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Despite extensive research in the field of aging neuroscience, it still remains unclear
whether age related cortical changes can be detected in different functional networks
of younger adults and whether these networks respond identically to healthy aging.
We collected high-resolution brain anatomical data from 56 young healthy adults (mean
age = 30.8 ± 8.1 years, 29 males). We performed whole brain parcellation into seven
functional networks, including visual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal and default mode networks. We estimated intracranial volume
(ICV) and averaged cortical thickness (CT), cortical surface area (CSA) and cortical
volume (CV) over each hemisphere as well as for each network. Averaged cortical
measures over each hemisphere, especially CT and CV, were significantly lower in
older individuals compared to younger ones (one-way ANOVA, p < 0.05, corrected
for multiple comparisons). There were negative correlations between age and averaged
CT and CV over each hemisphere (p < 0.05, corrected for multiple comparisons) as
well as between age and ICV (p = 0.05). Network level analysis showed that age was
negatively correlated with CT for all functional networks (p < 0.05, corrected for multiple
comparisons), apart from the limbic network. While age was unrelated to CSA, it was
negatively correlated with CV across several functional networks (p < 0.05, corrected for
multiple comparisons). We also showed positive associations between CV and CT and
between CV and CSA for all networks (p < 0.05, corrected for multiple comparisons).
We interpret the lack of association between age and CT of the limbic network as
evidence that the limbic system may be particularly resistant to age-related declines
during this period of life, whereas the significant age-related declines in averaged CT
over each hemisphere as well as in all other six networks suggests that CT may serve
as a reliable biomarker to capture the effect of normal aging. Due to the simultaneous
dependence of CV on CT and CSA, CV was unable to identify such effects of normal
aging consistently for the other six networks, but there were negative associations
observed between age and averaged CV over each hemisphere as well as between
age and ICV. Our findings suggest that the identification of early cortical changes within
various functional networks during normal aging might be useful for predicting the effect
of aging on the efficiency of functional performance even during early adulthood.

Keywords: limbic system, healthy aging, cortical measures, functional networks, cortical thickness, cortical
volume, cortical surface area
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INTRODUCTION

By the term aging, we usually refer to time-dependent changes in
functional and structural characteristics of living organisms that
could be responsible for reduction in homeostasis and functional
capacity (Hung et al., 2010). A decline in some cognitive abilities,
even among healthy elderly, is well documented to be associated
with aging (Glisky, 2007). For many elderly persons such declines
become sufficiently serious when they reach a point where
it becomes difficult for the individual to live independently.
The basic cognitive functions such as attention, memory and
perception are few among several behavioral skills, which are
most affected by age (Glisky, 2007; Mahoney et al., 2010).
On a molecular level, aging is reported to be responsible for
cell shrinkage and a decline in the quality of several cellular
mechanisms including protein synthesis, which could further
lead to the formation of improper folding of protein aggregates
and set the basis for the emergence of various neurodegenerative
diseases (Gaczynska et al., 2001). For example, Alzheimer’s
disease is more common in individuals over the age of 65
compared to individuals in their 30, 40, or 50 s1 and 75% of
all strokes occur in individuals over the age of 65.2 It is well
accepted that aging has wide ranging effects on cells, molecules,
and cognition, as well as on brain volume. It has also been found
that after age 40, the volume of the brain reduces at the rate of
around 5% per decade (Svennerholm et al., 1997). In particular,
it has been shown that the volume of the frontal and temporal
lobes decreases with age, especially after the age of 44 and 47
respectively (Bartzokis et al., 2001; Peters, 2006). Therefore, aging
neuroscience is one of the most crucial and timely fields dedicated
to understanding the underlying mechanisms behind several
such age-related brain disorders.

Despite extensive progress in the field of aging neuroscience,
it remains unclear how different functional networks respond
to healthy aging in terms of their structural characteristics
such as cortical thickness (CT), cortical surface area (CSA),
and cortical volume (CV), and whether the pattern remains
consistent across the whole brain and its different functional
networks. It is very important to detect possible brain loss
associated with early aging in order to identify the onsets of
neurodegenerative diseases in advance. Second, the combined use
of multiple cortical measures in the field of aging neuroscience
is still in its infancy and it is not clear how the lack of detailed
age-related cortical surface data might affect our understanding
of normal aging; detailed age-related examination of structural
characteristics could substantially advance our understanding of
the fundamental relationships between aging and brain tissue
loss.

Structural measures CT, CSA and CV are also known to
display specific age related regional variations across the brain’s
cortical surface (White et al., 2010). In a study with a broad
age-range (18–93 years) of healthy subjects, wide-spread cortical
thinning reflecting significant atrophy was reported in middle-
aged adults (age range= 41–57 years), especially in the prefrontal

1http://www.alz.org/
2https://www.cdc.gov/

as well as the temporal and parahippocampal cortex (Salat et al.,
2004). Older age was associated with smaller surface area in
the dorsolateral and orbitofrontal cortex (DLPFC and OFC),
and with greater cortical thickness in the DLPFC and anterior
cingulate cortex (Dotson et al., 2015). Global gray matter volume
has also been reported to decrease significantly with age, with
steeper declines in males compared to females (Good et al.,
2001). Very limited age-oriented studies with a special focus
on functional networks, especially involving young adults, have
reported the effect of healthy aging on these networks. Using
positron emission tomography, reduced functional brain activity
during perceptual decision-making was found to be associated
with greater age in older adults (mean age 67 years) (Grady et al.,
1994). More recently, studies have investigated the effects of aging
on cognitive and executive function abilities, including working
memory and inhibitory control (Hertzog et al., 2008; Turner and
Spreng, 2012). On the whole, these studies reported a constant
maturation of the adult brain for roughly five decades, followed
by degeneration. Therefore, most of the studies on human aging
have concentrated on either functional brain responses in healthy
older adults or on individuals already suffering from some kind
of age related neurogenerative disease. In addition, most studies
have been region of interest (ROI) based rather than whole brain
network analyses. There is presently limited information about
the effect of age on multiple cortical characteristics of different
functional brain networks, especially in healthy young adults.
We, therefore, examined the association between age and cortical
measures in a sample of healthy young adults.

In this study, we explored the effect of age on CT, CSA, and
CV averaged over each hemisphere, as well as on intracranial
volume (ICV). Further, we parcellated the whole brain into
seven functional networks (network 1: visual network, network
2: somatomotor network, network 3: dorsal attention network,
network 4: ventral attention network, network 5: limbic network,
network 6: fronto-parietal network and network 7: default mode
network) (Yeo et al., 2011) for left and right hemispheres
individually and calculated subject-wise brain cortical measures
such as CT, CSA, and CV for each of these seven networks.
Based on previous research and the goals of the present study,
we hypothesized that (i) age would be negatively correlated with
averaged CT, CSA, and CV over each hemisphere, intracranial
volume (ICV) as well as with averaged CT, CSA and CV over each
of the seven functional network and (ii) there would a significant
association between CT, CSA, and CV for each of the seven
functional networks. Testing these hypotheses would clarify the
fundamental relationships between normal aging and changes in
cortical structure of the brain.

MATERIALS AND METHODS

Participants and Data Acquisition
Fifty-six healthy adult participants between 18 and 45 years of
age (mean age = 30.8 ± 8.1 years, 29 males) participated in
this study. Detailed age-wise (18–45 years) (A) and age-range
(Group 1: 18–25, Group 2: 26–35, and Group 3: 36–45 years)
(B) distributions over number of participants are shown in
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FIGURE 1 | Distribution of participants over age. Age-wise (18–45 years) (A) and age-range (18–25, 26–35, and 36–45 years) (B) distributions over number of
participants. Error bars represent the standard deviation of the mean value.

Figure 1. Participants were screened via a comprehensive
telephone interview and were excluded for any history of
psychiatric, neurological, or significant medical problems (e.g.,
heart problems, diabetes), including head injury with loss of
consciousness longer than 30 min, sleep disorders, or current
use of psychotropic medications that could affect neuroimaging.
Participants were also excluded for any history of drug or alcohol
treatment or current use of illicit substances. Current alcohol use
was required to be lower than the Center for Disease Control
criteria for excessive alcohol use3. Written informed consent was
obtained from each participant before the experiment and the
study protocol was approved by the Institutional Review Boards
of McLean Hospital and Partners Healthcare, as well as by the
United States Army Human Research Protections Office. Other
unrelated behavioral data from this sample have been reported
elsewhere (Killgore et al., 2013), but the cortical thickness and
cortical surface area measures reported here are novel and
have not been previously reported. We recorded high-resolution
anatomical magnetic resonance imaging (MRI) data using a
3-Tesla Siemens whole brain MR scanner located at the McLean
Hospital Imaging Center. Each participant was instructed to
rest, relax and try his/her best to stay motionless during the
entire scan. Anatomical data for each participant was acquired
using a 3D magnetization-prepared rapid acquisition gradient
echo (MPRAGE) sequence which consisted of 128 sagittal slices
(thickness = 1.33 mm, voxel resolution = 1 × 1 × 1.33 mm,
field of view (FOV) = 256 mm) with TR/TE/FA/inversion time
of 2100 ms/2.25ms/12◦/1100 ms.

Data analysis
We used the “recon-all” pipeline in FreeSurfer (version 6.0)4

installed on a Debian 8 LINUX machine to process anatomical
images for all the participants. This processing involved motion-
correction, brain extraction (i.e., removal of skull, skin, neck
and eyes), automated transformation to Talairach co-ordinate
system, intensity correction, volumetric segmentation, and
whole brain parcellation into seven functional networks (visual
network, somatomotor network, dorsal attention network,
ventral attention network, limbic network, fronto-parietal

3https://www.cdc.gov/alcohol/fact-sheets/alcohol-use.htm
4https://surfer.nmr.mgh.harvard.edu/fswiki

network, and default mode network) using the Yeo atlas (Yeo
et al., 2011). These seven networks and their corresponding
regions/components are summarized in Table 1. The naming
of all the regions constituting each network was performed by
overlaying annotation file (split components) of 7 networks over
7-network parcellation in FreeView. The measures of mean CT,
mean CV and mean CSA were evaluated individually for the left
and the right hemisphere to determine any significant differences
in these measures across different age groups. We also estimated
the correlations between age and each of these measures averaged
over each hemisphere and ICV. For network level analysis,
the correlation analysis between all three cortical measures and
age as well as within cortical measures was performed. All
the correlation analysis was performed after extracting subject-
wise CT, CV and CSA measures from all seven functional
networks for each hemisphere. For multiple comparisons, the
Holm–Bonferroni technique (Holm, 1979) was used to adjust
the p-value of 0.05 across all correlations of CT, CSA, and CV
with age and for all correlations within cortical measures, such as
between CV and CT, CV and CSA, and CT and CSA.

RESULTS

We used one-way ANOVAs to estimate the differences in
CT, CSA, and CV across the three age groups for each
hemisphere. We also report the correlation between age and
averaged CT, CSA, and CV over each hemisphere and between
ICV and age. Further, Pearson’s correlation coefficients and
corresponding p-values, corrected for multiple comparisons
using Holm–Bonferroni (Holm, 1979), were calculated to
examine the association between each of the cortical measures
(CT, CSA, and CV) and age as well as within each pair of cortical
measures (between CV and CT, CV and CSA, and CT and CSA).

Age Related Cortical Changes across
Hemispheres and within Functional
Networks
Cortical Measures across Hemispheres and Age
We calculated the average of all three cortical measures (CT, CSA,
and CV) over the left and right hemisphere individually.
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TABLE 1 | List of cortical regions/components within each functional network.

Networks Anatomical locations/Components

Network 1 (Visual) LH/RH: Visual

Network 2 (Somatomotor) LH/RH: Somatomotor

Network 3 (Dorsal Attention) LH/RH: Posterior (Post central cortex stretches posteriorly parietal), Frontal eye fields, Precentral ventral

Network 4 (Ventral Attention) LH: Parietal operculum, Temporal occipital, Frontal operculum, Lateral prefrontal cortex, Medial (frontal cortex through medial
parietal) RH: Temporal occipital parietal, Precentral, Frontal operculum, Lateral prefrontal, Ventral prefrontal, Medial (medial frontal
cortex through medial parietal)

Network 5 (Limbic) LH/RH: Temporal pole, Orbital frontal cortex

Network 6 (Frontoparietal) LH: Parietal, Temporal, Dorsal prefrontal cortex, Lateral prefrontal, Orbital frontal, Ventral prefrontal, Precuneus, Cingulate, Medial
posterior prefrontal RH: Parietal, Temporal, Ventral prefrontal, Lateral prefrontal, Precuneus, Cingulate, Medial posterior prefrontal

Network 7 (Default mode) LH: Parietal, Temporal, Prefrontal, Posterior cingulate, Parahippocampal RH: Parietal, Temporal, Ventral prefrontal, Medial prefrontal,
Posterior cingulate

LH/RH, left hemisphere/right hemisphere. Please note that the above reported regions within each network are based on approximate anatomical locations and
components extracted using Yeo2011_17Networks_N1000.split_components.annot in FreeView.

Left hemisphere
Cortical thickness was significantly lower in group 3 versus group
1, CSA was significantly lower in group 2 versus group 1, and CV
was significantly lower in group 3 versus 1 and group 2 versus
1 (Figure 2) (one-way ANOVA, p < 0.05, adjusted for multiple
comparisons). For the left hemisphere (Figure 3 and Table 2),
we found a significant decrease in mean CT with age (r =−0.40,
p< 0.05). We did not observe a significant decrease in mean CSA
with age (r = −0.16, p > 0.1) but there was significant negative
correlation between mean CV and age (r =−0.38, p < 0.05).

Right hemisphere
Cortical thickness was significantly lower in group 3 versus group
1, CSA was significantly lower in group 2 versus group 1, and CV
was significantly lower in group 3 versus 1 and group 2 versus
1 (Figure 2) (one-way ANOVA, p < 0.05, adjusted for multiple
comparisons). For the right hemisphere (Figure 4 and Table 2),
correlation patterns were similar to those observed in the left
hemisphere, i.e., there was a significant decrease in mean CT with
increasing age (r =−0.47, p < 0.05), a non-significant reduction
in mean CSA with age (r=−0.12, p> 0.1) but again a significant

FIGURE 2 | Comparison of cortical measures (Cortical thickness: CT, cortical surface area: CSA, and cortical volume: CV) across age groups. Mean CT (A,B), mean
CSA (C,D) and mean CV (E,F) over left (A,C,E) and right hemisphere (B,D,F) are plotted across three age groups (G1: 18–25, G2: 26–35, and G3: 36–45). Error
bars represent the standard deviation. Significant differences are denoted by ∗(one-way ANOVA, p < 0.05, corrected for multiple comparisons).
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FIGURE 3 | Brain parcellation and age-related changes in mean cortical measures for left hemisphere. Left hemispheric brain parcellation into seven functional
networks and vertex-wise maps for cortical thickness (CT in mm), cortical surface area (CSA in mm2) and cortical volume (CV in mm3). Linear plots showing
age-related significant reduction in mean CT (in mm), non-significant reduction in mean CSA (cm2) and significant reduction in mean CV (cm3) over left hemisphere.

negative correlation between mean CV and age (r = −0.41,
p < 0.05).

After regressing out the effect of ‘gender,’ the all three cortical
measures (mean CT, mean CSA, and mean CV) for each
hemisphere showed significant decrease with age.

In addition, ICV also showed significant decreases with age
(r =−0.26, p= 0.05), after controlling for ‘gender’ (Figure 5).

Cortical Measures across Functional Networks and
Age
We evaluated mean CT, mean CSA, and mean CV for each of
the functional networks for each participant for the left and right
hemisphere separately.

Left hemisphere
For the left hemisphere (Figure 6), we found that there was a
non-significant negative trend between mean CT and age for
network 1 (r = −0.31, p < 0.1) and network 6 (r = −0.32,
p < 0.1), significant negative correlations between mean CT and
age for network 2 (r = −0.37, p < 0.05), network 3 (r = −0.43,
p < 0.05), network 4 (r = −0.43, p < 0.05), and network 7
(r = −0.44, p < 0.05), but no significant correlation between CT
and age for network 5 (limbic network) (r = −0.16, p > 0.1).

We did not observe a significant relationship between CSA and
age for any of the seven functional networks (p > 0.1). Finally,
we found a significant decrease in CV in network 6 (r = −0.40,
p < 0.05) and network 7 (r = −0.42, p < 0.05) with age and a
trending negative correlation between CV and age for network 3
(r =−0.34, p < 0.1).

Right hemisphere
For the right hemisphere (Figure 7), we found a
significant decrease in CT for all the functional networks
(−0.37 ≤ r ≤ −0.51, p < 0.05) except network 5 (limbic
network) (r = −0.25, p > 0.1) with age. However, no significant
relationship between CSA and age for any of the functional
networks was found (p > 0.1). However, there was a trend for
a decrease in CV with age for network 1 (r = −0.27, p < 0.1),
network 2 (r = −0.24, p < 0.1), and network 3 (r = −0.34,
p < 0.1), and significant decrease in CV with age for networks 4,
5, 6, and 7 (−0.37 ≤ r ≤−0.47, p < 0.05).

Consistent with above findings, after controlling for the
effect of ‘gender’, we found significant negative correlations
between mean CT and age for all the networks (networks
1–4 and network 6, bilaterally), except network 5 (limbic
network), while there was no significant correlation between
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TABLE 2 | Correlation coefficients between cortical measures and age.

Laterality Mean Networks

N1 N2 N3 N4 N5 N6 N7

Correlation coefficients between

CT and age

LH −0.40∗∗ −0.31∗ −0.37∗∗ −0.43∗ −0.43∗∗ −0.16 −0.32∗ −0.44∗∗

RH −0.47∗∗ −0.40∗∗ −0.37∗∗ −0.46∗∗ −0.51∗∗ −0.25 −0.47∗∗ −0.48∗∗

CSA and age

LH −0.16 −0.09 −0.11 −0.14 −0.09 −0.21 −0.15 −0.17

RH −0.12 −0.03 −0.01 −0.04 −0.16 −0.18 −0.20 −0.16

CV and age

LH −0.38∗∗ −0.27 −0.30 −0.34∗ −0.32 −0.31 −0.40∗∗ −0.42∗∗

RH −0.41∗∗ −0.27 −0.24 −0.34∗ −0.40∗∗ −0.37∗∗ −0.47∗∗ −0.46∗∗

Partial correlation coefficients (gender as covariate) between

CT and age

LH −0.41∗∗ −0.33∗ −0.37∗∗ −0.43∗∗ −0.44∗∗ −0.17 −0.32∗ −0.44∗∗

RH −0.47∗∗ −0.40∗∗ −0.36∗∗ −0.46∗∗ −0.50∗∗ −0.24 −0.46∗∗ −0.48∗∗

CSA and age

LH −0.32∗∗ −0.18 −0.27 −0.25 −0.21 −0.32 −0.31 −0.33

RH −0.27∗ −0.13 −0.14 −0.14 −0.30 −0.26 −0.36 −0.29

CV and age

LH −0.53∗∗ −0.38∗∗ −0.43∗∗ −0.43∗∗ −0.44∗∗ −0.40∗∗ −0.56∗∗ −0.57∗∗

RH −0.55∗∗ −0.39∗∗ −0.35∗∗ −0.44∗∗ −0.52∗∗ −0.41∗∗ −0.63∗∗ −0.60∗∗

N1–N7, Network 1–Network 7; CT, cortical thickness; CSA, cortical surface area; CV, cortical volume; LH/RH, left hemisphere/right hemisphere. ∗Significant at
0.05 ≤ p < 0.1 (corrected for multiple comparisons). ∗∗Significant at p < 0.05 (corrected for multiple comparisons).

mean CSA and age for any of the networks. However, after
controlling for the effect of ‘gender,’ we found significant
negative correlations between mean CV and age for all the
networks.

We have summarized the above findings in Table 2.

Dependence of CV on CT and CSA
Further, we evaluated the association among all three (CV, CT,
and CSA) cortical measures.

Left hemisphere
For the left hemisphere (Figure 8), we did not find a significant
association between CSA and CT for any of the functional
networks (p > 0.1) and between mean CSA and mean CT
(r = 0.02, p > 0.1). We found a non-significant positive
trend (r = 0.25, p < 0.1) between CV and CT for network 6
(frontoparietal network) and significant positive correlations for
the other six functional networks (0.42 ≤ r ≤ 0.60, p < 0.05).
Additionally, there was a significant positive correlation between
mean CV and mean CT (r = 0.49, p < 0.05). We also found
significant positive associations between CSA and CV for each
functional network (0.84≤ r ≤ 0.88, p < 0.05) as well as between
mean CSA and mean CV (r = 0.86, p < 0.05).

Right hemisphere
For the right hemisphere (Figure 9), we did not find any
significant associations between CSA and CT for any of the
functional networks (p> 0.1), and no associations between mean
CSA and mean CT (p > 0.1). We found significant positive

correlations between CV and CT for all the functional networks
(0.32 ≤ r ≤ 0.60, p < 0.05), as well as between mean CV and
mean CT (r = 0.48, p < 0.05). We also found significant positive
associations between CSA and CV for each functional network
(0.77≤ r ≤ 0.86, p< 0.05) and between mean CSA and mean CV
(r = 0.82, p < 0.05).

DISCUSSION

In this study of young healthy adults, we observed significant
(i) differences in CT, CSA, and CV across different age
groups (ii) associations between increasing age and reductions
in brain averaged cortical measures such as CT, CSA, and
CV, and (iii) negative association between age and ICV. At
the network level, cortical measures, especially CT, within six
functional networks – visual, somatomotor, dorsal attention,
ventral attention, fronto-parietal and default mode was found
to reduce with age. Notably, we found a significant association
between age and CT in all six networks except the limbic
network, suggesting that the CT of this latter network may remain
stable during the early adult years. Contrary to expectations,
there were no associations between age and CSA for any of the
functional networks. Negative associations between age and CV
were observed in most of the networks before regressing out
the effect of gender and in all of the networks after regressing
out the effect of gender. Significant associations were found
between CV and CT, as well as between CV and CSA, whereas,
CSA and CT appear to be independent. These findings indicate
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FIGURE 4 | Brain parcellation and age-related changes in mean cortical measures for right hemisphere. Right hemispheric brain parcellation into seven functional
networks and vertex-wise maps for cortical thickness (CT in mm), cortical surface area (CSA in mm2) and cortical volume (CV in mm3). Linear plots showing
age-related significant reduction in mean CT (in mm), non-significant reduction in mean CSA (cm2) and significant reduction in mean CV (cm3) over right hemisphere.

that (1) the limbic network is the least susceptible to age-
related changes among those networks studied here in young
healthy controls, and (2) CT is one of the most sensitive
measures to identify age related cortical changes in young adults.
Additionally, the widespread dynamics of CT, CSA, and CV
across several functional networks reflect non-uniform cortical
changes within the brain. These findings suggest that single
modality approaches to characterizing age related changes in the
cortex may be insufficient to understand the dynamics of healthy
aging.

Stability of the Limbic Network with Age
Previous research has identified age-related changes in cortical
measures such as thickness, surface area and gray matter volume
across different regions of interest using voxel-based and surface
based measures (Salat et al., 2004; Lemaitre et al., 2012). In a study
of 70 healthy men between the ages of 19 and 76 years, significant
age-related loss in gray matter volume in the frontal and temporal
lobes was reported (Bartzokis et al., 2001). It was suggested that
a reduction in the number of large neurons and an increase
in the proportion of small neurons contributed to an overall
reduction in cortical volume (Terry et al., 1987; Bartzokis et al.,
2001). However, network level changes in cortical characteristics
have rarely been investigated in prior work. In addition, most of

FIGURE 5 | Correlation between intracranial volume (ICV) and age. After
regressing out the effect of ‘gender,’ here we show a significant negative
association between ICV and age.

the previous studies reported inconsistent trend effects of aging
on surface-based cortical measures, especially cortical surface
area (Salat et al., 2004; Fjell et al., 2006; Rettmann et al., 2006;
Dickerson et al., 2009). In this study, we found a nearly consistent
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FIGURE 6 | Network-wise age-related changes in cortical measures for left hemisphere. Linear plots showing significant or trend toward significant reduction in
cortical thickness (CT in mm) (∗p < 0.05, corrected for multiple comparisons), non-significant reduction in cortical surface area (CSA in cm2) and significant or trend
toward significant reduction in cortical volume (CV in cm3) (∗p < 0.05, corrected for multiple comparisons) for seven functional networks on left hemisphere.

global reduction in mean CT and unchanged mean CSA of each
hemisphere as well as for all the functional networks with the
exception of the limbic network. Consistent with a study by
Grieve and colleagues (Grieve et al., 2005), we found a preserved
limbic network in terms of non-significant changes in magnitude
of CT and CSA with age. In that study, significant preservation,
relative stability, and sparing of the medial temporal lobe
including the entorhinal and parahippocampal cortices across the
entire age range were reported. In addition, in younger and older
adults, robust functional activation during detection of emotional
faces was found in the amygdala, suggesting that the amygdala
remains relatively preserved with aging (St Jacques et al., 2010;
Campbell et al., 2012; Hampson et al., 2012). Significant stability
of the hippocampal region until the 7th decade followed by
a sharp decline after the 8th decade was also reported (Allen
et al., 2005). Several other studies support the notion that regions
associated with the limbic network remain relatively preserved in
aging humans (Raz et al., 1997), aging rats (Rapp and Gallagher,
1996), and aging primates (Keuker et al., 2003).

Our findings did not show how the observed age-structure
associations correspond to changes in actual cognitive
performance. However, reduced cortical thickness is considered
one of the possible mechanisms responsible for significant
deviation in global cognition resulting in lower cognitive reserve
(Ferreira et al., 2017), as measured by the Wechsler Adult

Intelligence Scale (WAIS). To some extent, higher cognitive
reserve restricts the clinical symptoms following brain pathology
(Stern, 2009), and shields and compensates for the effect of
cortical thinning (Ferreira et al., 2016). It is also possible that
cognitive reserve mechanisms may protect against the changes in
brain structure within the limbic network. The present findings
reported in our study, as well as those of previous studies
showing a protective role of cognitive reserve (Freret et al., 2015;
Ferreira et al., 2017) and memory decline with age (Peters, 2006),
suggest that the basis for age-related decline in cognitive skills is
not entirely due to structural loss of a specific brain region within
the limbic network. It is intriguing to speculate that the relative
preservation of the limbic network with age in our sample and
prior evidence of spared amygdala activation in older adults may
suggest a greater reliance upon emotional encoding/retrieval
strategies with increasing age.

Instability of Six Functional Networks
with Age
In this study, significant reductions in CT and CV as a function
of age for six functional networks reflect a widespread pattern
of age-related cortical changes. This widespread pattern of
age-related structural changes was also evident from lower CT,
CSA, and CV in older individuals versus younger individuals.
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FIGURE 7 | Network-wise age-related changes in cortical measures for right hemisphere. Linear plots showing significant reduction in cortical thickness (CT in mm)
(∗p < 0.05, corrected for multiple comparisons), non-significant reduction in cortical surface area (CSA in cm2) and significant or trend toward significant reduction in
cortical volume (CV in cm3) (∗p < 0.05, corrected for multiple comparisons) for seven functional networks on right hemisphere.

Significant negative associations between age and averaged
CT and CV over each hemisphere as well as between age
and ICV were also observed. There is abundant evidence
showing age-related declines in brain activation and cognitive
performance but limited evidence showing age-related structural
changes in multiple regions of the human brain (Trollor and
Valenzuela, 2001; Scahill et al., 2003). Age-related functional
changes, however, could be a possible direct/indirect indicator
of associated age-related structural modifications. Such changes
in brain morphology have been extensively investigated in
postmortem as well as in vivo magnetic resonance imaging
studies (Kemper, 1994; Raz, 2000), with most showing age related
weakening of the brain structure (i.e., decline in weight, volume,
and white matter integrity) and global decline of cognitive
functions.

Below we discuss our findings showing instability of each of
the six networks with age:

Visual (Network 1) and Somatomotor (Network 2)
Networks
Our findings are consistent with prior work which found a
prominent decrease in cortical thickness of the visual network

constituting the occipital cortex and within or near primary
visual cortex, especially in calcarine cortex, and the somatomotor
network constituting primary somatosensory and motor cortices
(pre/post central gyrus and central sulcus) (Salat et al., 2004).
Raz and colleagues also reported significant (trends toward
significant) age-related changes in the occipital cortex. However,
these were smaller in magnitude when compared to changes
within the prefrontal cortex (Raz et al., 1997). These findings
are inconsistent with the ‘last in, first out’ model of memory
decline. Although this model is valid during development and
degradation of myelin (Kemper, 1994), future work is required
to validate the same hypothesis for cortical measures.

Dorsal Attention (Network 3) and Ventral Attention
(Network 4) Networks
We reported a significant decrease in CT, no significant change
in CSA, and significant decreases in CV for dorsal attention
network (DAN) and ventral attention network (VAN) with
increasing age. Recently, in a study involving attention and short-
term memory tasks, healthy aging was associated with preserved
activity in DAN but reduced activation in the VAN as a function
of short term memory (Kurth et al., 2016). The authors of that
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FIGURE 8 | Correlations between cortical surface area (CSA) and cortical thickness (CT), cortical volume (CV) and CT and between CSA and CV for left hemisphere.
Linear plots showing non-significant association between CSA (cm2) and CT (cm), significant or trend toward significant positive association between CV (cm3) and
CT (cm) (∗p < 0.05, corrected for multiple comparisons), and significant positive association between CSA (cm2) and CV (cm3) (∗p < 0.05, corrected for multiple
comparisons) for seven functional networks and mean over seven functional networks on left hemisphere.

study suggested that the activation in DAN remains preserved
during healthy aging but diminishes in VAN over the same
period. In a large study of healthy non-demented older adults
(mean age 80.4 years), Mahoney and colleagues found significant
positive associations between age and alertness and performance
on an executive attention task (Mahoney et al., 2010). In that
study, the authors postulated that the reduction in alertness and
performance could be attributed to limited attentional resources
and a deteriorating functional role of the prefrontal cortex with
aging (West, 1996; Raz et al., 1997).

Frontoparietal (Network 6) and Default Mode
(Network 7) Networks
We reported trends toward significant decreases in CT, no
significant changes in CSA and significant decreases in CV for
frontoparietal network (FPN) with increasing age. In addition,
we reported significant age-related decreases in CT, no significant
changes in CSA, and significant decreases in CV for default
mode network (DMN). Several functional studies have shown
age related decrease in functional connectivity within the FPN

and DMN. For example, during a cognitive control task, the
FPN, which plays a key role in executive functions, was found
to be more activated in younger adults compared to older
adults (Campbell et al., 2012). Further, it was found that in
young, middle-aged, and older adults, there were correlations
between age and the intrinsic brain activity within the DMN
(Damoiseaux et al., 2008; Hampson et al., 2012). Recently, a
study involving older (mean age 64.9 years) and younger adults
(mean age 20.6 years) showed that the efficiency of the DMN,
fronto-parietal control network and cingulo-opercular network
declined with age (Geerligs et al., 2015). In another study,
aging was associated with reduced connectivity within the DMN
(Vidal-Pineiro et al., 2014).

Significance and Possible Underlying
Mechanisms
It should be noted that most of the previous studies on human
aging concentrated on brain function or functional connectivity
for middle-aged and/or old-aged individuals. Very few studies
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FIGURE 9 | Correlations between cortical surface area (CSA) and cortical thickness (CT), cortical volume (CV) and CT and between CSA and CV for right
hemisphere. Linear plots showing non-significant association between CSA (cm2) and CT (cm), significant or trend toward significant positive association between
CV (cm3) and CT (cm) (∗p < 0.05, corrected for multiple comparisons), and significant positive association between CSA (cm2) and CV (cm3) (∗p < 0.05, corrected
for multiple comparisons) for seven functional networks and mean over seven functional networks on right hemisphere.

have focused on age-related structural changes in the brain.
As such, there was a lack of reported matrices (i.e., cortical
thickness, cortical surface area, and cortical volume) sensitive to
the identification of early structural brain changes for healthy
younger adults, especially in various pre-defined functional
networks. Previously, in a study of 207 healthy adults between 23
and 87 years of age, Storsve and colleagues reported age related
annual decrease in thickness, volume, and area in most brain
areas (Storsve et al., 2014). In another study of 974 individuals
(aged between 4.1 and 88.5 years), Fjell and colleagues reported
that genetic factors, genetic organization and maturation of
brain areas affect cortical changes throughout the life span
(Fjell et al., 2015). To our knowledge, our study is the first
to focus on changes in all three morphometric measures in
individual functional brain networks of young healthy adults.
Although the underlying mechanisms of reduction in functional
and structural measures have not been explored in detail, it is
suggested that the basis of this significant reduction could be
due to non-pathological processes such as transition of neurons

to neurofibrillary tangles and reduction in dendritic arborization
or pruning (Morrison and Hof, 1997). On the other hand, it
is also possible that such declines could be due to pathological
processes such as amyloid deposition or unwanted chemical
changes such as disorders in glucose metabolism over time
(Walhovd et al., 2014). A blend of decreased neural specificity and
white matter integrity could be another possible explanation of
functional and structural loss with aging (Park et al., 2004). Since
post mortem studies and studies on non-human primates found
relatively comparable neuron count between older and younger
participants, neuron death has not been suggested as a cause for
reduction in magnitude of cortical measures (Morrison and Hof,
1997; Peters et al., 1998).

Inter-dependence of CT, CSA, and CV
Consistent with a study by Lemaitre et al. (2012), we did
not find a functional network with pronounced reduction in
CSA with aging. This suggests that CSA is less sensitive to
morphometric changes with aging, which makes CT and CV
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relatively more informative measures to identify age-related
morphometric changes across the brain (Lemaitre et al., 2012).
Lemaitre and colleagues make an analogy to a dry apple, stating
“When an apple dries, its flesh and thickness reduce and its
skin shrivels keeping the surface area relatively constant but
gaining spatial complexity from a flat to an uneven surface”
helps to better understand the possible mechanisms underlying
these cortical changes (Lemaitre et al., 2012, p. 617.e7). This
underlines an idea that with age, an atrophied brain might
display an increase in gyral complexity without a decrease in
surface area. Consistent with this hypothesis, Rettmann and
colleagues also observed age-related reduction in thickness and
volume but no change in surface area among eight sulcal
regions (Rettmann et al., 2006). Since cortical volume, simply
put, is the product of the thickness and surface area, so
changes in volume account for changes in thickness as well as
surface area, which could be one of the possible reasons for
an inconsistent pattern of age-related changes in CV across
functional networks, especially before and after considering
the effect of ‘gender.’ In the field of imaging genetics, it has
been suggested that methods providing measures of gray matter
volume could be less sensitive for gene identification than the
methods providing CT and/or CSA (Winkler et al., 2010).
In addition, we did not observe significant inter-dependence
between CT and CSA, reflecting the idea that the sensitivity
of thickness and area to normal aging could be entirely
different depending on aging and/or type of neuropsychiatric
disorder (Lemaitre et al., 2012) and/or type brain structure
under study. Therefore, non-uniformity in age-related changes
in CT, CSA, and CV but uniformity in age-related changes
in CT, dependence of CV on CT and CSA and independence
of CT and CSA in the present set of functional networks
for relatively younger participants reflects the importance of
analyzing multiple aspects of age-related cortical changes. For
instance, individual measures of CT, CSA, and CV in isolation
are not enough to distinguish the age-related susceptibility
of functional brain networks to completely understand the
effect of normal aging on cortical measures across the whole
brain. While each of these measures contributes unique and
important information regarding specific age-related histological
changes in brain, when used in combination, these measures
provide substantially greater precision in characterizing these
associations.

CONCLUSION

The findings reported in this study suggest that the limbic
network could be one of the most age-resistant functional
networks of the human brain in young adulthood, showing
no significant change in cortical characteristics, especially in
CT, while other networks showed clear changes with age. This
relative resistance of the primary emotional processing network
could potentially serve an adaptive function to protect the
individual by sustaining more primitive defensive behaviors
regardless of the integrity of cortical capacities. Findings also

highlight that, compared to CSA and CV, CT can be used as
one of the more reliable biomarkers to identify early cortical
changes in younger adults. These findings also suggest that
due to the significant inter-dependence of cortical measures,
it is critical to include analyses of multiple cortical measures
simultaneously in order to obtain a precise and comprehensive
understanding of age related changes. We speculate that neuro-
markers such as the cortical measures used herein could be
applied to predict possible onsets of neurodegenerative diseases
in relatively older individuals, although this was not specifically
explored in the present study. This study is not without
limitations, however. First, the age range over a relatively small
sample size in the present study is quite widespread and while
there were approximately equal number of participants in each
age group, this might nevertheless account for some of the
observed instability across functional networks. Future studies
with a focus on younger adults, involving a more narrowed
age range might show increased stability of cortical measures
across networks, indicating specific associations between cortical
characteristics and functional networks at different ages. Second,
future studies would benefit from inclusion of behavioral
measures corresponding to each of the functional networks,
which would further help to explore the effect of healthy
aging on the relationship between age-related structural brain
changes and corresponding changes in behavior and cognition.
With due consideration to these limitations, we believe the
present findings demonstrate important age-related associations
in cortical structure even in young adulthood.
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