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Many studies support the existence of an association between type 2 diabetes (T2DM)
and Alzheimer’s disease (AD). In AD, in addition to brain, a number of peripheral
tissues and cells are affected, including red blood cell (RBC) and because there are
currently no reliable diagnostic biomarkers of AD in the blood, a gradually increasing
attention has been given to the study of RBC’s alterations. Recently it has been
evidenced in diabetes, RBC alterations superimposable to the ones occurring in AD
RBC. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role
in the development of RBC’s alterations and vice versa. Once again this represents
a further evidence of a shared pathway between AD and T2DM. The present review
summarizes the two disorders, highlighting the role of RBC in the postulated common
biochemical links, and suggests RBC as a possible target for clinical trials.

Keywords: Alzheimer’s disease, diabetes mellitus type 2, red blood cells, amyloid beta peptide, oxidative stress,
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INTRODUCTION

Patients affected by Alzheimer’s disease (AD) have senile plaques in central nervous system (CNS)
areas where neurodegenerative process takes place (Selkoe, 1994). AD plaques are composed
principally by amyloid β-peptide (Aβ), that can be formed by 39–43 amino acids and that derives
from a longer precursor (APP) localized in transmembrane. Aβ, as showed by Yankner et al.
(1990), is neurotoxic especially in aggregate form and it can lead to apoptosis of neuronal cells.

Although, historically, amyloid plaques were thought to cause AD (Hardy and Higgins,
1992), recent data suggest that Aβ oligomers, instead of plaques, trigger the pathological process
(Roychaudhuri et al., 2009). On the basis, many studies have investigated the patho-mechanisms
and to identify the risk factors of the disease. Vascular related diseases such as diabetes,
hypertension and hypercholesterolemia have been reported to favor AD (Helzner et al., 2009) and
in addition, AD patients have an increased risk of stroke events (Chi et al., 2013; Tolppanen et al.,
2013). These data suggest a reciprocal relationship between vascular risk factors and AD.

It has been shown that Aβ causes oxidative stress (Nunomura et al., 2001). Beside its
presence in CNS, Aβ can be detected in platelets (Chen et al., 1995) and blood (Seubert
et al., 1992), where it interacts with red blood cells (RBC). Our previous studies (Clementi
et al., 2004; Misiti et al., 2012; Carelli-Alinovi et al., 2015a, 2016a) suggest that Aβ is able to
alter RBC metabolism. Other studies (Jayakumar et al., 2003; Mandal et al., 2003; Nakagawa
et al., 2011; Lang and Lang, 2015), indicate that Aβ could impairs RBC functionality and
integrity, enhancing abnormalities at the vascular level that could be responsible for AD
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(de la Torre, 2002). Aβ induces oxidative injury to RBC
(Kay, 1984; Mandal et al., 2003; Clementi et al., 2007)
that can lead to eryptosis (Nicolay et al., 2007). Diabetes
is accompanied with impaired microcirculation resulting in
relative tissue hypoxia (Ditzel and Standl, 1975; Ditzel et al.,
1978). It induces numerous abnormalities in RBC, responsible
for microcirculation impairment (Le Devehat et al., 1994),
including increased aggregation (Schmid-Schönbein and Volger,
1976) and membrane viscosity (Baba et al., 1979) and
decreased deformability (McMillan, 1975; Vague and Juhan,
1983). Reduced viscoelastic properties of RBC membranes have
been attributed to the alterations in membrane lipid-protein
interactions. RBC membrane is altered by free radicals-induced
oxidative stress (Kumar, 2012). Diabetic altered RBC became
able to adhere to endothelium by a specific interaction between
advanced glycation end products (AGE) present on RBC and a
specific receptor on the endothelium (Grossin et al., 2009). Once
again, all this morphological, structural and biochemical changes
result in an accelerated clearance of RBC. In the present review,
we describe RBC main alterations in a diabetic milieu and in AD
and refer to common pathophysiological mechanisms linking
these two diseases.

EVIDENCES FOR A CONNECTION
BETWEEN TYPE 2 DIABETES AND
ALZHEIMER’S DISEASE

Previous studies (Ott et al., 1999) show that AD is more frequent
in type 2 diabetes (T2DM) patients. These findings indicate
that glucose dysmetabolism is involved in AD onset. Glucose
dysmetabolism occurs in brain regions during pre-symptomatic
period, although further studies will be needed to clarify if
glucose dysregulation starts AD pathology, or it is a secondary
effect due to Aβ-related toxic events and tau formation (Sato and
Morishita, 2015). Recent studies demonstrate that individuals
with T2DM develop AD with high frequency (Ott et al.,
1999; Crane et al., 2013; Huang et al., 2014), and patients
with hyperglycemia are more prone to develop AD from mild
cognitive impairment (MDI; Morris et al., 2014). In addition,
T2DM-related conditions, including obesity (Beydoun et al.,
2008), hyperinsulinemia (Peila et al., 2004) and metabolic
syndrome, may be risk factors for AD.

In this regard, there are in literature data on impaired insulin
action or production, impaired signaling pathway involving
insulin receptor (IR) and insulin growth factor (IGF) defects,
toxicity caused by hyperglycemia, increase of advance glycation
end products, inflammation at the vascular level and others
(Sjöholm and Nyström, 2006; Luchsinger, 2012; de la Monte,
2012). It has been found a reduction in neuronal insulin
transport, uptake and concentration in animal studies (Baskin
et al., 1985; Banks et al., 1997; Kaiyala et al., 2000).

Recently Takeda et al. (2010) reported that defects in
insulin-like growth factor 1 (IGF-1) receptor, IR and insulin
receptor substrate (IRS)-1/2, suggesting that these events could
be involved in the mechanism underlying AD and diabetes.
Insulin signaling impairment leads to loss of neuronal function,

plaque formation and NTF formation (Biessels and Kappelle,
2005). Aβ is able to bind IR in a competitive way, inhibiting
its auto-phosphorylation and downstream kinases necessary
for neuronal function in hippocampal region (Townsend
et al., 2007). It was shown that mice in hyperglycemic or
hyperinsulinemic status have a higher ability to generate Aβ

in brain (Ho et al., 2004; Cao et al., 2007). Moreover Zhang
et al. (2012) showed that in APP/PS1 mice model, Aβ correlate
with insulin resistance and in humans with hyper-glycemia. In
particular, in hepatocytes, they showed that Aβ induces insulin
resistance, triggering JAK2/STAT3/SOCS-1 signaling pathway.
Furthermore, insulin could interfere with the proteolytic Aβ

degradation, that is known to occur via a metalloprotease,
that recognize as substrates, also insulin and IGF-1 (Gasparini
et al., 2002; Carro and Torres-Aleman, 2004; Plum et al.,
2005; Carro et al., 2006; Moloney et al., 2010). High plasma
insulin levels, occurring in insulin resistance patients, may be
responsible for insulin-degrading enzyme inhibition; this event,
as reported by the authors, impairs Aβ degradation, favoring
its toxicity (Gasparini et al., 2002; Carro and Torres-Aleman,
2004; Plum et al., 2005; Carro et al., 2006; Moloney et al.,
2010). Insulin resistance promote tau phosphorylation, leading
to glycogen synthase kinase-3β activation (Li et al., 2006; Kremer
et al., 2011). Genetic factors are involved in diabetes and AD
cognitive impairment such as apolipoprotein E (ApoE). For
example, ApoEε4 allele is present in the ‘‘late onset familial’’
and the ‘‘sporadic’’ ones, both forms of AD (Corder et al.,
1993). A previous study has shown synergistic effects between
the ApoEε4 and diabetes for developing AD (Peila et al.,
2002).

AD is promoted by a T2DM status and their linkage is
furthermore influenced by many factors, including ethnicity,
glycemia and insulin. Thus, it becomes important to understand
which of these factors are more decisive in the correlation
between AD and T2DM, considering that in literature there
are several controversial data (Neuropathology Group of the
Medical Research Council Cognitive Function and Ageing Study
(MRC CFAS), 2001; Petrovitch et al., 2001; Peila et al., 2002).
In particular, Alzheimer-type pathology was found less frequent
in diabetic patients when compared to non-diabetic subjects
(Nelson et al., 2009).

RED BLOOD CELLS IN TYPE 2 DIABETES

Diabetes is characterized by microvascular alteration (Jones
and Peterson, 1981) and in diabetic RBC have been observed
several functional and structural alterations (Jones and Peterson,
1981), such as a reduced life span (Peterson et al., 1977;
Pescarmona et al., 1982), excessive aggregation (Schmid-
Schönbein and Volger, 1976; Satoh et al., 1984), altered
membrane phospholipid asymmetry (Wali et al., 1988), and a
higher tendency to adhere to endothelial cells (Wautier et al.,
1981; Wali et al., 1988). RBC alterations are linked to glucose
metabolic disorder, whereas, others are associated with diabetes-
related dysfunctional mechanisms (Jain et al., 1983). The main
important mechanisms that affect RBC structure and function in
diabetes patients are given below.
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Oxidative Stress
RBC compared to other cells are more affected by oxidative
damage occurring in diabetes (Beisswenger et al., 2005), because
of its higher levels of iron and poly-unsatured fatty acids.
High blood glucose concentration causes phosphatidylserine
(PS) exposure, a marker of eryptosis, triggering RBC removal
by macrophages (Boas et al., 1998; Eda and Sherman, 2002).
Similarly, methylglyoxal inhibits ATP production and decreases
GSH levels (Nicolay et al., 2006), resulting in PS exposure,
and eventually in anemia and microcirculatory disequilibrium
(Nicolay et al., 2006).

Lipids and its Modifications
Fatty acid composition changes in T2DM RBC. In particular,
arachidonic acid and the total content of n-6 fatty acids were
inversely proportional to the plasma insulin content during
in fasting conditions (Clifton and Nestel, 1998). In diabetic
patients, the saturated fatty acid amount was higher than in
control and at the same time polyunsaturated fatty acid levels
were lower than control (Prisco et al., 1989). Moreover, it
has been evidenced a decrease in cholesterol/phospholipids
ratio (Maksina et al., 1992; Mawatari et al., 2004) with
a concomitant increase in sphingomyelin/phosphatidylcholine
ratio. This situation may cause, at least in part, RBC function
abnormalities and insulin resistance, because of inconvenient
membrane fluidity. Previous studies have reported in plasma
of diabetic patients and rats, high levels of oxidized lipids-
derived aldehydes (Sato et al., 1979; Matkovics et al., 1982;
Kaji et al., 1985; Uzel et al., 1987; Dohi et al., 1988). Further
in vitro studies have reported that, damaging effects of hydrogen
peroxide on RBC of diabetic patients is more relevant with
respect to control ones (Matkovics et al., 1982; Uzel et al.,
1987). Oxidized lipids, such as TBARS and conjugated dienes
localized in RBC membranes, favor vascular defects reported in
diabetes patients (Baynes, 1991; Jain et al., 1989). It is not yet
known the mechanism responsible for hyperglycemia-induced
membrane lipid peroxidation. It has been also reported that
lipid peroxidation levels are correlated with the levels of HbA1c
(Jain et al., 1989), as well as the 7-oxocholesterol/cholesterol and
conjugated linoleic acid/linoleic acid ratios (Inouye et al., 1998,
1999). Some articles report that glucose reduces oxygen, leading
to formation of aldehydes, H2O2 and ROS, resulting in oxidative
stress and MDA (Carrell et al., 1975; Ramasarma, 1982; Halliwell
and Gutteridge, 1984).

Protein Modifications
AGE (Basta, 2008) found in high levels in diabetic RBC affect
cell survival, affecting protein integrity involved in membrane
structure (Elkrief et al., 2016). Previous evidences show that
increased blood glucose levels cause RBC membrane protein
glycation, resulting in higher cell fragility (Hatanaka et al.,
2016). Higher glycosylation levels affect cytoskeleton, resulting
(Cho et al., 2008) in morphologically abnormal RBC with
decreased life span (Labrouche et al., 1996). Serum protein
glycation causes modification in RBC proteins and modulates
their biological or structural function (Cho et al., 2008). Among
RBC membrane proteins, the glucose transporter-1 (Glut-1)

is responsible for basal glucose uptake and transport across
the plasma membrane (Kawano et al., 1999). Several evidences
showed that Glut-1 is more susceptible for glycation and its
increased structural alteration in diabetes causes cellular and
tissue damage (Bonadonna et al., 1996).

Adhesion to Endothelium
Adhesion of diabetic RBC to endothelium is mediated by a
specific interaction between AGE, present on the RBC and
a specific receptor on the endothelium. Consistent with this
hypothesis, diabetic RBC of rats were able to interact with
blood vessels receptor for advanced glycation end products
(RAGE), and this event was followed by oxidative stress
generation (Wautier et al., 1994). Furthermore, consequence of
the RBC/endothelium interaction results in several perturbations
such as an increased vessel permeability and interleukin-6 (IL-6)
production. The oxidant stress secondary to RBC adhesion
induces the activation of NFκB. The presence of RAGE in
different cell types suggests that it could be involved in the genesis
of diabetic complications, although the exact involvement of the
AGE–RAGE interaction needs additional evidence. Inhibition of
nitric oxide (NO) formation by nitro-L-arginine, potentiates the
adhesion of RBC from diabetic patients to endothelium (Grossin
et al., 2009). By contrast, the addition of NO donors (NOR-3,
SIN-1 or SNAP) reduced or inhibited adhesion of RBC from
diabetic patients measured in flow conditions (Grossin et al.,
2009).

Alterations in RBC Deformability
Alterations in membrane lipid asymmetry and composition, as
well as cytoskeletal ones, alter RBC shape and deformability,
subsequently responsible for reduced RBC membrane integrity,
when encountering shear stresses (Bennett-Guerrero et al., 2007).
Structural alterations in RBC are reflected to the functionality of
the cell. Previous data, supported by SEM visual analysis, have
reported that RBC from diabetic patients differ in shape and size
from RBC of healthy subjects (Buys et al., 2013). In addition,
AFM analysis showed that T2DM RBC showed several structural
and morphological alterations (Buys et al., 2013). Previously it
has been observed an alteration in T2DM RBC ultrastructure,
probably due to iron overcharge, that caused the polymerization
of fibrinogen (Lipinski and Pretorius, 2013).

Anemia
Low hemoglobin (Hb) levels is an indication of anemia and has
the effect of inhibiting RBC from transporting oxygen to different
tissues.

Anemia is easily found in people with diabetes and
contributes to the pathogenesis of complications related to
diabetes (Astor et al., 2002), especially in cases of renal
dysfunction (Dikow et al., 2001; Herzog et al., 2008). A positive
correlation was found between anemia, retinopathy (Qiao et al.,
1997) and somatic neuropathy in T2DMpatients (Mezzano et al.,
2003; Thomas et al., 2004; Herzog et al., 2008).

Chung et al. (2017) have demonstrated a correlation
with cardiovascular autonomic neuropathy, supporting the
hypothesis that anemia triggers neuronal injury (Mezzano et al.,
2003; Thomas et al., 2004; Herzog et al., 2008).
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The responsible mechanism is still not well understood, but
bilirubin originated mainly by heme degradation (Berk et al.,
1969), could play a central role due to its antioxidant mediated
effects (Stocker et al., 1987; Kapitulnik, 2004).

Moreover, hyperglycemia is linked with an over-expression of
proinflammatory cytokines (IL-6, TNF-α and NFkB; Martínez-
Pérez et al., 2013; Angelousi and Larger, 2015) that lead
to diabetic cardiovascolar complication and anemia (Barbieri
et al., 2015). In particular IL-6 has an antierythropoietic effect
promoting immature RBC apoptosis, ultimately responsible for
Hb reduction (Fava et al., 2001; Angelousi and Larger, 2015).

ALTERED RBC FUNCTIONS IN
ALZHEIMER’S DISEASE

In last years, Aβwas found in peripheral plasma blood (Scheuner
et al., 1996; Mehta et al., 2000; van Oijen et al., 2006; Graff-
Radford et al., 2007) where it interacts with RBC, leading to
impairment of its function (Mattson et al., 1997; Clementi et al.,
2007; Mohanty et al., 2008), suggesting that this event could
promote AD.

In particular, in AD RBC, have also been described physical
alterations in membrane proteins (Kay et al., 1994), in the Ca++
permeability (Engström et al., 1995), in the antioxidant enzyme
activities and morphological perturbations (Delibas et al., 2002)
including Aβ-induced RBC suicidal death (i.e., eryptosis; Lang
and Lang, 2015). There have been reports of links between RBC
and AD. Some of these are highlighted below.

Vascular Alterations
There is increasing attention to the vascular dysfunction as a
possible cause of AD (de la Torre, 2002). In AD RBC, it has
been reported a decrease in surface area, an increase in cell
volume and alteration in membrane composition, leading to
deformability decrease (Rifkind et al., 2002). Our recent in vitro
data show a correlation between membrane alteration, signaling
pathways activation and reduced RBC function (Carelli-Alinovi
et al., 2016a). In AD patients, altered values for blood viscosity,
mean corpuscular cell volume and RBC aggregation have been
reported (Chang et al., 2007). An additional factor that can
influence the oxygen delivery function in AD patients is the
ability of RBC to adhere to the vasculature, by a mechanism
mediated by Aβ. This kind of interaction causes a decrease in cell
survival and the generation of oxidative stress and inflammatory
condition (Nakagawa et al., 2011). Thus, authors suggested that
Aβ and RBC interaction is responsible for blood flow alteration
particularly at the cerebral level with amyloidosis.

Metabolic Disturbances
Factors other than 2,3-DPG may affect the hemoglobin affinity
to oxygen (Samaja et al., 2003). However, the relationship
is established between the RBC concentration of 2,3-DPG
and tissue hypoxia under various conditions. Thus, all
above observations support the hypothesis that the chronic
enhancement in the rate of active transport in RBC from AD
patients leading to the decrease in the concentrations of ATP
(Kosenko et al., 2012) and 2,3-DPG (Kaminsky et al., 2013), can

result in increased hemoglobin affinity for oxygen, leading to
impaired oxygen delivery to tissues (Aliev et al., 2009), which
results in cognitive decline. In patients with AD, characteristic
reduction of cerebral perfusion and metabolism occurs (de
la Torre, 2002; Aliev et al., 2011) which inhibit the optimal
delivery of glucose and oxygen (de la Torre and Aliev, 2005).
The dysregulation of neuronal glucose metabolism in AD may
result in a decrease in enzymatic activities of hexokinase (EC
2.7.1.1; Marcus and Freedman, 1997), phosphofructokinase (EC
2.7.1.11; Meier-Ruge et al., 1984), pyruvate dehydrogenase (EC
1.2.4.1) and enzymes of the tricarboxylic acid cycle (Bubber et al.,
2005), and various other effects including the desensitization of
the neuronal IR (Hoyer, 2000), impaired glucose transporter at
the blood-brain barrier (BBB; Kalaria and Harik, 1989). At this
regard, recently Kosenko et al. (2014) measured some parameters
of adenine nucleotide metabolism, glycolysis, pentose phosphate
pathway and the 2,3-DPG shunt in RBC from AD and age
matched and young controls. From these results, it is clear
that intracellular ATP levels, total adenine nucleotide pool
size, and the ATP/ADP ratio were similar in RBC from AD
patients and age-matched controls and lower than in young
controls (Kosenko et al., 2012). However, activities of most of
the enzymes such as hexokinase, glucose-6-phosphate isomerase
(EC 5.3.1.9), phosphofructokinase, glyceraldehyde-3-phosphate
dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC
2.7.2.3), pyruvate kinase (EC 2.7.1.40), lactate dehydrogenase
(EC 1.1.1.27), glucose-6-phosphate dehydrogenase (EC 1.1.1.49),
6-phosphogluconate dehydrogenase (EC 1.1.1.44) and Na/K-
ATPase, as well as the cytosolic NAD/NADH ratio, pyruvate and
lactate levels, were higher in AD compared to controls, indicating
an increase in RBC glycolysis and ion fluxes (Kaminsky et al.,
2012, 2013).

Protein Alterations
It has been shown that in late onset patients, RBC membrane
glucose transporter protein 1 (GLUT1) and IR, as well as
ATP-binding cassette transporter sub-family A member 1
(ABCA1) and ATP-binding cassette sub-family G member 2
(ABCG2), have higher levels of expression (Várady et al., 2015).
For what concerns the early onset AD, it has been reported the
same behavior outlined in the late-onset form for GLUT1 and
IR, on the other hand no changes have been observed for RBC
ABCA1, ABCG2, plasma-membrane Ca(2+)-ATPase (PMCA)
and ATP binding cassette subfamily B member 6 (ABCB6;
Várady et al., 2015). Generally, GLUT1 expression is modulated
by glucose, hypoxia, insulin and growth hormones (Guo et al.,
2005; Chen et al., 2015), and it has been shown that RBC
GLUT1 expression is modulated by plasma elevated glucose
levels (Harik et al., 1991). In the cases examined, where an
up-regulation of GLUT1 and INSR was observed, a systemic
hyper-glycemia was not present. Based on the relevant literature
(Querfurth and LaFerla, 2010; Huang and Mucke, 2012), it could
be hypothesized that GLUT1 and INSR increased levels, originate
from transporter upregulation in endothelial cells of blood brain
barrier due to brain hypoxia. IR level increase, could be caused
by the insulin resistance in CNS (Querfurth and LaFerla, 2010;
Huang and Mucke, 2012). Protein Kinase C (PKC) undergoes
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alteration in brain (Pascale et al., 2007) and in peripheral tissues
in AD (Govoni et al., 1993; Solerte et al., 1998). It plays a
relevant role in AD physiopathology in brain, because it is
involved in the transduction pathway and changes that occurs
include, expression level and translocation (Pascale et al., 2007).
The PKC role in RBC is similar to brain isoform. Band 3, a
transmembrane protein in RBC, has the same role in brain and it
becomes phosphorylated by PKC and it has the same alterations
observed in AD brain and RBC. These modifications include
an altered conformation recognized by antibodies, a decrease in
anion transport and in 32P-phosphate labeling (Bosman et al.,
1991; Kay and Goodman, 1997). It could be suggested that band
3 alterations could be linked to an altered PKC activity. Our
previous studies have shown that activation of RBC PKC after
Aβ exposition could play a key role in oxidative imbalance,
occurring following Aβ exposure (Carelli-Alinovi et al., 2015a).
RBC mechanical properties are regulated by RBC PKC isoforms,
caspase 3 and NO produced within the cell (Misiti et al., 2008;
Carelli-Alinovi et al., 2015b).

Oxidative Stress
In RBC with high ROS level it is easy to find higher levels of
oxidized hemoglobin (metHb) that is unable to carry oxygen.
Following incubation of RBC with different aggregate forms of
Aβ peptides and Cu2+ i.e., mainly protofibril, it has been found
that Cu2+-increased RBC oxidative stress. Oxidative stress leads
to Hb oxidation, to the onset of heme degradation products on
RBC membrane and to reduced ability to deform its shape.

Recent experiments have shown that band 3 is degraded
by caspase 3 in Aβ treated RBC (Clementi et al., 2007),
leading to band 3/glycolytic enzymes interactions abrogation
(Mandal et al., 2003). This leads to an alteration of RBC
metabolism (Galtieri et al., 2002), implying that, AD RBC have
an increased risk of oxidative damage. At this regard, caffeine,
a largely known antioxidant, reduced Aβ-induced toxicity in
RBC (Carelli-Alinovi et al., 2016b). Although still controversial,
malondialdehyde (MDA) levels of RBC membrane increase in
AD patients (Skoumalová and Hort, 2012). RBC abnormalities
might indicate the progression of AD oxidative damage. AD
RBC have a greater membrane instability when exposed to H2O2,
compared with controls cells (Gilca et al., 2014). SOD activity
protects cell but above a certain threshold, SOD is no longer
able to protect and, on the contrary exalts peroxidation (Michiels
et al., 1994). Therefore, SOD contributes to cell damage, favoring
nitro-tyrosine formation in proteins. Previous articles suggested
SOD as a peripheral marker of AD, reporting an increase in SOD
activity in AD patient’s RBC (Serra et al., 1994, 2001).

Anemia
Many studies have been conducted in an attempt to demonstrate
a correlation between anemia and the development of the AD,
but the results have often been discordant (Beard et al., 1997; Atti
et al., 2006).

Low Hb levels could be a marker for ischemia, hypoxia-
associated changes in hypoxia inducible factor (HIF) and
erythropoietin levels, as well as alteration in heme regulation.
Shah et al. (2011) demonstrated that hemoglobin levels were

linked with cognitive decline. Chronic kidney disease associated
with low Hb levels, could cause cerebral hypoxia, through a
mechanism involving HIF and erythropoietin (Nangaku et al.,
2008). At this regard, it has been suggested that a reduction in
brain erythropoietin receptors (Maiese et al., 2005; Hasselblatt
et al., 2006; Assaraf et al., 2007) increase neuronal degeneration.

Moreover, low hemoglobin levels expose RBC to a greater
fragility, leading to an overload of heme molecules to be
processed by astroglia brain. Elevated circulating free heme
is able to over stimulate the hemo-oxigenase-1 activity,
responsible for an increased oxidative stress, observed especially
in sub-clinical AD subjects (Hascalovici et al., 2009).

RBC containing HbF are less vulnerable to oxidant injury
with respect to those containing HbA, than they produce less Hb
and heme, both of the have toxic effects upon the vascular cells.
Consequently, elevated HbF could decrease hypo-perfusion and
inflammation at brain level, and might be a protective factor for
AD (Fallahzadeh et al., 2009). It has been also reported that lower
hemoglobin levels are correlated with cognitive impairment and
AD (Faux et al., 2014).

Long-Chain Omega-3 Polyunsaturated
Fatty Acids (PUFA)
Low levels of docosahexaenoic acid (DHA) were measured in
AD RBC membranes (Wang et al., 2008), in fact it has been
found that, in rat models, PUFAs supplementation was able to
ameliorate the cognitive deficit (Hashimoto et al., 2002, 2006,
2008). DHA can change membrane composition, because it
acts on cholesterol, on fatty acid composition and enhances
antioxidant defenses.

ANTI DIABETIC THERAPY AND
ALZHEIMER’S DISEASE

Recent reports show that some antidiabetic drugs are able to
induce neuronal survival, leading to clinical improvement of
memory and cognition in different clinical settings. Studies on
the effects of insulin therapy on the cognitive functions of
dementia patients are controversial, some of these suggest that
insulin increases the risk of dementia in diabetes patients, on
the other hand further studies indicate that insulin slow down
the cognitive decline in AD patients (Morris and Burns, 2012).
Other drugs in addition to insulin such as metformin (Gupta
et al., 2011), peroxisome proliferator–activated receptor (PPARγ;
Jahrling et al., 2014), and incretins (Drucker, 2001) investigated
for T2DM might potentially be beneficial for Alzheimer’s
patients as well.

Anti-RBC Therapy and Alzheimer’s Disease
As previously reported, RBC play a key role in T2DM and
AD-associated vascular complications by increasing oxidative
stress andmay therefore favor an increased risk of developing AD
in T2DM patients. However, several studies showed effectiveness
of some antioxidants, no data are yet available as to whether
antioxidants protect against AD. Reasons for these results might
include, in part, BBB permeability, inappropriate timing of
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administration, or suboptimal drug levels at the target site in the
CNS (Rutten et al., 2002; Gilgun-Sherki et al., 2003).

CONCLUSIONS AND FUTURE
DIRECTIONS

Taking into account the literature discussed in this review,
a strong correlation came out between T2DM and AD. In
particular, it has been reported that T2DM subjects are at
an increased risk of developing AD. Although both disorders
possess several overlapping features, RBC abnormalities are
relevant events and, at the same time, it is a ‘‘good indicator’’
of what happens at vascular level. Examples of this innovative
idea, derive from recent literature focused on the understanding
of RBC abnormalities that involve the impairment of RBC
morphology, deformability, and function leading to vascular
dysfunctions. Furthermore, and because RBC are major blood
sources of ROS, the impairment of RBC functionality is
accompanied by oxidative stress-related events. On this basis,
altered RBCs following oxidative stress could be considered
as a probable marker linkage for AD and T2DM. It is
reasonable to enunciate that the current knowledge on the
involvement of altered RBC dynamics in the pathogenesis of
both AD and T2DM are still at an elementary stage, but it
probable that elevated oxidative stress in RBC at vascular level
both in AD and T2DM patients could combine with other
factors, responsible for an increased risk of developing AD in
T2DM patients. Furthermore, high levels of arachidonic acid
and low levels of docosapentaenoic acid levels in RBC were
observed in subjects with high neocortical beta-amyloid load,

a feature of preclinical AD (Goozee et al., 2017), suggesting
that inflammation and oxidative stress are early features of
preclinical AD.

In light of its significant advancement from both clinical
research and therapeutic application perspectives, we look ahead
major research efforts being drawn to this field and more
approaches being formulated soon. We also presume that
finally these findings will be translated into novel drugs and
effective therapies against both AD and T2DM triggered by
RBC dysfunctions. The understanding of the molecular basis
of these pathologies in RBC has the advantage to design a
non-invasive diagnostic method, compared to the currently
available techniques. Furthermore, it has been suggested that
some of the drug currently used for T2DM might potentially be
beneficial for Alzheimer’s patients as well.
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