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Objective: Machine learning classification has been the most important computational

development in the last years to satisfy the primary need of clinicians for automatic

early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been

successfully applied for reducing high dimensional and multi-source data in many

scientific realms. Our aim was to explore the state of the art of the application of RF

on single and multi-modal neuroimaging data for the prediction of Alzheimer’s disease.

Methods: A systematic review following PRISMA guidelines was conducted on this

field of study. In particular, we constructed an advanced query using boolean operators

as follows: (“random forest” OR “random forests”) AND neuroimaging AND (“alzheimer’s

disease” OR alzheimer’s OR alzheimer) AND (prediction OR classification). The query

was then searched in four well-known scientific databases: Pubmed, Scopus, Google

Scholar and Web of Science.

Results: Twelve articles—published between the 2007 and 2017—have been included

in this systematic review after a quantitative and qualitative selection. The lesson learnt

from these works suggest that when RF was applied on multi-modal data for prediction

of Alzheimer’s disease (AD) conversion from the Mild Cognitive Impairment (MCI), it

produces one of the best accuracies to date. Moreover, the RF has important advantages

in terms of robustness to overfitting, ability to handle highly non-linear data, stability in

the presence of outliers and opportunity for efficient parallel processing mainly when

applied on multi-modality neuroimaging data, such as, MRI morphometric, diffusion

tensor imaging, and PET images.

Conclusions: We discussed the strengths of RF, considering also possible limitations

and by encouraging further studies on the comparisons of this algorithm with other

commonly used classification approaches, particularly in the early prediction of the

progression from MCI to AD.
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INTRODUCTION

The Alzheimer’s disease (AD), a common form of dementia,
is a progressive neurodegenerative disorder that affects mostly
elderly people (Berchtold and Cotman, 1998). It is characterized
by a decline in cognitive function, including progressive loss
of memory, reasoning, and language (Collie and Maruff, 2000).
Mild cognitive impairment (MCI) is an intermediate state
between healthy aging and AD, which is not severe enough to
interfere with daily life. Although not all MCI subjects develop
to AD and they remain cognitively stable for many years, the
incidence of progression is evaluated between 10 and 15% per
year (Palmqvist et al., 2012). There is no generally accepted cure
for AD, but several treatments exist for delaying its course. For
this reason, it is extremely important to early detect the MCI
subjects that are at imminent risk of conversion to AD.

The diagnosis of AD is based primarily on multiple variables
and factors, such as, demographics and genetic information,
neuropsychological tests, cerebrospinal fluid (CSF) biomarkers,
and brain imaging data. Moreover, for the assessment of the risk
of conversion from MCI, the rate of change of these variables
could represent a further source of knowledge. In particular, the
neuroimaging technologies, such as, magnetic resonance imaging
(MRI), functional MRI (fMRI), diffusion tensor imaging (DTI),
single photon emission tomography (SPECT), and positron
emission tomography (PET) have been widely and successfully
applied in the study of MCI and AD (Greicius et al., 2004;
Matsuda, 2007; Fripp et al., 2008; Frisoni et al., 2010; Acosta-
Cabronero and Nestor, 2014). The choice of the neuroimaging
modality depends on the duration and severity of the disease,
for example when MRI could not reveal any brain alterations,
fMRI, SPECT, or PET are able to assess metabolic abnormalities
and DTI could be used for investigating the microstructural
disruption of the white matter (WM).

The high dimension of all the features considered in the
diagnosis of AD and in the progression from MCI, and their
complex interactions make it very difficult for humans to
interpret the data. Computer aided diagnosis (CAD) represents a
valuable automatic tool for supporting the clinicians by teaching
to computers to predict incipient AD. Machine learning and
pattern recognition algorithms have been proven to efficiently
classify AD patients and healthy controls (HC) and to distinguish
between stable MCI (sMCI) subjects and progressive MCI
(pMCI) that converted to AD (Zhang et al., 2012; Falahati et al.,
2014; Trzepacz et al., 2014). In general, the machine learning
methods used on neuroimaging data rely on a single classifier,
such as, the widely used Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), or Naïve Bayes. However, in
the last years, ensembles algorithms resulted to be a reliable
alternative to single classifiers showing better performance than
the latter, especially when multi-modality variables are combined
together. Although among all ensembles approaches Random
Forest (RF) (Breiman, 2001) produced the best accuracies in
many scientific fields (Menze et al., 2009; Calle et al., 2011; Chen
et al., 2011) and in other neurological diseases (Sarica et al., 2017),
it is still poorly applied in the prediction of AD, and only lately
researchers payed their attention to it. In particular, RF showed

important advantages over other methodologies regarding the
ability to handle highly non-linearly correlated data, robustness
to noise, tuning simplicity, and opportunity for efficient parallel
processing (Caruana and Niculescu-Mizil, 2006). Moreover, RF
presents another important characteristic: an intrinsic feature
selection step, applied prior to the classification task, to reduce
the variables space by giving an importance value to each feature.

For all these reasons, the main goal of this systematic review
was to highlight the role of RF as the ideal candidate for handling
the high-dimensional problem and the variable redundancy in
the early diagnosis of AD. We sought to review the literature in
this area to identify all the works that applied the RF algorithm
on single and multi-modality neuroimaging data, eventually
combined with demographics and genetic information, and
with neuropsychological scores. Our aim was also to evaluate
how well, in term of accuracy, RF was able to classify AD
and to distinguish between sMCI and pMCI, and how its
intrinsic feature selection procedure could improve this overall
accuracy.

Random Forest Algorithm
RF (see Figure 1 for an illustration) is a collection or ensemble
of Classification and Regression Trees (CART) (Breiman et al.,
1984) trained on datasets of the same size as training set, called
bootstraps, created from a random resampling on the training
set itself. Once a tree is constructed, a set of bootstraps, which
do not include any particular record from the original dataset
[out-of-bag (OOB) samples], is used as test set. The error rate
of the classification of all the test sets is the OOB estimate of

FIGURE 1 | Illustration of a random forest construct superimposed on a

coronal slice of the MNI 152 (Montreal Neurological Institute) standard

template. Each binary node (white circles) is partitioned based on a single

feature, and each branch ends in a terminal node, where the prediction of the

class is provided. The different colors of the branches represent each of the

trees in the forest. The final prediction for a test set is obtained by combining

with a majority vote the predictions of all single trees.
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FIGURE 2 | PRISMA workflow of the identification, screening, eligibility, and inclusion of the studies in the systematic review.

the generalization error. Breiman (1996) showed by empirical
evidence that, for the bagged classifiers, the OOB error is accurate
as using a test set of the same size as the training set. Thus,
using the OOB estimate removes the need for a separate test set.
To classify new input data, each individual CART tree (colored
branches in Figure 1) votes for one class and the forest predicts
the class that obtains the plurality of votes.

RF follows specific rules for tree growing, tree combination,
self-testing and post-processing, it is robust to overfitting and
it is considered more stable in the presence of outliers and in
very high dimensional parameter spaces than other machine
learning algorithms (Caruana and Niculescu-Mizil, 2006; Menze
et al., 2009). The concept of variable importance is an implicit
feature selection performed by RF with a random subspace
methodology, and it is assessed by the Gini impurity criterion
index (Ceriani and Verme, 2012). The Gini index is a measure of
prediction power of variables in regression or classification, based
on the principle of impurity reduction (Strobl et al., 2007); it is
non-parametric and therefore does not rely on data belonging
to a particular type of distribution. For a binary split (white
circles in Figure 1), the Gini index of a node n is calculated as
follows:

Gini (n) = 1−
∑2

j= 1
(pj)

2

where pj is the relative frequency of class j in the node n.

For splitting a binary node in the best way, the improvement
in the Gini index should be maximized. In other words, a low
Gini (i.e., a greater decrease in Gini) means that a particular
predictor feature plays a greater role in partitioning the data into
the two classes. Thus, the Gini index can be used to rank the
importance of features for a classification problem.

METHODS

For the present systematic review, we followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines (Liberati et al., 2009; Moher et al., 2009).
The statement consists of a checklist of recommended items to
be reported and a four-step flow diagram (Figure 2).

Published titles and abstracts in the English language from
the first of January 2007 to the first of May 2017 were
searched systematically across the following databases: PubMed,
Scopus, Google Scholar, and Web of Science. The search
terms were concatenated in an advanced query using boolean
operators as follows: (“random forest” OR “random forests”) AND
neuroimaging AND (“alzheimer’s disease” OR alzheimer’s OR
alzheimer) AND (prediction OR classification). After the initial
web search, duplicate items among databases were removed.

During the screening phase, to be assessed for eligibility,
studies were required to: (1) investigate a cohort of AD in
cross-sectional case-control or longitudinal design, (2) analyze
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neuroimaging data, (3) apply RF algorithm as Machine Learning
technique for the classification of AD patients.

To reduce a risk of bias, two authors (A.S. and A.C.)
independently screened paper abstracts and titles, and analyzed
the full papers that met the inclusion criteria, as suggested by
the PRISMA guidelines. The reference lists of examined full-text
papers were also scrutinized for additional relevant publications.

Data extracted from the studies—finally included in the
qualitative synthesis—were: (1) sample diagnosis, (2) sample size
and mean age, (3) neuroimaging acquisition type, (4) features
of interest, (5) RF classification parameters, (6) classification
performance validation, and (7) selected findings in terms of
classification performance.

RESULTS

Study Selection
Figure 2 reported the four phases—identification, screening,
eligibility and inclusion—of the process for the selection of the
studies in this review. Nineteen records were excluded after the
initial screening of title and abstract and three more records were
removed after the full-text assessment, following the inclusion
criteria. Finally, 12 studies were included in qualitative synthesis.

Study Characteristics
Data extracted from the studies were summarized in Table 1. In
particular, we reported those characteristics that are related to
the highest performance reached by RF in each study. Regarding
the cohort diagnosis, two works (Tripoliti et al., 2007; Lebedev
et al., 2014) investigated Alzheimer’s patients (AD) and healthy
controls (HC), four works (Cabral et al., 2013; Sivapriya et al.,
2015; Maggipinto et al., 2017; Son et al., 2017) had AD, HC,
and MCI, two studies (Gray et al., 2013; Moradi et al., 2015)
considered AD, HC, stable MCI (sMCI), and progressive MCI
(pMCI, converted to AD), two had sMCI and pMCI (Wang et al.,
2016; Ardekani et al., 2017), one had HC and MCI (Lebedeva
et al., 2017) and one (Oppedal et al., 2015) had AD, HC, and
Lewy-body dementia (LBD) patients.

All studies, except two (Cabral et al., 2013; Maggipinto et al.,
2017), which used FDG-PET and DTI acquisition respectively,
investigated structural MRI data alone (Lebedev et al., 2014;
Moradi et al., 2015; Ardekani et al., 2017; Lebedeva et al., 2017)
or in combination with features extracted from other modalities,
that is FDG-PET (Gray et al., 2013; Sivapriya et al., 2015),
florbetapir-PET (Wang et al., 2016), FLAIR (Oppedal et al., 2015)
and fMRI (Tripoliti et al., 2007; Son et al., 2017).

Eight works (Tripoliti et al., 2007; Cabral et al., 2013; Lebedev
et al., 2014; Moradi et al., 2015; Sivapriya et al., 2015; Ardekani
et al., 2017; Lebedeva et al., 2017; Maggipinto et al., 2017)
applied feature selection/elimination for reducing the dimension
of the variables space. The number of trees used in the RF
was not specified in two cases (Moradi et al., 2015; Son et al.,
2017). Finally, we reported in the column Results of Table 1
the—highest—overall accuracies of binary or ternary classifiers
reached by each study, except for the one (Tripoliti et al., 2007)
that provided only sensitivity and specificity. Figure 3 presented
a comparison—where applicable—of accuracies obtained by the

studies for the binary models AD vs. HC (Figure 3A, with a mean
of 88.8%), MCI vs. HC (Figure 3B, with a mean of 79%), sMCI
vs. pMCI (Figure 3C, with a mean of 74%), and the multi-class
problem AD vs. HC vs. MCI (Figure 3D, with a mean of 71.42%)

More details about individual works, such as, the results
obtained with other algorithms or other subsets of features, could
be found in the next section.

Results of Individual Studies
Tripoliti et al. (2007)
Tripoliti et al. (2007) conducted a study on 41 subjects, divided
into three groups: 12 subjects were AD patients (mean age 77.2, 7
females), from very mild to mild following the Clinical Dementia
Rating (CDR = 0.5/1), 14 subjects were healthy young controls
(mean age 21.1, 9 females, CDR= 0) and 14 were healthy elderly
subjects (mean age 74.9, 9 females, CDR= 0).

The cohort underwent a visual fMRI finger tapping task.
Raw structural and functional images were preprocessed for
correction of motion artifacts, registered and normalized.

Demographic and behavioral data were grouped with the
features extracted from the data preprocessing phase: (i) head
motions parameters; (ii) volumetric measures, i.e., volumes
obtained from the segmentation of gray matter (GM), WM
and CSF; (iii) activation patterns, consisting in several measures
derived from the activated voxels and clusters; (iv) hemodynamic
measures extracted from the BOLD responses, such as, the
amplitude of venous volume or of vascular signal. Authors
applied a feature selection on this dataset for reducing the
dimensionality by removing highly correlated variables. Selected
features were used for training a RF classifier with 10 trees,
and the performance was assessed using 10-fold cross-validation
accuracy. Two separated datasets were evaluated: the first
consisted of AD patients and both young and old healthy
subjects, while the second consisted of AD and only old controls.
Sensitivity and specificity of the two binary classifiers were
ranging from 94 to 98%, depending of the subset of selected
features. The highest values were obtained on the dataset that
included AD and old controls, with a 98% of both sensitivity and
specificity.

Gray et al. (2013)
Gray et al. (2013) selected a cohort of 147 subjects from the ADNI
database, consisting of 37 AD patients (mean age 76.8, 14 females,
CDR= 0.5/1), 75MCI patients divided into 34 stableMCI (sMCI,
mean age 75.7, 12 females, CDR= 0.5) and 41 subjects progressed
to AD (pMCI, mean age 76.1, 12 females, CDR = 0.5), and 35
HC (HC, mean age 74.5, 12 females, CDR = 0). All subjects
underwentmorphological 1.5TMRI, FDG-PET, and CSF analysis
at the baseline and authors used already pre-processed data by
ADNI. In particular, structural MRI and FDG-PET images were
motion-corrected, examined for major artifacts and registered to
the standard space MNI. Eighty-three volumetric region-based
features were extracted from MRI, while signal intensities of
239,304 voxels were obtained from FDG-PET. Biological features
were CSF-derived measures of Aβ , tau, and ptau. Furthermore,
a categorical variable describing the ApoE genotype was used as
genetic feature.
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TABLE 1 | Characteristics of each of the twelve studies included in the systematic review.

Study Cohort Nr. of subjects

(mean age, nr. of

females)

Neuroimaging

acquisition

Features of interest Classification

parameters

Performance

validation

Results

Tripoliti et al., 2007 AD

HC

12 (77.2, 7)

14 (74.9, 9)

– 1.5 T MRI

– Task-based

fMRI

– Demographic data;

– Behavioral data;

– Head motions

parameters;

– Volumetric

measures;

– Activation patterns;

– BOLD-derived

hemodynamic

measures.

– Feature selection

based on correlation;

– RF with 10 trees.

10-fold

cross-validation

sensitivity/

specificity

AD vs. HC: 98%/98%

Gray et al., 2013 AD

sMCI

pMCI

HC

37 (76.8, 14)

34 (75.7, 12)

41 (76.1, 12)

35 (74.5, 12)

– 1.5 T MRI

– FDG-PET

– Volumetric

measures;

– FDG-PET voxel

intensities

whole-brain;

– CSF-derived

measures;

– Genetic information.

– RF with 5,000 trees. Stratified repeated

random sampling

accuracy on a

separate test set

AD vs. HC: 89%

MCI vs. HC: 74.6%

sMCI vs. pMCI: 58.4%

Cabral et al., 2013 AD

MCI

HC

59 (78.2, 25)

59 (77.7, 19)

59 (77.4, 21)

– FDG-PET – FDG-PET voxel

intensities;

– Feature selection

with Mutual

Information criterion;

– Decomposition by

the one-vs.-all

scheme;

– Aggregation scheme

with voting strategy

(MAX);

– RF with 100 trees.

Repeated 10-fold

cross-validation

accuracy

AD vs. MCI vs. HC:

64.63%

Lebedev et al.,

2014

AD

HC

185 (75.2, 92)

225 (75.95, 110)

– 1.5 T MRI – Non-cortical

volumes;

– Cortical thickness;

Jacobian maps;

– Sulcal depth.

– Recursive feature

elimination with Gini

index;

– RF with 1,000 trees.

Overall accuracy

on a separate test

set

AD vs. HC: 90.3%

Moradi et al., 2015 AD

sMCI

pMCI

HC

200(55-91, 97)

100 (57-89, 34)

164 (77-89, 67)

231 (59-90, 112)

– 1.5 T MRI – GM density values;

– Age;

– Neuropsychological

scores.

– Feature selection

with regularized

logistic regression

framework

10-fold

cross-validation

accuracy

sMCI vs. pMCI: 82%

Oppedal et al.,

2015

AD

LBD

HC

57 (N.A.)

16 (N.A.)

36 (N.A.)

– 1.0/1.5 T MRI

– FLAIR

– Local binary pattern

(LBP);

– Image contrast

measure (C).

– RF with 10 trees. 10-fold nested

cross-validation

accuracy

AD vs. LBD vs. HC:

87%

AD+LBD vs. HC: 98%

AD vs. LBD: 74%

Sivapriya et al.,

2015

AD

MCI

HC

140 (N.A.)

450 (N.A.)

280 (N.A.)

– MRI

– FDG-PET

– Volumetric

measures;

– FDG-PET uptake

ROI-based;

– Neuropsychological

scores.

– Feature selection

with particle swarm

optimization

approach coupled

with the Merit Merge

technique (CPEMM);

– RF with 100 to 1,000

trees.

5-fold

cross-validation

accuracy

AD vs. MCI vs. HC:

96.3%

Wang et al., 2016 sMCI

pMCI

65 (72.2, 26)

64 (72.5, 29)

– 1.5 T MRI

– florbetapir-

PET

– FDG-PET

– Morphological

measures;

– florbetapir-PET

uptake whole-brain;

– FDG-PET uptake

whole-brain.

– RF with 500 trees. Leave-one-out

cross-validation

accuracy

sMCI vs. pMCI:

73.64%

(Continued)
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TABLE 1 | Continued

Study Cohort Nr. of subjects

(mean age, nr. of

females)

Neuroimaging

acquisition

Features of interest Classification

parameters

Performance

validation

Results

Ardekani et al.,

2017

sMCI

pMCI

78 (74.75, 24)

86 (74.10, 31)

– 1.5 T MRI – Hippocampal

volumetric integrity;

– Neuropsychological

scores.

– Feature selection

with Gini index;

– RF with 5,000 trees.

OOB estimation of

classification

accuracy

sMCI vs. pMCI: 82.3%

Lebedeva et al.,

2017

MCI

HC

32 (78.1, 22)

40 (76.4, 29)

– 1.5/3 T MRI – Cortical thickness;

– Subcortical volumes.

– MMSE

– Feature selection

with Gini index;

– RF with 5,000 trees.

OOB estimation of

classification

accuracy

MCI vs. HC: 81.3%

Maggipinto et al.,

2017

AD

MCI

HC

50 (N.A.)

50 (N.A.)

50 (N.A.)

– DTI – TBSS FA voxels; – Feature selection

with the Wilcoxon

rank sum test and

ReliefF algorithm;

– RF with 300 trees.

Repeated 5-fold

cross-validation

accuracy

AD vs. HC: 87%

MCI vs. HC: 81%

Son et al., 2017 AD

MCI

HC

30 (74, 18)

40 (74.3, 21)

35 (76.06, 23)

– 3 T MRI

– rs-fMRI

– Subcortical volumes;

– Eigenvector centrality

of functional

networks ROI-based.

N.A. Repeated

leave-one-out

cross-validation

accuracy

AD vs. MCI vs. HC:

53.33%

Data are related to the highest performance reached by random forest. AD, Alzheimer’s disease; HC, healthy controls; MCI, Mild cognitive impairment; cMCI, converter MCI; pMCI,

progressive MCI; LBD, Lewy-body dementia; MRI, Magnetic resonance imaging; fMRI, functional MRI; rs-fMRI, resting state fMRI; PET, positron emission tomography; FDT-PET,

fluorodeoxyglucose PET; DTI, Diffusion tensor imaging; GM, Gray matter; ROI, Region of interest; MMSE, Mini mental state examination; TBSS, Tract-based spatial statistics; OOB,

out-of-bag; N.A., not applicable.

FIGURE 3 | Histograms of the overall accuracy (%) reached by the studies—where applicable—for the binary classifiers (A) AD vs. HC, (B) MCI vs. HC and (C) sMCI

vs. pMCI, and for the ternary problem (D) AD vs. MC vs. HC. See also Table 1. AD, Alzheimer’s disease; HC, healthy controls; MCI, Mild cognitive impairment; cMCI,

converter MCI; pMCI, progressive.

Three different binary datasets were used for the RF
classification: AD vs. HC, MCI vs. HC, sMCI vs. pMCI. The
performance of each classifiers was evaluated with a stratified
repeated random sampling approach, where, in each of the
100 runs, the dataset was divided into training (75%) and
test set (25%). Accuracy on the test set was then calculated
as the mean of all the 100 repetitions. The RF models
were trained with 5,000 trees on the feature data from
each of the four modalities independently and the feature
importance ranking was extracted. As further analysis, authors
measured the similarity between pairs of examples from the RF
classifiers and applied a Manifold learning approach on data
from single-modality and on combined/concatenated features
(multi-modality).

Although the single-modality classification results were
comparable between the original dataset and the embedded
feature one, the latter presented the best performances as
following: 86.4% for the AD vs. HC with the FDG-PET data,
73.8% for MCI vs. HC with the genetic data, 58.4% for the sMCI
vs. pMCI with MRI data. A slight increase of the accuracy was
obtained with the multi-modality classification for AD vs. HC
(+2.6%) and for MCI vs. HC (+0.8%), while for pMCI vs. sMCI
there was a small decrease (−0.4%).

Cabral et al. (2013)
Cabral et al. (2013) collected 177 subjects from the ADNI
database, divided into three balanced groups: AD patients
(mean age 78.2, 25 females, CDR > 0.5), MCI patients (MCI,
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mean age 77.7, 19 females, CDR = 0.5) and HC (mean age
77.4, 21 females, CDR = 0). Authors analyzed FDG-PET
data, acquired 24 months after the first visit and already pre-
processed by ADNI. In particular, they used the voxel intensities
(VI) as features of interest, for a total of 309,881 variables.
The original dataset was decomposed by using the one-vs.-all
scheme, resulting into three subsets: AD vs. ALL, MCI vs. ALL,
HC vs. ALL. The Mutual Information criterion was used for
extracting the optimal features with the highest ranking value,
separately for each pairwise problem. The selected features were
then used for training three binary RF models with 100 trees.
As aggregation scheme for the ternary problem, the voting
strategy (MAX) was applied. The classification performance
was then assessed by the 10-fold cross-validation accuracy,
repeated 5 times with fold randomization. The ternary RF
classifier provided a multiclass accuracy of 64.63%. It must be
addressed that the authors applied other two algorithms, linear
and RBF SVM, obtaining, respectively, an accuracy of 66.33% and
66.78%.

Lebedev et al. (2014)
The study of Lebedev et al. (2014) was based on a cohort of 575
subjects from ADNI database, divided into three main groups:
185 AD (mean age 75.2, 92 females, CDR = 1), 165 patients
with MCI (mean age 75.46, 62 females, CDR = 0.5) of which
149 progressed to AD within 4 years, and 225 HC (mean age
75.95, 110 females, CDR = 0). The MCI group was split into
six subgroups according to the month of MCI-to-AD conversion
(6th-, 12th-, 18th-, 24th-, 36+th-month converters and non-
converters).

The features of interest were extracted from 1.5 T MRI images
using a surface-based cortex reconstruction and volumetric
segmentation. In particular, (i) non-cortical volumes, (ii) cortical
thickness (CTH), (iii) Jacobian maps and (iv) sulcal depth were
measured for each subject. The ability of these parameters
in distinguishing AD from HC, was assessed individually and
with a combination of measurements of CTH and non-cortical
volumes.

The feature importance was assessed with the intrinsic
characteristic of RF consisting of the recursive feature
elimination (RFE) with the Gini index as criterion and
10,000 trees. The performance of models—with and without
RFE—was evaluated as the overall accuracy on a separate
test set with 35 AD and 75 HC. Findings revealed that
the highest accuracy (90.3%) for the classifier AD vs. HC
was obtained with the RFE on the combined dataset with
thickness and non-cortical volumes. An increase of 0.7%
was found in this accuracy when authors combined all
models by a majority vote approach. The majority vote
method resulted to have also the best ability to predict
MCI-to-AD conversion 2 years before actual dementia
onset with sensitivity/specificity of 76.6/75%. As further
analysis, authors found that the adding of ApoE genotype and
demographics data did not improve the overall accuracy in
distinguishing AD from HC, while it showed an increase of
sensitivity/specificity (83.3/81.3%) in the prediction of MCI
conversion.

Moradi et al. (2015)
Moradi et al. (2015) obtained baseline data for their analysis from
the ADNI database and they selected 825 subjects grouped as:
200 AD patients (age range 55–91, 97 females), 100 stable MCI
(sMCI, age range 57–89, 34 females), 164 MCI progressed to AD
within 3 years from the baseline (pMCI, age range 77–89, 67
females) and 231 HC (age range 59–90, 112 females). Another
group of 100 unknownMCI (uMCI, age range 54–90, 81 females)
diagnosed as MCI at the baseline but with missing diagnosis at
36 months follow-up was also considered. For integrating the
unlabeled group of uMCI into the training set and assigning
them to the pMCI or sMCI class, the authors used a low density
separation (LDS) approach for semi-supervised learning.

All subjects underwent 1.5 T MRI acquisition and the T1-w
scans were preprocessed following the voxel-based morphometry
approach. In particular, T1-w images were corrected, spatially
normalized and segmented into GM, WM, and CSF. The GM
maps were then further processed for extracting 29,852 GM
density values—for each subject—used as MRI features for the
classification task.

The high number of GM voxels was reduced with a feature
selection approach consisted in the regularized logistic regression
framework applied only on the dataset with AD and HC
subjects. The selected variables were then aggregated with age and
cognitive measurements and used for building the RF classifier
for predicting AD in MCI patients, i.e., sMCI vs. pMCI.

The RF model performance was evaluated as the mean
accuracy calculated by 10-fold cross-validation. The highest
accuracy in distinguishing the MCI-to-AD conversion reached
almost the 82%when the concatenatedmeasures—age, cognitive,
and voxel—and the combination of LDS and RF were considered.
The importance analysis of MRI features, age, and cognitive
measurements calculated by RF classifier revealed that the first
three most predictive variables were: MRI voxels, the Rey’s
Auditory Verbal Learning Test (RAVLT) and the Alzheimer’s
Disease Assessment Scale—cognitive subtest 11 (ADAS-cog
total-11).

Oppedal et al. (2015)
In Oppedal et al. (2015), a total of 73 mild dementia subjects,
divided into 57 AD patients and 16 LBD patients, together with
36 HC were investigated. The cohort MRIs were acquired in
different research centers with 1.0/1.5 T scanners and FLAIR
images were also obtained. T1-w images were corrected,
registered and segmented for extracting the white matter (WM)
tissue. From the pre-processed FLAIR images, the WM lesions
(WML) maps were automatically created. In a second phase
of the study, authors applied the local binary pattern (LBP)
approach as a texture descriptor on both T1 and FLAIR images
and their derived WM and WML maps as ROIs. For enhancing
the discriminative power of LBP, an image contrast measure (C)
was added as variable for every voxel in the specified ROI. The
total number of features for each subject was 48, resulting from
the combination of LBP and C values in each ROI.

Feature selection and classification were performed with a RF
classifier with 10 trees and the 10-fold nested cross validation
accuracy was used as the performance metric. In particular, three
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RF models were built: (i) a ternary problem HC vs. AD vs. LBD,
(ii) a binary classifier HC vs. AD+LBD and (iii) another binary
model AD vs. LBD.

For the ternary problem—HC vs. AD vs. LBD—the best
accuracy (87%) was reached when the classifier was trained on the
texture features extracted from the T1 images in the WMLmasks
(T1WML). Results of the model HC vs. AD+LBD revealed that
the highest accuracy (98%) was obtained also when only T1WML
variables were considered. On the contrary, for distinguishing
AD from LBD with the maximum accuracy (74%) the texture
features should be extracted from the T1 in the WM ROI.

Sivapriya et al. (2015)
Four datasets from the ADNI database were used by Sivapriya
et al. (2015) and three different groups of subjects were selected:
AD, MCI, and HC. The number of subjects in each dataset varied
according to the features considered: (i) Neuropsychological
dataset (150 AD, 400 MCI, 200 HC), (ii) Neuroimaging dataset
(250 AD, 200 MCI, 250 HC), (iii) Baseline combined data with
both neuropsychological and neuroimaging measures (140 AD,
450 MCI, 280 HC), and (iv) combined dataset (150 AD, 400
MCI, 200 HC). Some of the neuropsychological tests used were
the Clinical dementia ratio-SB, the ADAS, the RAVLT, and the
MOCA. Authors used already pre-processed MRI data by ADNI
for their study, in particular neuroimaging measures extracted
from T1-w and FDG-PET images, consisting in volumes and
average PIB SUVR of several regions of interest (ROIs).

The feature selection and classification task was composed
by three main phases in which RF performance was evaluated
together with other ensemble algorithms—Naïve Bayes, J48 and
SVM. Each classifier was trained with each of the four datasets,
after that they were dimensionally reduced with a particle swarm
optimization approach coupled with the Merit Merge technique
(CPEMM). The performance of the classification models was
evaluated with the 5-fold cross-validation accuracy of the ternary
problemAD vs.MCI vs. HC. RF—implemented with 100 to 1,000
trees—showed its best multi-class accuracy (96.3%) when it was
trained on the baseline combined dataset and the same result
was obtained with the CPEMM feature selection methodology.
It must be addressed that RF reached comparable performance of
the other classification algorithms, except for SVM that presented
the lowest accuracies in the delineation of dementia.

Wang et al. (2016)
The study of Wang et al. (2016) included 129 subject with
MCI (CDR = 0.5) from the ADNI database. The cohort was
divided into 65 stable MCI (sMCI, mean age 72.2, 26 females)
and 64 progressive MCI (pMCI, mean age 72.5, 29 female),
who converted to AD within 3 years from the baseline. All
subject underwent the acquisition of 1.5 T MRI, florbetapir-
PET and FDG-PET. Authors analyzed already pre-processed
neuroimaging data by ADNI, separately grouped according to
the modality of acquisition, i.e., features extracted from the T1-
w images and the uptake of florbetapir and FDG. A dataset
with a combination of these multimodal measures was also
evaluated. Three classification algorithms—partial least square

(PLS, informed and agnostic), linear SVM and RF (500 trees)—
were trained on these four different datasets. Their ability in
distinguishing sMCI from pMCI was assessed with the leave-
one-out cross-validation accuracy. RF showed the best accuracy
(73.64%) when it was trained on the combined multi-modal
features dataset. A comparable result (76.74%) on the same
dataset was reached by SVM. On the contrary, informed PLS
generally outperformed both RF and SVM especially when the
three neuroimaging modalities are fused (81.4% of accuracy).

Ardekani et al. (2017)
Ardekani et al. (2017) applied their classification task on a
cohort of 164 MCI (CDR = 0.5) patients from the ADNI
database, divided into 78 stable MCI (sMCI, mean age 74.75, 24
females) and 86 MCI converted to AD within 3 years from the
baseline (pMCI, mean age 74.10, 31 females). All selected subjects
underwent two 1.5 T MRI acquisitions, at the baseline and at
∼1 year later. Neuropsychiatric scores of these two time points
were also considered in the analysis. T1-w images—without
any pre-processing—were used for calculating the hippocampal
volumetric integrity (HVI), defined as the fraction of volume
of a region that is expected to surround the hippocampus in a
normal brain that is occupied by tissue (rather than CSF). The
HVI is measured—separately for each hemisphere—as the area
under the histogram curve for voxel values above a CSF intensity
threshold. The HVI measures and the neuropsychiatric scores
were merged for a total of 16 features for each subject, including
their average rate of change between the baseline and the 1-year
follow-up.

Several RF models (5,000 trees) were trained on different
feature subsets and their performance were evaluated with the
OOB estimation of classification accuracy. The mean reduction
of Gini impurity index was used for the assessment of the variable
importance.

The highest accuracy (82.3%) in distinguishing between sMCI
and pMCI was reached when the combination of neuroimaging
and neuropsychiatric features was considered as training set. The
classifiers built only on the baseline measures or only on HVI
values showed indeed poor performance. The variable ranking
of the 16 features revealed that—according to the impurity
criterion—ADAS cognitive test was the most important one,
followed by the rate of change of the right HVI.

Lebedeva et al. (2017)
The work of Lebedeva et al. (2017), was aimed at predicting MCI
and dementia in late-life depression (LLD) patients 1 year prior
to the diagnosis. The analysis was conducted on a cohort of 32
patients (MCI-DEM, mean age 78.1, 22 females) including 21
MCI and 8 AD, and a group of 40 age—sex—matched HC (mean
age 76.4, 29 females) from the PRODE prospective multicenter
study (Borza et al., 2015). All subjects underwent 1.5/3 T MRI
acquisition at the baseline and after 1 year. T1-w images were
pre-processed for extracting CTH and subcortical volumes (SV)
with a standard pipeline, for a total of 148 features. Clinical and
neuropsychological assessment was performed for each subject at
both time points.
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Several RFmodels (5,000 trees) were built for classifyingMCI-
DEM or MCI vs. HC at 1-year follow—up, by varying the feature
space, i.e., separated CTH and SV variables, a combination of
CTH and SV, and with/without the addition of demographic
and clinical data. The OOB overall accuracy was assessed as
performance metric. The model for discriminating MCI-DEM
fromHC reached the best result (81.3% of OOB overall accuracy)
when the CTH, SV, and MMSE values were combined together.
The accuracy resulted to be higher (90.1%) in the model of
MCI (excluding AD patients) vs. HC with SV and MMSE as
training features. The variable importance ranking—measured
with the Gini criterion—showed that, in every RF models, the
most relevant features were the right ventral diencephalon, the
middle anterior corpus callosum and the right hippocampus.

As further analysis, authors used their PRODE cohort (MCI-
DEM and HC) as test set for the RF model previously built by
Lebedev et al. (2014) on AD and HC from ADNI database. The
accuracy was better (67%) when only SV measures were used
than when SV and CTH were combined (57.5%).

Maggipinto et al. (2017)
The cohort investigated by Maggipinto et al. (2017) was obtained
from ADNI database and it consisted of 150 subjects divided into
three groups: 50 AD, 50 MCI, and 50 HC with an age range from
55 to 90. Diffusion-weighted scans acquired with a 3 T scanner
was used for this machine learning study, randomly selected
from the baseline and follow-up visit. DTIs were pre-processed
for correction of movement artifacts and eddy currents with a
standard pipeline. A diffusion tensor was fitted for each subject
and fractional anisotropy (FA) and mean diffusion (MD) maps
were extracted. The FA andMDmaps were then used as input for
a tract-based spatial statistics (TBSS) analysis, which—for each
subject —produced∼120,000 voxels for each diffusion metric.

In a first phase, authors assessed the importance value of the
voxels in discriminating AD from HC with two different feature
selection methods: the Wilcoxon rank sum test and the ReliefF
algorithm, which were used both within a non-nested and nested
approach. For the classification task, fifteen subsets were then
created by selecting an increasing number—from 50 to 3,000—of
most discriminating voxels, ordered by decreasing importance.
RF models were trained with 300 trees on each of these feature
subspaces and their performance was evaluated with a repeated
(100 runs) 5-fold cross-validation accuracy.

The models built on the FA features selected with the non-
nested approach showed the highest accuracies in both binary
problems, AD vs. HC (87%) and MCI vs. HC (81%). The non-
nested variable selection resulted to produce better results than
the nested one also when MD voxels were used for training the
classifiers (83% for AD vs. MCI and 79% for MCI vs. HC).

Son et al (2017)
A sample of 105 subjects was selected by Son et al. (2017) from
the ADNI database. The cohort was divided into three age—
sex—matched groups: 30 AD (mean age 74, 18 females), 40
MCI (mean age 74.3, 21 females) and 35 HC (mean age 76.06,
23 females). All participants underwent 3 T acquisition of T1-
w images and resting state functional MRI (rs-fMRI). Structural

scans were pre-processed for correcting movement artifacts and
smoothed, and then they were segmented into WM, GM, and
CSF. The volumes of 10 subcortical regions were calculated as
measure of atrophy. The rs-fMRI images were pre-processed and
registered onto the T1-w and aligned to the MNI standard space.
Given a set of ROIs from the AAL atlas as nodes, the functional
networks were constructed by defying the edges as correlation
values between nodes. Authors quantified the connectivity of the
functional networks within the 10 subcortical regions with the
eigenvector centrality measure among AD andHC,MCI andHC,
and AD and MCI.

The ternary problem, AD vs. MCI vs. HC, was evaluated
by training a RF classifier with the SV and the eigenvector
centrality measures as features. The multi-class accuracy of the
RF model was assessed with a repeated (105 runs) leave-one-out
cross-validation approach. Authors reached a poor performance
(accuracy: 53.33%) in distinguishing among AD, MCI, and HC
subjects. However, they identified distinctive regional atrophy
and functional connectivity patterns characterizing each binary
problem AD vs. HC (thalamus, putamen and hippocampus
bilaterally and left amygdala), MCI vs. HC (left putamen and
right hippocampus), andMCI vs. AD (bilateral hippocampus and
right amygdala).

DISCUSSION

RF has been successfully applied in many scientific realms such
as, the bioinformatics, proteomics, and genetics (Menze et al.,
2009; Calle et al., 2011; Chen et al., 2011), but it was less applied
on neuroimaging data for the prediction of the Azheimer’s
disease. The present paper is the first, to our knowledge, that
systematically analyzed the literature of the last 10 years on
the use of the RF algorithm on neuroimaging data for the
early diagnosis of AD. In this review, we summarized the
characteristics of twelve works (Tripoliti et al., 2007; Cabral et al.,
2013; Gray et al., 2013; Lebedev et al., 2014; Moradi et al., 2015;
Oppedal et al., 2015; Sivapriya et al., 2015; Wang et al., 2016;
Ardekani et al., 2017; Lebedeva et al., 2017; Maggipinto et al.,
2017; Son et al., 2017) by focusing our attention on performance
reached by their algorithms.

A direct comparison of the results of the selected works is
influenced by several factors, such as, the different sample sizes,
neuroimaging modalities, and different methods for the feature
selection. However, we found several points in common among
papers, such as, similar performance validation approaches,
as well as a general trend showing that the classification
based on a combination of features extracted from different
categories improved the ability in predicting AD. Another
important common aspect of the selected articles is the use of
data from the ADNI database. Indeed, 10 works (Cabral et al.,
2013; Gray et al., 2013; Lebedev et al., 2014; Moradi et al., 2015;
Sivapriya et al., 2015; Wang et al., 2016; Ardekani et al., 2017;
Lebedeva et al., 2017; Maggipinto et al., 2017; Son et al., 2017)
applied their methodologies on ADNI cohorts.

The best accuracies—around 90%—for the binary problem
AD vs. HC, were observed when the RF classifiers were trained
on high-dimensional and multi-modality data (Tripoliti et al.,
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2007; Cabral et al., 2013; Gray et al., 2013; Lebedev et al., 2014).
Superior performance of these models can be explained by the
ability of RF to detect less extensive changes in the variables,
which could be not revealed by others algorithms. Moreover,
Moradi et al. (2015) showed that RF was more immune to the
data type thanks to its capability to handle discrete data and to
apply an efficient discretization algorithm on continuous data
type before the learning step.

The binarymodels for distinguishingMCI fromHC and stable
MCI from progressive MCI showed lower accuracies, around
82%, although it was similarly improved by multi-modal data
classification (Figure 3). In particular, the inclusion of age as well
as cognitive measurements (MMSE and ADAS-cog), in the space
of features, significantly increased the classification of MCI vs.
HC (Gray et al., 2013; Lebedeva et al., 2017; Maggipinto et al.,
2017) and the AD conversion prediction inMCI patients (Moradi
et al., 2015; Wang et al., 2016; Ardekani et al., 2017). On the
contrary, for the conundrum between sMCI vs. pMCI, Gray
et al. (2013) found that the accuracy reached on multi-modality
classification is not significantly different from that obtained with
MRI information alone. Interestingly, authors suggested that the
lack of improvement in distinguishing the progression to AD,
could be overcame by incorporating longitudinal information,
as indeed Ardekani et al. (2017) demonstrated afterwards by
considering the rate of change of variables.

Three works (Cabral et al., 2013; Sivapriya et al., 2015; Son
et al., 2017) investigated the ternary problem: AD vs. MCI vs.
HC, but only the work of Sivapriya et al. (2015) reached a
reliable accuracy of 96.3%. The low performance of the other
two studies—64.63% of Cabral et al. (2013) and 53.33% of Son
et al. (2017)—might be due to the heterogeneous pattern of
brain changes across the three groups and the inability of RF
to model the too large variability in the stages of pathological
process. Thus, although RF can be naturally extended to multi-
class problems, the AD vs. MCI vs. HC ternary model could not
be still translated into a real-world clinical scenario.

Another interesting observation was that, both in binary and
ternary problems, feature selection based on the Gini index,
improved the overall performance and this is true also for
the works in which only a neuroimaging modality was used
(Lebedev et al., 2014; Ardekani et al., 2017; Lebedeva et al.,
2017; Maggipinto et al., 2017). Other kinds of feature selection
and extraction, applied prior to the RF classification, showed
also an improvement in the overall accuracies (Tripoliti et al.,
2007; Cabral et al., 2013; Moradi et al., 2015; Oppedal et al., 2015;
Sivapriya et al., 2015; Wang et al., 2016; Ardekani et al., 2017;
Lebedeva et al., 2017; Maggipinto et al., 2017).

A further interesting characteristic of the RF algorithm in
the AD realm was the estimates of the features importance. The
ranking of the variables plays an important role because it could
assess which of the features contribute most to the prediction
by also providing a correspondence to anatomical regions or
structures with a biologically plausible connection to pathology
(Gray et al., 2013; Lebedev et al., 2014; Moradi et al., 2015;
Ardekani et al., 2017).

A limitation of this systematic review concerns the lack of
information about the tuning of the RF parameters. In particular,

poor information were reported in the selected works about how
the number and depth of trees in the forest or the splitting criteria
were chosen. Although, this tuning is performed automatically
by RF, how external assessment of these parameters (i.e., cross-
validation approach) would improve the overall accuracies is still
unknown.

Again, what still remains to be assessed is the performance
of RF algorithm on multi-site data. As already demonstrated
for rs-fMRI datasets from different sites (Abraham et al., 2017;
Dansereau et al., 2017), the accuracy and the reliability of
the biomarkers extraction could be enhanced by dramatically
increasing the cohort size. Moreover, it was shown that classifiers
trained on data from multiple sources will likely generalize
better to new observations (Dansereau et al., 2017), avoiding the
overfitting. Thus, it would be interesting to evaluate how well RF
could classify when it is trained on features that are not invariant
across sites and how the sample heterogeneity influences its
performance.

This systematic review provided, for the first time, a
framework for the exploration of the RF algorithm and of its
strength in predicting AD when high-dimensional and multi-
modal neuroimaging data are combined with demographics,
genetic and cognitive scores. Indeed, as recently stated by
Rathore et al. (2017), no single neuroimaging modality is
enough to reach optimal accuracy for automatic AD prediction,
but only through the combination of different methodologies,
the classification task could be effectively translated into the
clinical realm. Our work supported the idea that there is some
complementary information between modalities and that this
knowledge can be successfully explored with a combination
of classifiers rather than a single one. The RF, as a bagging
ensemble model, provided promising results, but with possible
limitations. Thus, given the high accuracies reached by RF
in the classification of dementia, we aimed at encouraging
further studies, especially for comparing and integrating this
algorithm with other machine learning approaches, such as,
the deep learning, which recently showed its potentiality in
the investigation of neuroimaging correlates (Shen et al., 2017;
Vieira et al., 2017). In the future, the aggregation of multi-
approaches (RF, Deep-learning and SVM), multimodal (MRI,
DTI, PET) and multi-sites data would drastically increase
our ability to extract reliable biomarkers of neurodegenerative
diseases.
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