
and brain are similar, and respond similarly to disease. Thus, it
has been described that the retina is a “window to the brain,”
and the manifestation of disease in the brain is the same as in
the retina (MacCormick et al., 2015). The neuroinflammatory
changes could be observed using optical coherence tomography
(OCT), a routinely diagnostic techniques used in ophthalmology.
This technique provides anatomic detail of pathological changes
in the retina and optic nerve. Changes in OCT measurements
have been used to study the course of particular neurologic
diseases such AD (Garcia-Martin et al., 2014; Maldonado et al.,
2015; Salobrar-Garcia et al., 2015, 2016a,b), PD (Yu et al., 2014;
Stemplewitz et al., 2015; Boeke et al., 2016; Satue et al., 2017), and
glaucoma (Leung, 2016; Fallon et al., 2017), suggesting that the
data compiled may be useful as a biomarker in diagnosing and
treating neurodegenerative disease.

The aforementioned data underline the importance of
knowing the function of inflammatory processes in the retina of
neurodegenerative diseases (AD, PD, and glaucoma), especially
the contribution to microglial-mediated neuroinflammation.

MICROGLIAL ACTIVATION

In neurodegenerative diseases, neuroinflammation constitutes
a fundamental process in which microglial cells play a key
role (Glass et al., 2010). Microglial cells are CNS resident
immune cells which have sensor and effector functions as well
as phagocytic capacity (Streit et al., 2005). In the developing
of CNS these cells enter from the bloodstream, develop
from monocytes, and differentiate into microglia. Thus, they
maintain numerous cellular antigens present inmacrophages and
monocytes (Ransohoff and Cardona, 2010). Microglia express
CD11b/c, D45low, and the chemokine fractalkine receptor
(CX3CR1) (Dudvarski Stankovic et al., 2016). These cells
survey the CNS in order to detect homeostasis alteration and
they respond accordingly, combining a defensive service with
neuroprotective functions (Verkhratsky and Butt, 2013).

In addition to the immune functions, microglia have an
essential role in the physiology and survival of neurons.
Fractalkine, involved in indirect neuroprotection, is released
by neurons and the receptor is expressed by microglia, their
interactions constituting a neuron-microglial signaling system
(Ransohoff and El Khoury, 2015). The fractalkine expressed
by neurons can induce adenosine release from microglia. This
adenosine (via adenosine A1 receptor) can activate survival

pathways in neurons sensitive to excitotoxicity challenge (Lauro
et al., 2008, 2010). The signaling mediated by CX3CR1 could
regulate microglial behavior in the neurodegenerative diseases.

The presence of protein aggregates in the CNS is a common
feature of most neurodegenerative disorders. These aggregates
are identified by the Toll-like receptors (TLRs) which are
danger-signal sensors. Microglial cells express these receptors
(TLR1-TLR9) and their co-receptors, which promote microglial
activation (Gonzalez et al., 2014). Concretely, TLR4 and TLR2
are associated with both neuro-inflammation and clearance of
protein aggregates in neurodegenerative disorders (Jack et al.,
2005).

Microglia constitute the first line of immune defense in
CNS. After injury these cells become activated and in this state
change their morphology, proliferate, migrate to the damage
sites, modify the expression of enzymes and receptors, and
release a variety of inflammatory factors, such as NO, tumor
necrosis factor (TNF-α), interleukin (IL-6) among others (Magni
et al., 2012). The morphology of activated microglia includes a
retraction of processes, enlargement of the soma, and increased
expression of myeloid cell markers (Ransohoff and Cardona,
2010). In their state of high activation, microglial cells acquire
an amoeboid morphology and act like macrophages, engulfing
debris (Brown and Neher, 2014). Excessive microglia activation
might prompt the release of cytotoxic factors, causing neuronal
damage, which could accelerate the progression of some CNS
diseases.

Microglial cells may undergo two different kinds of activation
in response to infections or injuries. The first is a neurotoxic
phenotype called M1-like. This phenotype generates a massive
inflammatory response releasing interleukin-1β (IL-1β), IL-
12, TNF-α and inducible nitric oxide synthase (iNOS). M1
microglial cells present amoeboid morphology as well as high
phagocytic capacity and motility (Varnum and Ikezu, 2012;
Gonzalez et al., 2014; Jones and Bouvier, 2014). However, in
certain circumstances, the neuroinflammation can help stimulate
myelin repair or remove toxic aggregated proteins and cell
debris from CNS (Ding et al., 2004; Simard et al., 2006; Glezer
et al., 2007). After this acute M1 activation, microglial cells
can suffer an uncontrolled activation leading to a state of
chronic inflammation. In this state, microglia release neurotoxic
inflammatory factors (TNF-α, IL-1α, IL-1β, IL-6, NO, hydrogen
peroxide, superoxide anion, chemokines, and glutamate), which
lead to neuronal death (Block et al., 2007; Lull and Block, 2010;
Burguillos et al., 2011; Kettenmann et al., 2011; Gordon et al.,
2012).

The second microglial phenotype, M2-like, secrete anti-
inflammatory mediators and neurotrophic factors, thus inducing
a supportive microenvironment for neurons (Kettenmann et al.,
2011). The M2 microglial cells are characterized by thin cellular
bodies and ramified processes (Menzies et al., 2010; Komori
et al., 2011; Varnum and Ikezu, 2012; Jones and Bouvier, 2014;
Zhou et al., 2014). These cells can release anti-inflammatory
cytokines including IL-4, IL-13, IL-10, TGF-β and neurotrophic
factors, such as insulin-like growth factor 1 (IGF-1) to assist
inflammation resolution and promote neuron survival (Suh et al.,
2013; Tang and Le, 2016). M2 microglia are the major effector
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cells with the potential to dampen pro-inflammatory immune
responses and promote the expression of repair genes (Tang
and Le, 2016). The change of microglia between M1 and M2
phenotypes is a dynamic process and microglial activation can
switch from M2 to M1 phenotype during the course of disease
(Cherry et al., 2014).

Recently, it has been reported that microglia release
extracellular microvesicles (Evs) by exocytosis. These
microvesicles are involved in all immune activities and can
be protective or detrimental, affecting some pathologies of
the CNS. EVs have a heterogeneous molecular composition,
including receptors, integrins and cytokines, bioactive lipids,
miRNA, mRNA, DNA, and organelles, being similar to their
parental cells. They can be detected in the plasma and other
biological fluids such as the cerebral spinal fluid (CSF). The
microglial EVs representing a “liquid biopsy” of their parental
cells, and could provide information on the functional phenotype
(protective or damaging) of microglial cells over the course of
neurodegeneration (Nigro et al., 2016).

Microglia and astrocytes are the main innate immune effector
cells in the CNS (da Fonseca et al., 2014). Under pathological
conditions, astrocytes and microglia can collaborate to induce
an inflammatory response. After injury, astrocytes produce
cytokines and chemokines (CCL2, CXCL1, CXCL10, GM-CSF,
and IL-6), which activate microglia and recruit peripheral
immune cells to the CNS. By contrast, a recent report has
described an astrocyte subtype A1 that is abundant in AD
and PD and other human neurodegenerative diseases. Activated
microglia can induce A1 astrocytes by secreting IL-1α, TNF, and
C1q, and this type of astrocyte contribute to the death of neurons
in the neurodegenerative disorders and could be analog to the
M1-like phenotype microglia (Liddelow et al., 2017).

Microglia, together with endothelial cells, pericytes, and
astrocytes, form the functional blood-brain barrier (BBB)
that selectively separates the brain parenchyma from blood
circulation. In this perivascular location, the microglia survey
the influx of blood-borne components entering the CNS.
The activated microglia can induce the dysfunction of the
BBB, being correlated with the disruption of the BBB in the
neurodegenerative diseases (Dudvarski Stankovic et al., 2016).
During inflammatory conditions, innate immune cells (DCs,
neutrophils, monocytes, and natural killer cells) and adaptive
immune cells (activated B cells together with CD4+ and CD8+ T
cells) are recruited by chemoattractants to cross the BBB from the
periphery. The presence of this cellular infiltrate in the CNS can
directly or indirectly provoke neuroinflammation by producing
pro-inflammatory cytokines/chemokines. All this could generate
oxidative stress, which leads to neuronal death. In addition,
activated microglia are capable of upregulating CD11c, MHC I,
and MHC II to act as antigen-presenting cells, which activate T
cells. This activation would in turn damage the nervous system
(Xu et al., 2016).

As mentioned above, during the inflammatory process, there
is a are released of cytokines. Cytokines bind to receptors in
the microglia and activate the JAK/STAT signaling pathway (Yan
et al., 2016). This pathway plays a critical role in the initiation and
regulation of innate immune responses and adaptive immunity

(Yan et al., 2016). Although the same JAK/STAT components
are used, the gene expression in response to a specific cytokine,
depending on the cell type (van Boxel-Dezaire et al., 2006).
This pathway constitutes a pattern-recognition system by which
microglial cells respond to foreign antigens and inflammation in
the CNS (Hanisch and Kettenmann, 2007).

In microglial cells, other receptors called the “triggering-
receptors-expressed-on-myeloid-cells” (TREM) are thought
to play a central role in the immune-system regulation and
inflammation. The signaling pathway TREM2 regulates
apoptosis, the immune response, and phagocytic activity. Brain
homeostasis without inflammation depends on eliminating
extracellular aggregates and apoptotic debris, this being mediated
by the TREM2/DAP12 receptor complex (Han et al., 2017). The
signaling pathway TREM2 regulates the apoptosis, the immune
response, and the phagocytic activity. This pathway, induced in
the microglial cells by anti-inflammatory cytokines, is modulated
by CD33 and is down-regulated by agonists of TLR2, 4, and 9,
as well as by inflammatory stimuli such as lipopolysaccharides
and RNA interference. An overexpression of TREM2 promotes
phagocytosis and reduces the pro-inflammatory response (Han
et al., 2017). This receptor is a critical regulator of microglia and
macrophage phenotype and is involved in neurodegenerative
diseases (Andreasson et al., 2016).

After damage, microglia transform into active phagocytes.
These cells migrate to the damaged area and adopt an amoeboid
morphology, releasing both pro- and anti-inflammatory
molecules. They also have the capacity to remove apoptotic
cells and debris. As mentioned above, for phagocytosis to occur
the expression of specific receptors on the microglial surface
is necessary. The principal receptors are the TLRs, which have
high affinity for pathogens, and TREM2, which recognizes
apoptotic cellular substances (Hsieh et al., 2009). In addition,
other receptors also participate in cell-debris clearance (Fc
receptors, complement receptors, scavenger receptors (SR),
pyrimidinergic receptors P2Y, G-protein coupled,6 (P2RY6),
macrophage antigen complex 2 (MAC-2), mannose receptor,
and low-density lipoprotein receptor-related protein (LRP) (Fu
et al., 2014).

Although microglia are the main agents responsible for
phagocytosis of cell debris in the CNS, the complement
system can play a primordial role in removing damaged
and apoptotic cells (Fakhoury, 2016). Microglial cells can
activate the complement by local secretion of the complement
component from both the classical and the alternative
pathway and also express C3 and C5 (Luo et al., 2011).
The complement also participates in the physiological process,
termed synaptic pruning. The synapses and axons have to be
labeled by complement components C1q and C3 before being
phagocytosed, which prompts their selective recognition by
microglial cells (Paolicelli et al., 2011; Linnartz et al., 2012;
Schafer et al., 2012).

Given the central role ofmicroglial cells in neurodegeneration,
the evaluation of activated microglia in vivo is an important
approach. Positron emission tomography (PET) is the
most widely used in vivo method for detecting microglial
activation (Owen and Matthews, 2011; Mirzaei et al., 2016).
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It has been found that activated microglia and astrocytes
overexpress mitochondrial translocator protein (TSPO) within
or surrounding senile plaques. Thus, it has been proposed
that neuroimaging of TSPO using PET is a good marker of
neuroinflammation (Cosenza-Nashat et al., 2009; Pasqualetti
et al., 2015).

AD AND MICROGLIA

The primary pathogenic process in AD is the accumulation
of Aβ protein. This protein aggregates into extracellular
amyloid plaques, which are the hallmark of this pathology
(Southam et al., 2016). The amyloid hypothesis for AD is
based on a linear, quantitative, centered neuron model. This
model postulates that the initial deposition of Aβ triggers
mechanisms that progressively lead to Tau pathology,
synaptic dysfunction, inflammation, neuronal loss and
finally to dementia (De Strooper and Karran, 2016).
Recently, evidence has been reported that Aβ protein acts
by increasing tau pathology through the formation of tau
species capable of producing new aggregates (Bennett et al.,
2017).

After acute inflammatory damage, the brain glial cells
respond to repair the tissue. If the stimulus persists, it
produces an inflammatory chronic state that leads to neuronal
dysfunction, injury, and loss (Streit et al., 2004; Calsolaro
and Edison, 2016). As mentioned before, inflammation is
one of the possible causes in the development of AD
(Wyss-Coray, 2006). The increase in Aβ deposition induces
the activation of astrocytes as well as microglia (Cagnin
et al., 2001). These activated cells can release both pro- and
anti-inflammatory mediators, leading to a state of chronic
inflammation in the tissue. This inflammation not only occurs
in response to Aβ deposition, but is also capable of generating,
via feedback mechanisms, more Aβ while weakening the
mechanisms responsible for its elimination (Parpura et al.,
2012).

The Soluble Aβ oligomers and Aβ fibrils can react to
various receptors expressed bymicroglia, including CD14, CD36,
CD47, α6β1 integrin, class A scavenger receptor, receptor
for advanced glycosylation end products (RAGE) and TLRs
(Stewart et al., 2010). The RAGE is an important cell-
surface receptor for Aβ in the endothelial cells, neurons, and
microglia, and increased expression in these cell types has been
demonstrated in AD (Yan et al., 1996). The interaction of
Aβ with RAGE causes oxidative stress in neurons, enhances
inflammatory responses in microglia, and is involved in
reversed transport of Aβ across the BBB in endothelial cells
(Deane et al., 2012). The binding of Aβ to CD36 (cell
surface microglial co-receptor) promotes the TLR4 and/or TLR6
phosphorylation and activation, resulting in the production
of inflammatory cytokines and chemokines (Stewart et al.,
2010).

Recently, an alternative pathway has been described for
intracellular signaling produced by the binding of Aβ to
microglial cells, activating NLRP3 inflammasome (Heneka

et al., 2013; Sheedy et al., 2013). NLRP3 inflammasome
is an intracellular protein complex. Their assembly and
activation regulates activation of caspase-1, which catalyzes
the cleavage and activation of proinflammatory cytokines
of the IL-1β family, promoting the secretion of these,
now biologically active, cytokines. These cytokines could
induce neuronal degeneration (Gold and El Khoury, 2015).
In addition, NLRP3 inflammasome activation reduces
phagocytosis of Aβ by microglial cells, thus increasing
the Aβ depositions and contributing to the pathogenesis
of AD (Garlanda et al., 2013; Gold and El Khoury,
2015).

Microglial cells are important for the normal functioning
of neurons in the CNS. They provide trophic support to
neurons and regulate synapses. The altered microglial behavior
could induce neuronal degeneration in AD (Southam et al.,
2016). During development, microglia are involved in synapse
elimination and these mechanisms may be aberrantly reactivated
in the aged brain, contributing to the synapse loss in AD. The
synapse loss in the hippocampus and association cortices is an
early hallmark of AD and strongly correlates with cognitive
impairment (Hong et al., 2016). In the healthy development of
the brain, the proteins of complement participate in synapse
pruning. Synapses to be cleared express C3 and binding to
CR3 on microglia, resulting in microglial phagocytosis of the
synapse (Schafer et al., 2012; Southam et al., 2016). In the healthy
adult brain, these complement components are downregulated.
However, in aging brains, C1q and C3 are highly upregulated
and are deposited on synapses, particularly in the hippocampus,
the most vulnerable region in the synapse loss in AD (Bialas
and Stevens, 2013). These findings highlight the importance
of complement regulation for normal synaptic maintenance
(Southam et al., 2016). In addition, it has been shown that Aβ can
bind and regulate the expression and localization of complement
proteins in the AD brain. An upregulation has been observed in
the complement proteins (C1q, C3, and C4) localized in senile
plaques also known as neuritic plaques (Hong et al., 2016).

Microglial cells can use additional mechanisms for synapsis
regulation. The release of brain-derived neurotrophic factor
(BDNF) by microglial cells induces synaptic pruning. However,
the depletion of this factor in the microglia results in learning
and memory impairment (Parkhurst et al., 2013). The activation
of the fractalkine receptor (CX3CR1) inmicroglial cells, increases
synaptic strength. However, deficiency in this receptor results in
a reduced hippocampal synaptic plasticity (Rogers et al., 2011;
Clark et al., 2015).

It has been reported that in the later stages of AD, there is
destruction of axons, dendrites, and synapses, in which microglia
has a relevant role (Parpura et al., 2012). In AD brains reactive
microglia has been found colocalized with amyloid plaques.
In addition, the reactive astrocytes accumulate around senile
plaques next to the activated microglia (Heneka et al., 2015). In
brain, astrocytes as well as microglia are capable of capturing Aβ

for degradation (Pihlaja et al., 2011). In AD patients, astrocytes
in the entorhinal cortex accumulate Aβ, this accumulation being
positively correlated with the extent of AD (Nagele et al., 2003).
Moreover, astrocytes can also induce microglia to perform Aβ
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phagocytosis by regulating the release of the apo E and the
ATP-binding cassette (ABCA) protein. Studies in vitro have
demonstrated that microglial phagocytosis of Aβ is more effective
in the presence of supernatants derived from astrocytes (Terwel
et al., 2011). In AD, mutations in ABCA7 can cause a loss
of receptor activity, resulting in reduced microglia phagocytic
function (Southam et al., 2016).

Microglial senescence can enhance the sensitivity of microglia
to inflammatory stimuli; this phenomenon is called “priming”
(Heneka et al., 2015). In addition, aged microglia show reduced
phagocytic capacity. This process could be due partly to a
reduction in the ability of microglia to recognize phagocytic
targets (Udeochu et al., 2016). Both inflammation and reduced
microglial phagocytic capacity in AD can contribute to the
decline in synaptic plasticity observed in this pathology (Ritzel
et al., 2015; Udeochu et al., 2016).

In AD, protein aggregation is caused by declining of protein
homeostasis (proteostasis) (Mosher and Wyss-Coray, 2014).
As mentioned above, Aβ deposits can attract and activate
microglia. Presumably, microglial proliferation around plaques
could serve as a line of defense to limit the deposition of
amyloid. Nonetheless, it seems that microglial cells clustered
around Aβ− deposits have become incapable of removing the
amyloid (Calsolaro and Edison, 2016). The sustained exposure
to cytokines, chemokines and Aβ, could be responsible for the
functional impairment of microglial cells located around Aβ−

deposits (Heneka et al., 2015). In addition, microglial-specific
genetic alterations may be related to this microglial dysfunction.
The expression of beclin 1, a protein associated with autophagy
pathway, is reduced in the brain of patients with AD, leading to
disruption in phagocytosis and retromer-mediated recycling of
the phagocytic receptors CD36 and TREM2 inmicroglia (Mosher
and Wyss-Coray, 2014).

Similarly, mutations in TREM2 can trigger the loss of
phagocytic capacity in microglial cells. TREM2 inhibits pro-
inflammatory cytokine production, facilitates phagocytosis and
promotes cell survival. Thus, TREM2 dysfunction could induce
the loss of the homeostasis in the tissue (Painter et al., 2015).
Missense mutations in TREM2 lead to a significant risk of
developing AD (Jonsson et al., 2013; Meyer-Luehmann and
Prinz, 2015).

As mentioned above, in AD the Aβ peptide that is aggregated
extracellularly in the neuritic plaques produces an inflammatory
environment and a chronic activation of microglial and astroglial
cells (D’Andrea, 2005). Activated microglia can shed MVs in
response to several signals, including cytokines. These MVs
contain bioactive molecules (i.e., IL-1β, proteases, and MHC-II)
which modulate the activity of neuronal and non-neuronal cells
(Antonucci et al., 2012). In AD patients, the production ofMVs is
very high, reflecting microgliosis. These extracellular vesicles can
be isolated form cerebrospinal fluid (Guerriero et al., 2016).

In patients with AD, an upregulation of iNOS has been found.
In the course of AD, cytokines stimulate iNOS in microglia
and astrocytes, generating high NO levels (Vodovotz et al.,
1996). NO can interact with signaling cascades and regulate
gene transcription, impair mitochondrial respiration or directly
induce neuron death by apoptosis or necrosis (Parpura et al.,

2012). In addition, the NO can promote the nitration of Aβ,
increasing their propensity to aggregate (Kummer et al., 2011;
Heneka et al., 2015).

In late-onset Alzheimer’s disease (LOAD), accumulating Aβ

and NO harm the cells of the cerebral vessel, causing the
onset of cerebral amyloid angiopathy (Nelson et al., 2016).
The neurovascular unit, constituted by cerebral blood vessels,
perivascular glia and neurons, are associated with distinct
inflammatory, functional, and morphological alterations in AD
(Heneka et al., 2015). In LOAD, damaged blood vessels can
hinder neurogenesis from neural stem cells in the subventricular
zone and hippocampus, preventing the processing and storage of
new memories (Licht and Keshet, 2015; Chiarini et al., 2016).

Recently, it has been suggested that the involvement of glial
cells in AD is related with the transient receptor potential
melastatin member 2 (TRPM2). This receptor, besides regulating
synaptic plasticity and glial cell activation, also modulates
oxidative stress and inflammation (Yuruker et al., 2015). TRPM2
channel can be activated by Aβ. The activation of these
channels in microglia and astrocytes leads to Ca2+ overload and
subsequent inflammation and oxidative stress. All of this causes
mitochondrial dysfunction, [Ca2+]I increase, Aβ accumulation,
glutamate-receptor dysfunction, and finally plasticity alterations
and dementia (Yuruker et al., 2015; Wang et al., 2016).

PARKINSON AND MICROGLIA

PD is characterized by α-synuclein (α-syn) accumulation,
dopaminergic neuron loss and inflammation (Beach et al., 2014;
Wang et al., 2015). The pathological hallmark of this disorder is
the presence of Lewy bodies. The Braak hypothesis has suggested
that PD begins in the olfactory bulb or the gastrointestinal
tract. These areas are constantly exposed to the environment,
and in them, the Lewy bodies accumulate (Kannarkat et al.,
2013). Lewy bodies are constituted mainly by misfolded α-syn
and other intraneuronal protein aggregates such as tau and
ubiquitin proteins (Campello et al., 2013; George and Brundin,
2015). The nitration, phosphorylation, and ubiquitination of
α-syn can promote their pathological accumulation, inducing
neurodegeneration (Giasson et al., 2000; Tofaris et al., 2003;
Anderson et al., 2006). In addition, missense mutations in α-
syn can produce the protein aggregation in familial PD (Conway
et al., 1998).

Reportedly, α-syn can induce microglial activation, which
in turn can promote α-syn phagocytosis (Cao et al., 2012)
and neuroinflammation. The neuroinflammation leads to
the loss of dopaminergic neurons and drives the chronic
progression of neurodegeneration in PD (Schapansky et al.,
2015). Accumulations of activated microglia have been found
around dopaminergic neurons in postmortem human brains
(Hamza et al., 2010). Microglial cells can be activated by
α-syn, via TLRs, initiating an immune response (Fellner
et al., 2013). Specifically, the stimulation of TRL2 and TRL4
in the microglia induces signaling cascades involved in the
inflammatory response. It has been shown in PD patients that
TLR2 colocalized with CD68+ amoeboid microglia indicates
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microglial activation at the sites of neuronal loss (Doorn et al.,
2014). Also, TRL4 can induce microglial phagocytosis of α-syn.
Deficiencies in this receptor can prompt poor α-syn clearance
and neurodegeneration (Fellner et al., 2013).

The clearance of α-syn also can be promoted by the leucine-
rich repeat kinase 2 (LRRK2) gene. This gene has been proposed
as a regulator of the microglial response (Schapansky et al.,
2015). LRRK2 is the most commonly mutated gene in both
idiopathic and familial PD. Pathogenic mutations in LRRK2
influence the ability of microglia to internalize and degrade
α-syn, exacerbating α-syn-induced microglial pathology, and
neuroinflammation (Schapansky et al., 2015). In addition, other
genes whose mutations are responsible for rare familial forms of
PD have been identified, including, SNCA, PARKIN, DJ-1, and
PINK1 (Chao et al., 2014).

Persistent microglial activation is known to exert harmful
effects that result in dopaminergic neuron death. One of
the most important signaling pathways associated with the
microglial activation in PD involves nuclear factor-kappa B (NF-
kB) (Zhang et al., 2017). The activation of this factor could
increase the release of proinflammatory cytokines such TNF-
α and interleukin 1β by microglial cells (Mogi et al., 1996;
McLaughlin et al., 2006). In addition, proinflammatorymediators
such as TNF-α, IL-1β, and IFN-γ have been found at higher
levels in the midbrain of PD patients (Wang et al., 2015).
Immunomodulators, including the CX3CL1, CD200, CD22,
CD47, CD95, and neural cell adhesion molecule, sustain the rest
state of microglia under normal conditions (Chang et al., 2000;
Sheridan and Murphy, 2013). In rat PD models, both deficiency
CX3CL1 or CX3CR1 as well as the dysfunction of CD200-
CD200R signaling have been shown to increase microglial
activation and the degeneration of DA neurons (Wang et al.,
2011; Zhang et al., 2011).

The cytokines released by activated microglia can attract
peripheral immune cells (e.g., CD4 T-cell) to the brain. In vivo
and in vitro studies have demonstrated that overexpression of α-
syn can induce theMHC-II expression bymicroglia. TheMHC-II
expression in microglia cells can play an important role in the
immune responses (innate and adaptive) in PD (Michelucci et al.,
2009; Harms et al., 2013; Gonzalez et al., 2015).

In addition, dopaminergic neurons seem to be especially
sensitive to several factors that can induce cell damage
and eventually cell death. It has been suggested that
mitochondrial malfunction leads to reduced energy
metabolism and induces neuroinflammation via NO and
ROS production, which ultimately entails neurodegeneration
(Vivekanantham et al., 2015). The production of NO and
superoxide exerted by activated microglia in PD can cause the
degeneration of dopaminergic neurons (Appel et al., 2010).
The high cytosolic concentrations of free DA can produce
oxidative stress and can interact with α-syn, promoting
the neurodegenerative process (Mosharov et al., 2006). In
addition, the neuromelanin (dark, complex endogenous
polymer derived from DA) can activate microglial cells,
inducing neuroinflammation and neurodegeneration of
dopaminergic neurons in PD (Zecca et al., 2008; Herrera et al.,
2015).

Neuroinflammation is produced by the set of integrated
responses of all the CNS immune cells including microglia,
astrocytes and infiltrating T-lymphocytes (Le et al., 2016). Gliosis
in the PD is an atypical activation where astrogliosis is largely
absent while the microglia is highly activated by the disease. The
low astroglial response may be caused by degeneration due to an
increase of α-syn in the astrocyte (Stefanova et al., 2001; Orr et al.,
2002; Sofroniew and Vinters, 2010). Astrocytes are responsible
for secreting glutathione and transporting to neurons in response
to neural excitatory stimuli. A lower level of glutathione has been
detected in the CNS of PD patients, and thus the antioxidant
capacity in the tissue could be impaired, probably secondary to
the astroglial defect (Olanow and Tatton, 1999).

Recently, the kinurenic pathway (KP) has been implicated in
the inflammatory and neurotoxic processes in PD. Astrocytes
produce a neuroactive component of KP, kynurenic acid,
considered to be neuroprotective. By contrast, quinolinic acid,
released by microglia, can activate the NMDA receptor-
signaling pathway, leading to excitotoxicity and increasing the
inflammatory response. Based on this, KP may represent an
important target to prevent the progression of the underlying
neurodegeneration observed in PD (Lim C. K. et al., 2017).

Nowdays, it has been reported that prothrombin kringle-
2 (pKr-2), which is a domain of prothrombin (which is
produced by active thrombin), could be involved in PD.
Also, pKr-2 induced DA neuronal death in an experimental
PD model (Kim et al., 2010). In addition, in PD patient’s
pKr-2 expression is significantly increased and co-localized
in activated microglial in the substantia nigra, leading to
disruption of the nigrostriatal DA projection. This disruption
could be mediated through the neurotoxic inflammatory
events brought about by the pKr-2 upregulation, wich trigger
microglial activation via TLR4. On the basic of these results,
limiting pKr-2-induced microglial activation may be an effective
therapeutic strategy for protecting DA neurons (Leem et al.,
2016).

NEURODEGENERATIVE DISEASES AND
THE EYE

Alzheimer’s Disease
Classically, the damage in AD was thought to be restricted
mainly to the brain. However, in the last few decades it has
been demonstrated that patients with AD often develop visual
anomalies, which are correlated with abnormalities in the eye.
Among them, there is a reduction in the number of optic nerve
head axons and a decrease in the thickness of the peripapillary
and macular retinal nerve fiber layer (RNFL) (Tsai et al., 1991;
Hedges et al., 1996; Danesh-Meyer et al., 2006; Iseri et al.,
2006; Paquet et al., 2007; Garcia-Martin et al., 2014; Salobrar-
Garcia et al., 2015; Salobrar-García et al., 2016c) (Table 1). One
of the earliest symptoms of AD could be the thinning of the
RGC layer and visual spatial impairment (Kesler et al., 2011).
Postmortem studies in AD retinas, have demonstrated that, in
addition to RGC loss, melanopsin retinal ganglion cells (mRGC)
are lost. There is evidence that mRGCs may be affected primarily
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by Aβ pathology in AD (La Morgia et al., 2011). This mRGC
deficiency could be correlated with a circadian dysfunction (La
Morgia et al., 2011) in which AD patients tend to be more active
during the night in comparison with the day (Hatfield et al.,
2004; Hooghiemstra et al., 2015). In addition, in the retina of
AD patients as well as AD human postmortem specimens the
presence of Aβ plaques has been demonstrated. Aβ deposition
was observed from the outer nuclear layer (ONL) to nerve fiber
layer (NFL), being more abundant in the superior region of the
retina where greater neuronal degeneration has been detected
(Hardy and Selkoe, 2002; Selkoe, 2004, 2008; Alexandrov et al.,
2011; Ratnayaka et al., 2015; Hart et al., 2016; Table 1). In AD
patients, the alloform Aβ42 is increased (Alexandrov et al., 2011).
This alloform presents higher cellular toxicity, more aggregation
capacity, and a more direct relation with AD pathology (Qiu
et al., 2015). Aβ42 peptide accumulation in the retina may
contribute to retinal degeneration and visual impairment in
AD (Hardy and Selkoe, 2002; Selkoe, 2004, 2008; Alexandrov
et al., 2011; Ratnayaka et al., 2015; Hart et al., 2016; Figure 1A,
Table 1). However, recently Williams et al. in AD patients found
no evidence of deposits or accumulations of Tau, Aβ, TDP-43,
ubiquitin or α-syn in any part of the eyeball (Williams E. A. et al.,
2017).

Aβ plaques have also been detected in the retina of transgenic
mouse models of AD (APPswe / PS11E9, Tg2576AD, 3xTg-AD,
PSAPP, 5xFAD; Hsiao et al., 1996; Holcomb et al., 1998; Takeuchi
et al., 2000; Lukiw et al., 2001; Oddo et al., 2003; Kumar-Singh
et al., 2005; Oakley et al., 2006; Philipson et al., 2010; Koronyo-
Hamaoui et al., 2011). Overall, in these mice, Aβ plaques were
found principally in the NFL, ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL) and outer
plexiform layer (OPL) (Table 1). In APPswe / PS11E9 transgenic
mice, Aβ plaques appeared in the retina of young transgenic
AD mice at presymptomatic stages, as early as 2.5 months,
preceding their detection in the brain. This situation points out
a correlation between retinal and brain pathology in AD. The
detection of retinal Aβ might potentially provide an alternative
noninvasive approach to assess the progression of AD. In relation
to this last point, it has been demonstrated that the systemic
administration of curcumin to AD mice resulted in specific
in vivo labeling of retinal Aβ plaques. This finding provides
the basis for the development of a high-resolution noninvasive
optical-imaging technique for detecting Aβ plaques in the retina,
allowing the early diagnosis and follow up of AD (Koronyo-
Hamaoui et al., 2011; Kayabasi et al., 2014). In addition, curcumin
has been revealed to be a novel agent for treating AD through
different neuroprotective mechanisms, such as inhibition of
Aβ aggregation and decrease in neuroinflammation (Maiti and
Dunbar, 2016; Lakey-Beitia et al., 2017).

In addition to Aβ plaques, pTau was observed from OPL to
GCL in the retina of AD patients. Also, pTau has been found from
the ONL to GCL in the transgenic mouse (Liu et al., 2009). It
has been postulated that pTau could be potentially a marker for
the AD disease (Lim J. K. et al., 2016). In a model of transgenic
mice P301S tau, early accumulation of pTau and βIII-tubulin
in the NFL of the retina was demonstrated. This accumulation
was accompanied by somatodendritic redistribution of pTau

and the subsequent development of tau inclusions in a group
of RGCs. In the optic nerve of this transgenic model, at
5 months of age, damaged axons were detected presenting
phospho-tau, neurofilaments, amyloid precursor protein and
ubiquitin accumulations, as well as disordered filaments and
degenerating mitochondria and organelles (Gasparini et al.,
2011). These observations suggest that tau may alter axonal
transport. This alteration is an early event in tau-induced
neuronal dysfunction and corroborates previous findings in
mouse models of tautopathy and glaucoma, showing that axonal
degeneration precedes neuronal loss (Schlamp et al., 2006; Leroy
et al., 2007; Figure 1A, Table 1).

A significant upregulation of inflammation (evidenced by
astroglial and microglial activation) has been found in the retinas
of AD mouse models in relation to Aβ plaques (Parnell et al.,
2012). Ning et al. (2008) observed an age-dependent increment
in Aβ in the retina of the double transgenic mice model APPswe
/ PS11E9. This increment was accompanied by increases in the
inflammatory cytokine MCP-1, the microglial marker F4/80, and
the TUNNEL-positive cells in the RGC layer. Thus, the authors
suggested that Aβ played a major role in the inflammation and
neurodegeneration in AD. In the same transgenic model, Perez
et al. (2009) observed significantly greater microglial activity.
Microglial activation could occur early in the retina and could
be involved in the elimination or turnover of Aβ deposition. In
addition, activated microglia could trigger a neuroinflammatory
response, whichmay contribute to a disorganization of the retina,
as demonstrated by electroretinogram functional alterations
(Krasodomska et al., 2010; Table 1). This neuroinflammatory
response associated with Aβ plaques and pTau, has also
been observed in Tg2576AD mice. In these animals, there
was a significant increase in Iba1 cells (a microglial marker)
and an increase in the glial fibrillary acidic protein (GFAP)
immunoreactivity (a marker of astrocytes) (Figure 1A). The
vaccination with Aβ oligomer antigen reduced Aβ retinal
deposits in these transgenicmice. However, themicrovascular Aβ

deposition as well as the microglial infiltration and astrogliosis
were increased and were associated with the disruption of
retinal architecture (Liu et al., 2009). Other studies support the
involvement of the neuroinflammation in the AD progression.
These studies analyzed the role of the complement in this
disease (Parnell et al., 2012). Deficits have been found in the
expression of the innate immune-repressor complement factor H
(CFH) associated with significant increases of Aβ42 peptides in
brains and retinas of transgenic models of AD (Veerhuis, 2011).
CFH functions as a cofactor in the inactivation of C3b in the
alternative complement pathway, and thus low CFH levels result
in complement activation, triggering inflammation in the retina
and brain (Alexandrov et al., 2011). In the transgenic rat model
(TgF344-AD) also has been observed, along with Aβ deposition,
microglial recruitment, and complement activation in association
with a decline in visual function (Tsai et al., 2014; Table 1).

Parkinson’s Disease
As mentioned above, PD is a motor disorder associated with
degeneration of dopaminergic neurons in the substantia nigra
(Inzelberg et al., 2004). In this disease, high levels of α-syn
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TABLE 1 | Retinal changes associated with AD, PD, and glaucoma.

AD PD Glaucoma

References

Retinal thickness decrease Tsai et al., 1991; Hedges et al.,

1996; Danesh-Meyer et al.,

2006; Iseri et al., 2006; Paquet

et al., 2007; Kesler et al., 2011;

Garcia-Martin et al., 2014;

Maldonado et al., 2015;

Salobrar-Garcia et al., 2015,

2016a,b; Salobrar-García et al.,

2016c

Inzelberg et al., 2004; Yu et al., 2014;

Stemplewitz et al., 2015; Boeke et al.,

2016; Satue et al., 2017

Leung, 2016; Fallon et al., 2017

Inner retinal involvement La Morgia et al., 2011 Bodis-Wollner, 1990; Tatton et al.,

1990; Surguchov et al., 2001;

Cuenca et al., 2005; Hajee et al.,

2009; Bodis-Wollner et al., 2014

Rojas et al., 2014

Outer retinal involvement Hardy and Selkoe, 2002; Selkoe,

2004, 2008; Ratnayaka et al.,

2015; Hart et al., 2016

Maurage et al., 2003; Esteve-Rudd

et al., 2011

Protein deposits in

retina

Aβ Hsiao et al., 1996; Holcomb

et al., 1998; Takeuchi et al.,

2000; Lukiw et al., 2001; Hardy

and Selkoe, 2002; Oddo et al.,

2003; Selkoe, 2004, 2008;

Kumar-Singh et al., 2005; Oakley

et al., 2006; Philipson et al.,

2010; Alexandrov et al., 2011;

Koronyo-Hamaoui et al., 2011;

Kayabasi et al., 2014; Qiu et al.,

2015; Ratnayaka et al., 2015;

Hart et al., 2016

McKinnon et al., 2002; McKinnon, 2003; Goldblum

et al., 2007

pTau Liu et al., 2009; Gasparini et al.,

2011; Lim J. K. et al., 2016

Gupta et al., 2008; Ning et al., 2008; Bolos et al.,

2017

α-syn Surguchov et al., 2001; Maurage

et al., 2003; Bodis-Wollner et al.,

2014

γ-syn Surgucheva et al., 2002

Microglial activation Ning et al., 2008; Perez et al.,

2009; Parnell et al., 2012

Chen et al., 2003; Nagel et al., 2009;

Cho et al., 2012

Kreutzberg, 1995; Neufeld et al., 1997; Giulian and

Ingeman, 1988; Wax et al., 1998; Neufeld, 1999;

Shareef et al., 1999; Tezel et al., 2001; Yang et al.,

2001b; Yuan and Neufeld, 2001; Naskar et al.,

2002; Steele et al., 2005; Taylor et al., 2005;

Nakazawa et al., 2006; Stasi et al., 2006; Vidal

et al., 2006; Farina et al., 2007; Inman and Horner,

2007; Johnson et al., 2007; Hammam et al., 2008;

Tezel, 2009; Ebneter et al., 2010; Graeber and

Streit, 2010; Luo et al., 2010; Bosco et al., 2011,

2012; Kettenmann et al., 2011; London et al., 2011;

Bosco et al., 2012; Gallego et al., 2012; Varnum

and Ikezu, 2012; de Hoz et al., 2013; Gramlich

et al., 2013; Pinazo-Duran et al., 2013; Astafurov

et al., 2014; Cherry et al., 2014; Gonzalez et al.,

2014; Jones and Bouvier, 2014; Lee et al., 2014;

Rojas et al., 2014; Karlstetter et al., 2015; Madeira

et al., 2015; Ransohoff and El Khoury, 2015;

Chidlow et al., 2016; Bolos et al., 2017; Williams E.

A. et al., 2017

(Continued)
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TABLE 1 | Continued

AD PD Glaucoma

References

Neurodegeneration Hatfield et al., 2004; Schlamp

et al., 2006; Leroy et al., 2007;

Liu et al., 2009; La Morgia et al.,

2011; Veerhuis, 2011; Parnell

et al., 2012; Tsai et al., 2014;

Hooghiemstra et al., 2015

Bodis-Wollner, 1990; Tatton et al.,

1990; Cuenca et al., 2005

Neufeld, 1999; Yuan and Neufeld, 2001; Steele

et al., 2005; Garden and Möller, 2006; Quigley and

Broman, 2006; Stasi et al., 2006; Koizumi et al.,

2007; Langmann, 2007; Ohsawa et al., 2007; Wu

et al., 2007; Tezel, 2009; Karlstetter et al., 2010,

2015; Taylor et al., 2011; Rojas et al., 2014; Wang

et al., 2014; Bosco et al., 2016; Chidlow et al., 2016

Blood-retinal barrier breakdown Farina et al., 2007; Tezel, 2009; London et al., 2011;

Howell et al., 2012; Gonzalez et al., 2014;

Karlstetter et al., 2015; Breen et al., 2016

Visual impairment Krasodomska et al., 2010; Tsai

et al., 2014

Djamgoz et al., 1997

AD, Alzheimer’s Disease; PD, Parkinson’s Disease; Aβ, beta-amyloid; pTau, hyperphosphorylated tau protein; α-syn, α-synuclein; γ-syn, γ–synuclein.

FIGURE 1 | Schematic representation of the hypothetical events associated with the neuroinflammation in AD (A), PD (B), and glaucoma (C). AD, Alzheimer’s

Disease; PD, Parkinson’s Disease; ILM, inner limitant membrane; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer;

OPL, outer plexiform layer; ONL, outer nuclear layer; OLM, outer limitant membrane; PL, photoreceptor layer; RPE, retinal pigment epithelium; BM, Bruch membrane;

C, choroid; Aβ, beta-amyloid; pTau, phosphorylated tau.

are found in midbrain dopaminergic neurons (Neystat et al.,
1999; Solano et al., 2000; Braak et al., 2003; Kingsbury et al.,
2004; Alafuzoff and Parkkinen, 2014). Moreover, abnormalities
in visual function have been reported (Bodis-Wollner, 1990;
Nowacka et al., 2014) in PD patients and correlated with
changes in retinal tissue (La Morgia et al., 2013; Yu et al., 2014)
(Table 1).

In the normal retina of vertebrates, α-syn is expressed at
photoreceptor axon terminals of vertebrates, as well as in several
subtypes of bipolar and amacrine retinal cells. This protein
is present in presynaptic, but not postsynaptic, terminals of
retinal neurons in both IPL and OPL, where it could be
associated with synaptic vesicles to modulate neurotransmission

(Martinez-Navarrete et al., 2007). However, α-syn aggregates
are related to neurodegenerative disorders, including PD. In
postmortem PD eyes, α-syn aggregates have been observed
inside the neurons of different retinal layers, including the
border of the INL, the IPL, and the GCL. These locations
suggest a substrate for the visual impairment in PD (Bodis-
Wollner et al., 2014). Maurage et al. also reported the presence
of α-syn inclusions in the OPL and a lower cone density
in a patient suffering dementia with Lewy bodies (Maurage
et al., 2003). Additionally, in transgenic mice overexpressing
α-syn, an accumulation of this protein has been found in
the INL, GCL, and NFL (Surguchov et al., 2001; Figure 1B,
Table 1).
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In PD, in addition to substantia nigra dopaminergic neuron
degeneration, the DA content in the retina diminishes. This
deficiency could alter visual processing by altering the ganglion
cells receptive fields (Djamgoz et al., 1997). Retinas having a
dopaminergic deficiency associated with the loss of amacrine
cells, which provide input to the ganglion cells, can lose RGCs.
This fact is has been observed both in human PD and in
PD model in monkeys treated with 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) (selective neurotoxin which destroys
DA neurons) (Bodis-Wollner, 1990; Tatton et al., 1990; Cuenca
et al., 2005). This loss can be mediated by the impoverished
dopaminergic input, which contributes to an alteration in
the glutamate production and the atrophy of inferotemporal
circumpapillary RNFL in PD patients (Inzelberg et al., 2004).
These data agree with the observations in PD patients, in
which a thinning of inner retinal layer (15–20%) has been
demonstrated in the macular region. This percentage of thinning
does not necessarily cause a vision loss (Hajee et al., 2009;
Figure 1B, Table 1). Also in the retina of mice treated with
rotenone (pesticide that elicits DA neuron degenerations), an
experimental model of PD, a correlation between functional and
structural alterations were located in the retina, specifically in
the photoreceptors and their synaptic connections with second-
order neurons (Esteve-Rudd et al., 2011).

Very few studies analyze retinal glial cells in PD. In a
transgenic mouse model overexpressing α-syn, an accumulation
of α-syn has been found in glial cells of the INL (Surguchov
et al., 2001). In a PD model with the administration of MPTP
increased GFAP immunostaining, glutamine synthetase (Müller
cell marker), and CD11b (microglial marker) were detected,
indicating an activation of retinal glial cells (Chen et al., 2003).
In the same experimental model, Nagel et al. also observed
astrogliosis in retinal tissue, without changes in the number
of tyrosine hydroxylase (TH)+ amacrine cells, postulating that
other retinal neurons can be affected, even non-neuronal cells
(Nagel et al., 2009). In addition, a non-proliferative gliosis of
GFAP+ Müller cells was found in the MPTP model of PD. This
gliosis was accompanied of milder declines in TH+ amacrine
cells, followed by stronger recoveries without neurogenesis (Cho
et al., 2012). Müller cells constitute the main glial cell type in
the retina where it interacts with virtually all cells displaying
functions relevant to retinal physiology. Müller cells are able to
synthesize and release DA to the extracellular medium. Thus,
the dopaminergic Müller cells can be used as a source of DA in
cell-therapy procedures (Stutz et al., 2014; Table 1).

Glaucoma
Glaucoma, the second leading cause of blindness in the world,
is characterized by the irreversible RGC loss, leading to a
vision loss (Quigley and Broman, 2006). In the early stages
of the disease, the reactivation of the glial cells leads to
the progression of glaucomatous damage (Tezel, 2009). As
mentioned above, when neurons are damaged, microglial cells
respond by adopting an activated phenotype (Kreutzberg, 1995;
Graeber and Streit, 2010). In glaucoma, activated microglia
can exhibit morphological changes, proliferate, migrate, or can
change the expression of different enzymes, receptors, growth

factors, and cytokines (Rojas et al., 2014). An overexpression
of these latter inflammatory mediators can contribute to retinal
degeneration (Langmann, 2007; Karlstetter et al., 2010). Also,
microglia can act as antigen-presenting cells and even transform
into phagocytes (Luo et al., 2010; Kettenmann et al., 2011;
Karlstetter et al., 2015; Ransohoff and El Khoury, 2015).
Unfortunately the role of the microglia in the pathophysiology
of glaucoma is poorly understood, and thus better knowledge of
the function of microglial cells in this disease is necessary.

As mentioned above, microglial activation is one of the first
events in glaucomatous neurodegeneration (Williams P. A. et al.,
2017), but even this activation is prior to the RGC loss (Ebneter
et al., 2010; Bosco et al., 2011). In experimental glaucomamodels,
it has been observed that after treatment withminocycline (Bosco
et al., 2008) or with a high dose of irradiation (Bosco et al., 2012),
there was a reduction of microglial activation and thus lower
RGC death. In addition, in DBA-2J mice a significant quantitative
correlation has been established between the microgliosis and
the axon loss in the optic nerve (Bosco et al., 2016; Figure 1C,
Table 1).

Neurons can induce an inflammatory response in microglial
cells after an injury. Nucleotides released by damaged neurons
can up-regulate the purinergic receptors of the microglia,
activating their phagocytic ability, motility, and migration
(Koizumi et al., 2007; Ohsawa et al., 2007; Wu et al., 2007). It has
been demonstrated, in an experimental mouse glaucoma model,
that deficiencies in the activation of CX3R1 increase microglial
activity, neurotoxicity, and the RGC death (Wang et al., 2014). In
addition, in the experimental model of glaucoma, there is an early
change in the CD200R/CD200 expression which regulates the
microglial activity and precedes RGC death (Taylor et al., 2011).
The damaged neurons can release head-shock proteins (HSP),
triggering the oxidative response in the microglial cells. These
proteins can activate the innate immune system via TRLs in the
glaucoma (Tezel, 2009; Karlstetter et al., 2015). In the human
glaucoma, high levels of HSP27, HSP60, HSP7, and antibodies
against HSPs (Cagnin et al., 2001; Streit et al., 2004; Wyss-Coray,
2006; Stewart et al., 2010; Parpura et al., 2012; Calsolaro and
Edison, 2016; De Strooper and Karran, 2016; Bennett et al.,
2017) have been found. Furthermore, the dying neurons release
the protein HMGB1, which binds to the CD11b receptor of
the microglia to induce the production of inflammatory and
neurotoxic factors. In experimental glaucoma the elimination of
the CD11b receptor has a neuroprotective role since it prevents
the microglial activation (Nakazawa et al., 2006).

In glaucoma patients, an overexpression of γ–synuclein has
been demonstrated in ganglion cell axons as well as in glial cells of
the lamina and postlamina cribosa of the optic nerve. Synuclein
has an important role in neurodegenerative diseases, and these
findings suggest possible synuclein involvement in glaucomatous
alterations in the optic nerve (Surgucheva et al., 2002).

In experimental glaucoma and in the DBA/2j spontaneous
mouse glaucoma model, amyloid precursor protein and Aβ were
found in the RGCs (Figure 1C) in relation to increased IOP
(McKinnon et al., 2002; McKinnon, 2003; Goldblum et al., 2007).
In addition, abnormal tau (AT8) and phosphorylated tau were
found to be present in human ocular tissues of uncontolled IOP
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and in donor eyes with glaucoma (Gupta et al., 2008; Ning et al.,
2008). This implies that Aβ accumulation in the retina is involved
in the pathogenesis of glaucoma, this Aβ deposition being related
to microglial activation and neuroinflammation (Bolos et al.,
2017; Figure 1C, Table 1).

When microglia are activated, they can adopt different
morphologies. In experimental models of glaucoma, activated
microglia acquire several morphological phenotypes: stellate
cells with thick processes, hyper-ramified cells, rounded cells,
amoeboid cells (which act as macrophages, phagocytizing cellular
debris) and rod-like microglia. The rod-like microglia are related
to neurodegeneration, in the experimental glaucoma model, and
the presence of this cell type is restricted to eyes with neuronal
damage. It seems that the rod-like microglia might be involved in
the active removal or “stripping” of the synaptic contacts (Gallego
et al., 2012; de Hoz et al., 2013; Rojas et al., 2014).

In addition to the different morphologies, activated microglia
can adopt different functional phenotypes in response to
neuronal damage. After injury, the cytokines released by the
damaged cells (e.g., IFN-γ) give rise to the microglial activation,
acquiring a M1-like phenotype. This phenotype is characterized
by production of proteolytic enzymes and pro-inflammatory
cytokines (TNF-α, IL-1β, IL-6, IL-12, and NO) promoting tissue
inflammation (Varnum and Ikezu, 2012; Gonzalez et al., 2014;
Jones and Bouvier, 2014). In human glaucoma and in the
experimental models of glaucoma, high levels of these pro-
inflammatory cytokines have been found (Neufeld et al., 1997;
Shareef et al., 1999; Tezel et al., 2001; Nakazawa et al., 2006; Vidal
et al., 2006; Lee et al., 2014; Madeira et al., 2015).

In experimental glaucoma, it has been observed that the
activated microglia can migrate to remove the damaged or
dead cells (Bosco et al., 2012; Rojas et al., 2014). In the
human glaucoma the amoeboid microglia are located in the
lamina cribrosa phagocyting the damaged axons (Neufeld, 1999).
The morphology change of the microglia from the ramified
shape to the amoeboid phagocytic shape is associated with
the expression of different surface markers such as: MHC-II
(OX6), CD68, Griffonia simplicifolia isolectin B4, complement
receptor 3 (CD11b/CD18, OX42), and F4/80 (Kreutzberg, 1996;
Streit et al., 1999). In a unilateral experimental glaucoma model,
CD68 expression (a member of the scavenger-receptor family)
was observed in the retinal microglia (Rojas et al., 2014).
The migration and the proliferation of the microglial cells are
regulated by soluble factors or by the extracellular matrix changes
of damaged CNS tissues. It has been found that microglia of the
optic-nerve head express different matrix metalloproteinases and
their inhibitors, indicating their participation in the remodeling
of the extracellular matrix (Yuan and Neufeld, 2001; Garden and
Möller, 2006).

The activation of the microglia also involves higher numbers
of microglial cells. This fact it has been observed in human
glaucoma and in glaucoma animal models (Giulian and Ingeman,
1988; Yuan and Neufeld, 2001; Naskar et al., 2002; Inman and
Horner, 2007; Johnson et al., 2007; Gallego et al., 2012; de Hoz
et al., 2013; Rojas et al., 2014). The microglia mitosis can be
stimulated by neurotrophic factors (BDNF, NT-3) and several
cytokines (macrophage colony-stimulating factors, granulocyte

macrophage CSF, IL-1β, IL-4, and IFN-γ) (Garden and Möller,
2006).

In the classical M1 activation, the MHC II, CD86, and Fcγ
receptors are up-regulated, because this phenotype is oriented
to antigen presentation and the killing of intracellular pathogens
(Taylor et al., 2005; Cherry et al., 2014). Under physiological
conditions, somemicroglial cells express very low levels of MHC-
II, although certain pro-inflammatory cytokines (e.g., TNF-α or
IFN-γ) can upregulate MHC-II expression by microglial cells.
In this context, both for glaucoma patients (Yang et al., 2001b;
Tezel, 2009; Ebneter et al., 2010) and in animal models of
glaucoma (Ebneter et al., 2010; Gallego et al., 2012; de Hoz
et al., 2013; Rojas et al., 2014) there is evidence for increased
expression of MHC-II molecules in glial cells. In a glaucoma
model, after 15 days of ocular hypertension (OHT), most of
microglial cells were MHC-II + while the CD86 expression was
observed only in some amoeboid and rounded Iba-1+cells in
the NFL and the GCL (Rojas et al., 2014). The fact that most
of microglial cells were CD86- could prevent T-cell activation
by their omission of co-stimulation, leading to a downregulation
of the immune response (Broderick et al., 2000). In addition, in
an experimental glaucoma model the MHC-II upregulation by
the activated microglia in the optic nerve could be associated
with more severe RGC degeneration (Chidlow et al., 2016). It has
been observed in an experimental glaucoma model that caffeine
administration decreases the microglia MHC-II upregulation
reducing microglial activation and increasing RGC survival
(Madeira et al., 2016).

After M1 activation, the microglial cells can return to a state of
rest, adopting a transitory state of M2 activation. In this state, the
microglia can upregulate CD68, CD206, and Ym1 (Menzies et al.,
2010; Komori et al., 2011; Varnum and Ikezu, 2012; Jones and
Bouvier, 2014; Zhou et al., 2014). In an experimental model of
unilateral glaucoma, it was observed that the only cells expressing
Ym1 were amoeboid Iba-1 + cells in the NFL and GCL of the
OHT retinas. The authors postulated that most of the microglial
cells in this OHT model were serving functions not related with
the M2 microglial phenotype (Rojas et al., 2014).

In glaucomatous eyes, the chronic stress in the tissue can
induce the rupture of the blood-retinal barrier, allowing the
contact of nervous tissue of the retina and the optic nerve with
systemic immune cells (Tezel, 2009). In addition, chemokines
(CCL2, CCL5, CCL20, CXCL10, CXCL12, CXCL1, CXCL2, and
CX3CL1) released by reactive astrocytes can recruit dendritic
cells, microglia, monocytes/macrophages, and T-cells into the
inflamed tissue (Farina et al., 2007; Gonzalez et al., 2014).
In a chronic glaucoma model DBA/2J, the loss of CX3CL1
signaling increased the infiltration of peripheral macrophages
(Breen et al., 2016). The role of monocytes in the survival of
RGCs is controversial. In an experimental model of OHT it
was observed that an increased number of monocytes could be
protective (London et al., 2011). However, in a genetic model of
glaucoma (DBA/2J) the irradiation that lowered the number of
monocytes boosted RGC survival (Howell et al., 2012).

In addition, the blood retinal barrier breakdown (Figure 1C,
Table 1) can allow the entry of complement proteins, thus
activating the complement in the retinal tissue (Karlstetter et al.,
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2015). For retinal homeostasis, the level of complement proteins
should be low. However, the complement constituents can be
activated by inflammatory cytokines (e.g., TNF-α, INF-γ, and IL-
6) produced under inflammatory conditions such as glaucoma
(Karlstetter et al., 2015). In the retina of the glaucomatous eyes
an upregulation of the component complement C1q has been
observed (Steele et al., 2005; Stasi et al., 2006). Microglial cells
respond to C1q upregulation by eliminating the targeted synapses
(Steele et al., 2005; Stasi et al., 2006). Thus, the involvement of the
immune system in glaucomatous pathology has been postulated.
Recently, it has been suggested that oral microbiome could
be related to glaucoma pathophysiology, through microglial
activation mediated through TLR4 signaling and complement
upregulation (Astafurov et al., 2014). Apart from the chronic
activation of resident immunoregulatory glial cells, the presence
of plasma cells in the retina, and the complement activation
(Tezel, 2009), high levels of autoantibodies and deposition
of immunoglobulins have been found in the glaucomatous
neurodegeneration (Wax et al., 1998; Hammam et al., 2008;
Gramlich et al., 2013; Pinazo-Duran et al., 2013). It has even
been speculated that the glaucoma would be mediated by an
autoimmune mechanism and that both innate and adaptive
responses accompany this pathology (Tezel, 2009, 2013). The
serum of glaucoma patients has been found to contain high
levels of antibodies (e.g., against HSPs; Maruyama et al., 2000;
Wax et al., 2001; Tezel et al., 2004; Grus et al., 2008). Moreover,
serum alteration of the populations of T-cell repertoires and of
interleukin-2 receptors has been detected (Yang et al., 2001a).
In view of the evidence mentioned above, the immune response
could be involved in the pathogenesis of the glaucoma.

CONCLUSION

AD, PD, and glaucoma are neurodegenerative diseases that
share a common pathogenic mechanism, in which the
neuroinflammation, in the form of microglial activation, plays
an important part. The differential activation of microglia
(M1 or M2 phenotypes) can produce a neurotoxic or
neuroprotective environment, and could constitute a key in
neuroinflammation regulation. In the search for a new strategy
to control neuroinflammation, it might be more effective to
change the M1 phenotype to the M2 phenotype than to block
microglial activation completely. In the regulation of microglial
activation, several cell types including, neurons, astrocytes, and
T-cells are involved. When the neuroinflammatory process is
triggered by protein aggregates (Aß, α-syn, pTau etc.), peripheral
immune cells infiltrate CNS and prompt more activation on
resident microglia, favoring neuroinflammatory processes.

Neuroinflammatory processes occur not only in the brain
but also in the retina, because the retina is a projection of the
CNS. Thus AD, PD, and glaucoma share neuroinflammatory
changes in the retinal tissue. The follow up of neuroinflammatory
processes in the retinal tissue may be useful for the early
diagnosis and monitoring of neurodegenerative diseases. Future
research could therefore address these issues to provide fuller
knowledge of neuroinflammatory events that occur in AD, PD,

and glaucoma, especially the contribution of microglia. This
might help in the development of new therapeutic strategies to
control neuroinflammation and thereby spur progress in treating
these neurodegenerative diseases.
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