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Growing evidence suggests that healthy aging affects the configuration of large-scale

functional brain networks. This includes reducing network modularity and local efficiency.

However, the stability of these effects over time and their potential role in learning

remain poorly understood. The goal of the present study was to further clarify previously

reported age effects on “resting-state” networks, to test their reliability over time, and

to assess their relation to subsequent learning during training. Resting-state fMRI data

from 23 young (YA) and 20 older adults (OA) were acquired in 2 sessions 2 weeks

apart. Graph-theoretic analyses identified both consistencies in network structure and

differences in module composition between YA and OA, suggesting topological changes

and less stability of functional network configuration with aging. Brain-wide, OA showed

lower modularity and local efficiency compared to YA, consistent with the idea of

age-related functional dedifferentiation, and these effects were replicable over time. At the

level of individual networks, OA consistently showed greater participation and lower local

efficiency and within-network connectivity in the cingulo-opercular network, as well as

lower intra-network connectivity in the default-mode network and greater participation of

the somato-sensorimotor network, suggesting age-related differential effects at the level

of specialized brainmodules. Finally, brain-wide network properties showed associations,

albeit limited, with learning rates, as assessed with 10 days of computerized working

memory training administered after the resting-state sessions, suggesting that baseline

network configuration may influence subsequent learning outcomes. Identification of

neural mechanisms associated with learning-induced plasticity is important for further

clarifying whether and how such changes predict the magnitude and maintenance of

training gains, as well as the extent and limits of cognitive transfer in both younger and

older adults.
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INTRODUCTION

Aging is associated with cognitive decline that may be linked
in part to altered communication among various brain regions
(Reuter-Lorenz and Park, 2014). Indeed, aging has been shown
to affect the integration of information both within and between
functional brain networks (Ferreira and Busatto, 2013; Dennis
and Thompson, 2014; Damoiseaux, 2017), which may have
implications for cognitive performance. Despite accumulating
evidence suggesting age effects on the configuration of large-scale
functional brain networks (Achard and Bullmore, 2007; Meunier
et al., 2009a; Onoda and Yamaguchi, 2013; Betzel et al., 2014;
Cao M. et al., 2014; Chan et al., 2014; Song et al., 2014; Geerligs
et al., 2015; Ng et al., 2016), the stability of these effects over
time remains poorly understood. One goal of the present study
was to clarify this issue by assessing age differences in functional
network properties at two different time points.

A substantial body of evidence suggests that aging influences
the functional organization of the brain, both globally and at
the level of individual brain networks (reviewed in Ferreira
and Busatto, 2013; Dennis and Thompson, 2014; Sala-Llonch
et al., 2015; Damoiseaux, 2017). The functional organization
of the brain has traditionally been studied using fMRI-based
“resting-state” functional connectivity (Greicius et al., 2003;
Power et al., 2011) and more recently, with graph-theoretic
analyses (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). The graph-theoretic approach enables characterization
of the brain’s connectivity structure and derives measures that
assess global and local features that may be important for
network function (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010). One such measure is modularity (Newman and
Girvan, 2004; Newman, 2006), which indexes the extent to
which a graph is organized into separate modules with dense
within- and sparse between-modules connections, a fundamental
principle thought to support the brain’s functional segregation
and integration (Dehaene et al., 1998; Sporns and Betzel,
2015). A number of prior investigations have identified lower
modularity in aging (Onoda and Yamaguchi, 2013; Betzel et al.,
2014; Cao M. et al., 2014; Song et al., 2014; Geerligs et al.,
2015; but see Meunier et al., 2009a), with networks becoming
less distinct due to increased between- and decreased within-
module integration. This evidence is consistent with the idea
of functional dedifferentiation (Park et al., 2004, 2010; Grady,
2012). Another set of measures characterizes the efficiency of
information flow across the graph. Global efficiency indexes
graph-wide integration and has been linked with the capacity for
rapid information exchange among distributed regions, whereas
local efficiency indexes integration at a regional level and has been
linked with fault tolerance within specialized regions (Latora

and Marchiori, 2003; Achard and Bullmore, 2007). Previous
investigations have associated aging with lower local efficiency

(Achard and Bullmore, 2007; CaoM. et al., 2014; Song et al., 2014;
Geerligs et al., 2015), while global efficiency was reported to be
similar irrespective of age (Cao M. et al., 2014; Song et al., 2014;
Geerligs et al., 2015; but see Achard and Bullmore, 2007).

Importantly, differences in connectivity structure observed
at a brain-wide level may be related to specific patterns at

the level of individual networks, and current evidence suggests
differential effects of aging on particular brain networks (Ferreira
and Busatto, 2013; Dennis and Thompson, 2014; Sala-Llonch
et al., 2015; Damoiseaux, 2017). Although the majority of
investigations have targeted the default-mode network (DMN),
showing lower functional connectivity between its different
sub-components with aging (Andrews-Hanna et al., 2007;
Damoiseaux et al., 2008), recent evidence also points to age effects
in other brain networks, such as the cingulo-opercular/salience
and sensorimotor networks (Meier et al., 2012; Onoda et al., 2012;
He et al., 2014; Geerligs et al., 2015; La Corte et al., 2016)1. Thus,
to complement information provided by brain-wide network
assessments, metrics applied at the level of individual networks
can also be employed. This includes the participation coefficient,
which indexes the relation between intra- and inter-network
connectivity for each node (Guimerà and Amaral, 2005).

In sum, although there are some inconsistencies across
studies, available evidence points to lower within- and higher
between-network connectivity with aging. This is expressed
topologically as lower modularity, and is associated with lower
local efficiency and preserved global efficiency, compared to
younger age (see Damoiseaux, 2017 for a recent discussion). The
first main goal of the present study was to assess the replicability
of these previously reported age effects on functional network
configuration.

Inconsistencies across investigations of age differences in
network properties may stem from methodological differences
but also from variability of network measures over time (van
Wijk et al., 2010; Zalesky et al., 2016; Ciric et al., 2017; Geerligs
et al., 2017). One way to assess reliability is by measuring the
same subjects at two or more time-points, while using the same
methodology, and quantifying the level of agreement between
measurements by calculating the intraclass correlation coefficient
(ICC) (Shrout and Fleiss, 1979; McGraw and Wong, 1996). A
meta-analysis of test-retest reliability of graph-theoretic brain-
network metrics identified overall good reliability (Welton et al.,
2015). However, the available evidence related to aging is very
limited. Investigations of age differences in network properties
have typically used singular assessments, and hence the reliability
of such effects over time is not clear (but see Geerligs et al., 2017).
Thus, the second main goal of the present investigation was to
extend the assessment of age differences in network properties to
multiple time points within the same individuals and to evaluate
reliability.

Clarification of age differences in network properties and
their stability over time is important for further assessment
of changes associated with cognitive training in older adults.
Specifically, if aging influences relations between functional
network properties and training outcomes, then these effects

1While graph theory has been typically employed to assess global and local

measures of connectivity, much evidence regarding aging effects on specific brain

networks has been derived using complementary approaches, such as seed-based

functional connectivity and independent component analysis. Although these

approaches differ in important ways (see Ferreira and Busatto, 2013; Dennis and

Thompson, 2014 for recent discussions), results have been overall convergent (see

Geerligs et al., 2015 for a recent graph theory investigation at the level of individual

networks).
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need to be disentangled from variability of network measures
in the absence of intervention. Recent evidence suggests
potential links between baseline properties of functional brain
organization and benefits accrued over the course of cognitive
training in older adults (Gallen et al., 2016a), although at this
point such evidence is only preliminary. Although a growing
body of studies suggests that some working memory (WM)
interventions may alter functional network organization and
have beneficial, albeit limited, effects on cognitive functioning
(Buschkuehl et al., 2008; Lustig et al., 2009; Brehmer et al.,
2014; Karbach and Verhaeghen, 2014; Stepankova et al., 2014;
Ballesteros et al., 2015; Bherer, 2015; Mewborn et al., 2017;
Román et al., 2017), evidence linking baseline functional network
characteristics with training is limited (Arnemann et al., 2015;
Gallen et al., 2016a). In one investigation of this topic, Gallen
et al. (2016a) showed that older adults displaying greater network
modularity at baseline also showed greater improvements in gist
reasoning, following a strategic memory and reasoning training
intervention (Vas et al., 2011). However, the potential role of
other network properties in learning remains largely unknown.
Thus, the third main goal of this investigation was to assess
relations between baseline network properties and subsequent
learning during training in older adults.

These questions were investigated in a sample comprising
both healthy younger and older adults, using resting-state fMRI
data acquired in 2 different sessions, both preceding a WM
training intervention. A complete treatment of training outcomes
and other behavioral data will be reported separately. Based
on the extant evidence, we expected to find lower modularity
and local efficiency in older compared to younger adults, and
similar global efficiency across groups. We also expected these
differences to be stable over time. Finally, the limited evidence
linking network properties with training effects suggests that
modularity is beneficial (Gallen et al., 2016a); therefore, we
expected that network properties, in particular modularity (i.e.,
as reflected in the modularity index), would be linked to learning
rates.

METHODS

Participants
A sample of 23 younger (YA) and 23 healthy, cognitively
normal older adults (OA) were recruited from the University
of Michigan campus and community surrounding Ann Arbor,
Michigan to participate in an adaptive verbal WM training
study. All participants were right-handed, native English speakers
with normal or corrected-to-normal hearing and vision and
were screened for history of head injury, psychiatric illness,
or alcohol/drug abuse. Data from 3 OA were excluded due to
technical issues related to brain-imaging data acquisition. Thus,
the sample for fMRI analyses consisted of 23 YA (age range:
18–28; 9 females) with a mean age (±S.D.) of 21.3 (±2.5) years
and 20 OA (age range: 64–76; 9 females) with a mean age of
68.3 (±3.6) years. For analyses linking fMRI with behavioral
results, 2 additional participants (1 OA) were excluded, due
to technical issues related to behavioral task assessments, and
thus these analyses were reported on 22 YA and 19 OA. Older

adult participants completed the Short Blessed Test (Katzman
et al., 1983) over the phone prior to inclusion in the study to
screen for potential mild cognitive impairment, and additional
neuropsychological assessments using the Montreal Cognitive
Assessment (Nasreddine et al., 2005) confirmed normal cognitive
function for all participants (scores ≥ 26). Additionally,
participants were screened for depressive symptoms that could
affect cognitive functioning using the depression module of
the Patient Health Questionnaire (Kroenke et al., 2001). The
University of Michigan Institutional Review Board approved all
procedures, and all participants provided informed consent prior
to participating.

Imaging Protocol
Functional MRI data were acquired during 8min of resting state,
following completion of a verbal WM task, in 2 sessions 2 weeks
apart (t1, t2) (see Supplementary Figure 1 for an illustration
of the study timeline). Participants were instructed to view a
fixation cross in the center of the screen while keeping their
mind calm and relaxed. Imaging data were collected using a
3 T General Electric MR750 scanner with an eight-channel head
coil. Functional images were acquired in ascending order using
a spiral-in sequence, with MR parameters: TR = 2,000ms;
TE = 30ms; flip angle = 90◦; field of view = 220 × 220
mm2; matrix size = 64 × 64; slice thickness = 3mm, no
gap; 43 slices; voxel size = 3.44 × 3.44 × 3 mm3. After an
initial 10 s of signal stabilization, 235 volumes were acquired. A
high-resolution T1-weighted anatomical image was also collected
following the WM task and preceding resting-state acquisition,
using spoiled-gradient-recalled acquisition (SPGR) in steady-
state imaging (TR = 12.24ms, TE = 5.18ms; flip angle = 15◦,
field of view = 256 × 256 mm2, matrix size = 256 × 256;
slice thickness = 1mm; 156 slices; voxel size = 1 × 1 ×

1 mm3). Images were de-spiked in k-space and reconstructed
using an in-house iterative reconstruction algorithm with field-
map correction (Sutton et al., 2003), which has superior
reconstruction quality compared to non-iterative conjugate
phase reconstruction.

Preprocessing
Preprocessing was performed using SPM12 (Wellcome
Department of Cognitive Neurology, London). Functional
images were slice-time corrected, realigned, and co-registered
to the anatomical image using a mean functional image. A
study-specific anatomical template was created (younger and
older adults together; Geerligs et al., 2015), using Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL) (Ashburner, 2007), based on segmented gray matter
and white matter tissue classes, to optimize inter-participant
alignment (Klein et al., 2009). The DARTEL flowfields and MNI
transformation were then applied to the functional images and
to the segments, and the functional images were resampled
to 3 × 3 × 3 mm3 voxel size. To minimize artificial local
spatial correlations, no additional spatial smoothing was applied
(Salvador et al., 2005; Achard et al., 2006; Achard and Bullmore,
2007; Wang et al., 2010, 2011; Liao et al., 2011; Zalesky et al.,
2012; Alakorkko et al., 2017).
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Identification of outlier scans was performed using Artifact
Detection Tools (ART; www.nitrc.org/projects/artifact_detect/),
as follows. Scans were classified as outliers if frame-to-frame
difference exceeded 0.5mm in composite motion (combination
of translational and rotational displacements) or 3 standard
deviations in the global mean signal. On average, the proportion
of outliers was below 5% in both YA (t1: 4.42%; t2: 2.72%) and
OA (t1: 3.68%; t2: 3.74%). There were no significant differences
between the two groups in the number of outlier scans (p’s> 0.4),
or in the average (p’s > 0.1) or maximum (p’s > 0.5) motion,
either before or after correcting for outlier scans (see “scrubbing”
below).

Graph Construction
Functional Connectivity Analysis
Brain-wide functional connectivity analyses were performed
using the Connectivity Toolbox (CONN; Whitfield-Gabrieli and
Nieto-Castanon, 2012). To construct a brain-wide graph, we
employed a commonly used functional atlas (Power et al., 2011),
which comprises 264 meta-analytically defined coordinates,
including cortical and subcortical areas; a 5 mm-radius sphere
was centered at each of these coordinates. To ensure that
the graph comprised regions that were not susceptible to
fMRI signal drop-out, each sphere was filtered through a
sample-level signal intensity mask, calculated as follows: First,
binary masks were calculated for each subject, at each time
point, thresholded at >70% mean signal intensity (Geerligs
et al., 2015), computed over all voxels, using ART. Then,
a sample-level mask was calculated, across all subjects and
time points, using logical conjunction (see Supplementary
Figure 2 for an illustration of the mask). Regions with fewer
than 8 voxels (∼50% volume) overlap with the sample-
level mask were excluded, leaving 234 regions of interest
(ROIs).

To remove physiological and other sources of noise from
the fMRI time series we used linear regression and the
anatomical CompCor method (Behzadi et al., 2007; Chai et al.,
2012; Muschelli et al., 2014), as implemented in CONN. Each
participant’s white matter and cerebrospinal fluid segments,
eroded by 1 voxel to minimize partial volume effects, were used
as noise ROIs. The following temporal covariates were added
to the model: signal extracted from each participant’s noise
ROIs (5 principal component analysis parameters for each2),
motion parameters (3 rotation and 3 translation parameters,
plus their first-order temporal derivatives), regressors for each
outlier scan (i.e., “scrubbing”; one covariate was added for
each outlier scan, consisting of 0’s everywhere but the outlier
scan, coded as “1”), and a session-onset regressor (a delta
function convolved with the hemodynamic response function
plus its first-order temporal derivative). The residual fMRI
time series were band-pass filtered (0.01Hz < f < 0.1Hz).
Pearson correlation coefficients were computed between the

2Regressing out multiple principal components from noise ROIs typically leads

to better noise correction than regressing out the average noise signal because

physiological noise (including motion) is not spatially homogeneous across the

brain (Chai et al., 2012; Muschelli et al., 2014).

time courses of all pairs of functional ROIs, followed by
Fisher-z transformation, and the diagonal of the connectivity
matrix was set to zero. Graph construction and analyses were
performed separately for each group and time point, using tools
from the Brain Connectivity Toolbox (Rubinov and Sporns,
2010).

Group-Level Consensus Partitions
To achieve a community structure representative of each
group, we used the Louvain community detection algorithm
(Blondel et al., 2008), in conjunction with consensus clustering
(Lancichinetti and Fortunato, 2012). This approach capitalizes
on the consistency of each node’s module affiliation across a
set of partitions, to circumvent the known degeneracy of the
Louvain algorithm (i.e., multiple partitioning solutions) (Good
et al., 2010). To obtain a unique (i.e., threshold-independent)
solution for each group, the Louvain algorithm was applied on
weighted graph edges (positive only); see Cohen and D’Esposito
(2016) for a similar approach. The group-level consensus
partitions were employed to derive node–module assignments
used for analyses at the level of individual modules/networks (see
Network Measures sub-section below) and for display purposes
(Figure 1).

Consensus clustering was applied first at the individual level,
to generate a robust partition for each participant, and then
at the group level, to generate a representative partition for
each group and at each time point; see Dwyer et al. (2014)
for a similar approach. First, to generate a robust partition for
each participant, the Louvain algorithm was run 500 times.
Because the algorithm is susceptible to local maxima, each initial
partition was optimized using iterative community fine-tuning
(Sun et al., 2009), whichmaximizes modularity by reassigning the
nodes to modules and iterating the Louvain algorithm. For each
participant, we constructed an agreement matrix representing
the fraction of runs in which each pair of nodes was assigned
to the same module. The Louvain algorithm was then iteratively
run on the agreement matrix (500 Louvain runs at each step),
to generate a consensus partition for each participant. For each
iteration, the agreementmatrix was recalculated and thresholded,
until a single representative partition was obtained for each
participant. Second, to generate a group-level representative
partition, an agreement matrix was calculated based on the
consensus partitions of all participants in one group. The
Louvain algorithm was then run on the agreement matrix to
obtain a consensus partition for each group, as described above.
The resolution parameter of the Louvain community detection
algorithm (γ ) and the thresholding parameter for the agreement
matrix (τ ) were determined using a procedure that maximized
modularity over all group-level partitions. Specifically, we ran
the procedure described above for typical ranges of values
for both parameters and chose those values that, on average,
maximized modularity across all 4 group-level partitions (see
below for a formal description of modularity). The value
ranges were γ between 1 and 1.5 and τ between 0.2 and 0.5,
with increments of 0.05 for each parameter. The maximum
average modularity was Q = 0.71, achieved for γ = 1.25
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FIGURE 1 | Representative group-level partitions. Functional networks were identified separately for each group and time point, using consensus partitioning. Five

main modules were identified in both YA and OA, consistent with the main functional networks described in the literature (see main text for details). Nodes are

color-coded by module, and within-module connections are displayed in the same color as the nodes. Nodes not belonging to the five main modules are displayed in

gray. For illustration purposes, the force-directed graph displays 20% of the strongest connections and the anatomical projection displays nodes that form 2% of the

strongest connections. The force-direct graph and anatomical projection were displayed using Gephi (http://gephi.org) and BrainNet Viewer (http://www.nitrc.org/

projects/bnv/), respectively.

and τ = 0.5, and these parameters were used for subsequent
analyses.

Connection Density Thresholding
We used density-based thresholding, which equates the number
of edges across graphs and allows proper between-groups
comparisons (van Wijk et al., 2010; Garrison et al., 2015). To
ensure that results were not due to any specific threshold,
calculations were performed for a range comprising 2–10% of the
strongest connections, in 1% increments. This threshold range
is similar to that used in generating the Power et al. (2011)
functional atlas and matches the range previously employed
by Geerligs et al. (2015), thus enabling comparison of results.
In general, stringent threshold ranges are preferable because
inclusion of false-positive connections is more detrimental to
network measures computation than exclusion of false-negative
connections (Zalesky et al., 2016). The average number of
disconnected nodes at each threshold in the 2–10% range
was as follows: 47, 27, 17, 10, 7, 4, 3, 2, and 1. Because
average connectivity was similar across groups (as assessed
by permutation testing on positive edges; t1, 2: p’s > 0.2),
density-based thresholding was likely unbiased across groups
(Zalesky et al., 2016; van den Heuvel et al., 2017). To calculate
network measures, connectivity values were binarized for each
threshold (i.e., 1 if above, 0 if below threshold). Between-
groups comparisons of graph-theoretic measures used binarized
graphs and reported graph metrics are values averaged across all
thresholds, unless specified otherwise.

Network Measures
To assess the strength of module segregation, we calculated the
modularity index (Q) (Newman and Girvan, 2004; Newman,

2006), which compares the observed intra-module connectivity
with that which is expected by chance. Higher modularity
values indicate stronger separation of the graph’s modules. The
modularity index is formally defined as follows:

Q =
1

2E

∑

ij

[Aij − γ eij]δ(mi,mj)

where E is the number of graph edges, A is the adjacency matrix,
γ is the resolution parameter, e is the null model [e = kikj/2E,
where ki and kj are the degrees (i.e., number of connections) of
the nodes i and j], and δ is an indicator that equals 1 if nodes i
and j belong to the samemodule and 0 otherwise. Themodularity
score for each participant was calculated as the average over 500
runs of the Louvain algorithm with iterative community fine-
tuning. For consistency with the consensus clustering procedure
described above, the same resolution parameter (γ = 1.25) was
used.

To assess the integration of information, we calculated
global and local efficiency (Latora and Marchiori, 2003). Global
efficiency indexes integration at the level of the entire graph and
it is defined as follows:

Eglob =
1

N(N − 1)

∑

i6=j

1

Lij

whereN is the number of nodes in the graph and Lij is the shortest
path length between nodes i and j. By contrast, local efficiency is
a node-specific measure, and is defined relative to the sub-graph
comprising the immediate neighbors of a node. Local efficiencies
for all nodes were averaged to provide an estimate of the mean
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local efficiency of the entire graph or of a module. Local efficiency
of a node i is defined as follows:

Eloc(i) =
1

NGi (NGi − 1)

∑

j,h∈Gi

1

Ljh

where Gi is the sub-graph comprising all the immediate
neighbors of the node i.

Another node-specific measure is the participation coefficient
(Guimerà and Amaral, 2005), which indexes inter-network
connectivity by quantifying the distribution of each node’s
connections across different modules. Participation coefficients
of all nodes within amodule were averaged to provide an estimate
of mean participation for a module. Participation coefficient of a
node i is defined as follows:

P (i) = 1−

M
∑

m=1

[

ki(m)

ki

]2

whereM is the number of modules in the graph, and ki(m) is the
degree of node i within its own modulem, and ki is the degree of
node i regardless of module membership.

Finally, to assess the convergence of results based on
the graph-theoretic measures described above with simpler
connectivity analyses, we calculated within- and between-module
connectivity using an approach similar to Geerligs et al. (2015).
For completeness, this procedure was performed separately
for positive and negative connectivity values. First, the initial
connectivity matrices were thresholded by retaining values that
survived a false discovery rate (FDR) correction (q < 0.05)
(Benjamini and Hochberg, 1995) and setting all the other values
to zero. Then, for eachmodule and pair of modules, we computed
the sum of all connectivity values and divided by the number of
possible connections to estimate within- and between-modules
connectivity. Of note, this procedure was used only for the
analysis of within- and between-networks connectivity, and it
did not influence the previously introduced graph-theoretic
measures, which were all calculated on unweighted (i.e., binary)
graphs.

Statistical Methods
As a general strategy, assessments were performed on metrics
averaged across all thresholds, and significant results were
followed-up with tests for each threshold, to assess consistency
across the threshold range.

Age Differences in Community Structure
To assess age differences in community structure, we compared
module composition between groups using normalized mutual
information (NMI) (Kuncheva and Hadjitodorov, 2004) and
permutation testing. NMI measures how much information
about the structure of one partition reduces uncertainty about the
structure of another partition, and is a relativemeasure that varies
from 0 (completely independent) to 1 (identical partitions).
Because individual similarity measures are not independent, we
used an unbiased procedure that compared the average between-
groups similarity in the actual data with a null distribution

based on randomizing group memberships; see Alexander-Bloch
et al. (2012) for a similar approach. Between-groups similarity
in the actual data was calculated for each density threshold,
by averaging the pair-wise partition similarity for all subjects
across the two groups, separately at each time point. For each
subject, we used the partition with the highest modularity for
each threshold, calculated over 500 Louvain repetitions with
community fine-tuning and resolution γ = 1.25. The null
distribution was calculated in a similar way, using the randomly
divided groups over 5,000 permutations, while retaining original
group sizes. If the actual between-groups NMI was smaller
than the 5th percentile of the null distribution, the difference
was considered significant. Furthermore, to determine whether
one group showed more similar partitions than the other, we
examined within-group partition similarity. This analysis was
performed in a similar way, by averaging pair-wise partition
similarity separately for subjects in each group. Finally, to
examine differences in the stability of partitions over time,
we calculated within-subject partition similarity over the two
sessions. A between-group difference in partition similarity over
time was tested directly, using permutation testing (Groppe et al.,
2011).

Age Differences in Network Measures
Age differences in network measures were first assessed brain-
wide (modularity, global efficiency, and local efficiency) and
then significant results were followed-up by analyses at the level
of each module or network (participation coefficient and local
efficiency). To ensure comparability at the level of individual
networks, each module was represented only by those nodes
that were consistently assigned to the same module, both across
groups and time points, based on the group-level consensus
partitions; see Geerligs et al. (2015) for a similar approach.
Between-groups differences in network properties were assessed
using permutation testing, and a family-wise error (FWE)
correction for multiple comparisons based on the “max statistic”
method (Blair and Karniski, 1993; Groppe et al., 2011) was
applied to account for simultaneous testing of the five main
modules identified (see Results section). As mentioned above, an
ancillary analysis of within- and between-modules connectivity
was also performed and the same FWE correction for multiple
comparisons was applied for this analysis as well.

Reliability Analysis
The intraclass correlation coefficient (ICC) was employed to
measure the absolute agreement for each graph metric between
the two sessions (McGraw and Wong, 1996; Welton et al., 2015).
We used a mixed model3 ICC(A, k) to estimate the degree
of absolute agreement of measurements that are averages of
k= 2 independent measurements on randomly selected subjects.

3We made no assumption of interchangeability of t1 and t2 assessments because

the resting-state data were acquired following completion of a verbal WM task

inside the scanner, and thus potential differences in task performance at the

two time points might have differentially influenced resting-state recordings.

We also expected, however, that these effects would be mitigated by a ∼6min

break (recording the T1-weighted anatomical image) following the WM task and

preceding the resting-state acquisition (Breckel et al., 2013).
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ICC was calculated as follows: ICC = (MSR–MSE)/[MSR +

(MSC – MSE)/n], where MSR is mean square for rows/subjects,
MSE is mean square error, and MSC is mean square for
columns/assessments (Shrout and Fleiss, 1979; McGraw and
Wong, 1996). We used the following guidelines for ICC
interpretation: <0.20, poor; 0.21–0.40, fair; 0.41–0.60 moderate;
0.61–0.80 strong; >0.8, almost perfect (Montgomery et al., 2002;
Telesford et al., 2010).

Links with Learning during WM Training
The second scanning session was followed by 10 days of
computerized verbal WM training (Supplementary Figure 1).
The adaptive training task consisted of a modified WM item-
recognition task that required participants to encode and
retain consonant letters of variable set size for several seconds
(Sternberg, 1966; see also Stepankova et al., 2014); set size
changed adaptively depending on participants’ performance.
Participants completed 6 blocks of 14 trials during each training
session. Here, we focus on training-related improvements inWM
performance specifically, as measured by mean set size achieved
during each training session for each participant, to evaluate their
relationship with network properties. Furthermore, we focused
on early and late learning rates, defined as the performance
change between training sessions 1 and 2 (early learning rate),
and as the performance change across training sessions 2–10 (late
learning rate), respectively, modeled for each individual using a
linear spline term with a knot at the second training session (see
Appendix for details). YA had a higher mean early slope than OA
[t(39) = 3.59, p= 0.001], but late slope did not differ by age group
[t(39) = 1.64, p= 0.109].

To assess links between network measures and learning
rates, we calculated correlations between brain-wide network
measures and early learning slopes, separately for each group
and at each time point. We focused on early learning rates
because age differences were identified in early but not in late
learning slopes. Due to relatively small sample sizes, we employed
Spearman’s rank correlation coefficient (ρ) to minimize influence
from extreme values. Significant brain-wide results were followed
by assessments at the level of each module/network, corrected
for multiple comparisons using the permutation-based “max
statistic” method (Groppe et al., 2011). We took multiple steps to
assess the robustness of our findings, using a procedure similar to
Gallen et al. (2016a). First, to assess whether the relations between
network measures and learning rates were constantly present
over the threshold range, we tested these relations separately
for each threshold. Second, given the absence of differences in
motion across groups and time points (see Preprocessing sub-
section above), we performed partial Spearman correlations (ρp)
to examine whether controlling for motion altered the relations
between brain-wide network measures and learning rates.

RESULTS

Age Differences in Community Structure
Functional networks were identified separately for each group
and time point, using consensus partitioning (see Methods
section for details). Similar modules were identified in both

YA and OA, consistent with the main functional networks
described in the literature (Power et al., 2011; Yeo et al.,
2011): fronto-parietal (FPN), cingulo-opercular/salience (CON),
default-mode (DMN), visual (Vis) and somato-sensorimotor
(SMN) (Figure 1). The community structure of the partitions
for each age group was examined using normalized mutual
information (NMI). Results showed differences in node-module
assignment between YA and OA, at both time points (Figure 2).
First, analysis of between-groups partition similarity showed that
similarity of community structure between YA and OA was
significantly lower than expected based on the permuted data
(t1, 2: p’s < 0.001; Figure 2A). Second, analysis of within-group
partition similarity showed less similarity for OA as a group.
Specifically, partition similarity for YA was higher (t1: p = 0.003;
t2: p < 0.001) whereas for OA was lower (t1: p = 0.007;
t2: p = 0.003) than expected based on the permuted data
(Supplementary Figure 3). This indicates that there is greater
heterogeneity in OA’s partitions, i.e., their partitions are less
similar to one another than YA’s partitions. Finally, analysis of
within-subject similarity across time showed less within-subject
consistency for OA (p = 0.001; Figure 2B), indicating more
variability in node-module assignment in OA across time. In
summary, although similar functional networks were identified
in both YA and OA, their composition differed between groups,
and OA showed less similarity, both as a group and across time,
compared to YA.

Age Differences in Network Measures and
Reliability Analysis
To complement the comparisons of community structure
presented above, we assessed age differences in several network
measures. Network measures were first calculated brain-wide,
followed by an assessment of their reliability over time.
Then, significant brain-wide differences were followed-up by
assessments at the level of each of the five modules/networks.

Brain-Wide Network Measures
At a brain-wide level, OA showed lower modularity indices at
both time points (t1: p = 0.046, t2: p < 0.001), indicating lower
intra-module connectivity compared to YA. Furthermore, OA
consistently showed lower local efficiency (t1, 2: p’s < 0.001),
while global efficiency was not significantly different across
groups (t1, 2: p’s > 0.1), suggesting age differences in local
but not global integration of information (Figure 3). Ancillary
correlation analyses between age and brain-wide network
measures within the OA group revealed no significant results
(p’s > 0.05).

Reliability Analysis of Brain-Wide Network Measures
Reliability of brain-wide network measures was assessed
using intraclass correlation (ICC), by calculating the absolute
agreement of each graph metric across sessions. Brain-wide
measures showed overall moderate to strong ICC over time
(range 0.51–0.74), with the highest agreement for local efficiency
(Figure 4). For each group, the agreement ranged from fair
(>0.2) to strong (>0.6), with YA showing lowest agreement
for global efficiency. Examination of the profiles of ICC values
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FIGURE 2 | Age differences in community structure. Similarity of community structure between YA and OA was significantly lower than expected based on the

permuted data, at both time points and consistently across all thresholds (A). Also, OA showed less within-subject partition similarity across time (B). Boxplots in the

right panel depict values averaged across all thresholds. NMI, normalized mutual information; t1, time point 1; t2, time point 2; YA, younger adults (blue color); OA,

older adults (red color). Magenta asterisks indicate p < 0.05 for each threshold. **p < 0.01, across all thresholds.

across the range of thresholds indicated that the reproducibility
of network measures was generally stable across thresholds, with
the exception of global efficiency for YA.

Individual Network Measures
Network properties were also assessed at the level of each
individual network (Figure 5). To ensure comparability across
groups and time points, each network was represented by
only those nodes that were consistently assigned to the same
network, both across groups and time points (see Methods
section for details). OA showed greater participation coefficient
for CON (t1: pFWE < 0.001; t2: pFWE = 0.002) and SMN (t1,
2: pFWE’s < 0.001), indicating that, compared to YA, a larger
proportion of the nodes in these networks had connections
outside the networks they belonged to. OA also showed lower
local efficiency for CON (t1: pFWE = 0.014; t2: pFWE = 0.008)
at both time points, and for DMN (pFWE = 0.029) and
SMN (pFWE = 0.01) at t2. We also examined within- and
between-network connectivity, using a procedure similar to
Geerligs et al. (2015). Regarding within-networks connectivity,
OA showed lower connectivity within DMN (t1: pFWE = 0.04;
t2: pFWE = 0.018) and within CON (pFWE = 0.035) at t1,
compared to YA. Regarding between-networks connectivity, OA
showed greater positive connectivity between FPN and SMN
(pFWE = 0.005) and between CON and SMN (pFWE = 0.048),
as well as lower negative connectivity (anticorrelation) between
CON and SMN (pFWE = 0.043), at t2. No other age differences
in between-networks connectivity survived FWE correction for
multiple comparisons. Ancillary correlation analyses between age
and individual network measures within the OA group identified

a significant negative correlation between age and within-DMN
connectivity at t1 (ρ = −0.65, pFWE = 0.015).

In summary, OA showed lower brain-wide modularity
and local efficiency compared to YA, with the difference
in local efficiency showing most consistency across time. At
the level of individual networks, CON showed substantial
differences between groups, reflected in all examined properties.
Additionally, DMN and SMN were characterized by lower intra-
network connectivity and greater participation, respectively,
in OA.

Links with Learning during WM Training
To assess links between network measures and performance
during cognitive training, we calculated Spearman correlation
coefficients, separately for each group and at each time point.
Similar to the assessment of age differences in network measures,
significant brain-wide results were followed by analyses of
robustness and assessments at the level of individual networks.

Brain-Wide Network Measures
Interestingly, significant relations between network measures
and learning rates were detected only for OA and only at t1.
Specifically, modularity (ρ = 0.51, p= 0.028) and local efficiency
(ρ = 0.59, p= 0.01) were positively correlated with early learning
rates, whereas global efficiency (ρ = −0.61, p = 0.007) was
negatively correlated with early learning rates (Figure 6, top
panel). Ancillary analyses were performed to test for influences
of educational level and sex on these results. There were no
significant correlations between the number of years of education
and networks measures (p’s > 0.5), and controlling for the
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FIGURE 3 | Age differences in brain-wide network measures. At a brain-wide level, OA showed lower modularity and local efficiency compared to YA, whereas global

efficiency was not significantly different across groups. Boxplots in the left panel depict values averaged across all thresholds. YA, younger adults (blue color); OA,

older adults (red color); t1, time point 1; t2, time point 2. Magenta asterisks indicate p < 0.05 for each threshold. *p < 0.05, ***p < 0.001, across all thresholds.

number of years of education did not substantially influence
the relations between network measures and learning rates.
Also, Spearman correlations performed separately by sex showed
similar trends in both males and females, and there were no sex
differences in correlation strengths (p’s > 0.6).

Robustness Analysis
We took multiple steps to assess the robustness of our findings,
using a procedure similar to Gallen et al. (2016a). First, we
assessed whether the relations between network measures and
learning rates were constantly present over the threshold range,
and the results confirmed that all these relations were fairly
consistent across thresholds (Figure 6, bottom panel). Second,
given the absence of differences inmotion across groups and time
points (see Methods section), controlling for motion (i.e., partial

correlations) did not substantially alter the relations between
any of the brain-wide network measures and learning rates
(modularity: ρp = 0.49, p = 0.04; local efficiency: ρp = 0.55,
p= 0.019; global efficiency: ρp =−0.59, p= 0.01).

Individual Network Measures
To further elucidate the relations between network characteristics
and early learning rates, significant results at the brain-wide level
were followed-up by analyses at the level of individual networks.
The results showed that participation of CON at t1 was negatively
correlated with learning rates in OA (ρ = −0.81, pFWE < 0.001),
consistent with the brain-wide results. No other correlations
survived FWE correction for multiple comparisons.

In summary, brain-wide network measures at t1 were linked
to learning rates during training in OA but not in YA. At the
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FIGURE 4 | Reliability of brain-wide network measures. (Top) Brain-wide measures showed overall moderate to strong ICC over time, and for each group the

agreement ranged from fair (>0.2) to strong (>0.6); bar graphs depict ICC values calculated across all thresholds. (Bottom) Reliability of network measures was

generally stable across thresholds, with the exception of global efficiency for YA; line graphs depict ICC values calculated for each threshold. ICC, intraclass correlation

coefficient; ALL, all subjects (magenta color); YA, younger adults (blue color); OA, older adults (red color).

level of individual networks, participation of CON showed links
with training effects consistent with the patterns identified by the
brain-wide analyses.

DISCUSSION

The goals of the present investigation were to assess the
replicability of previously reported age effects on resting-state
networks, to examine their reliability over time, and to assess
their relation to behavioral outcomes (namely learning rates
during a cognitive training intervention). Similar to previous
investigations, we identified both consistencies in network
structure and differences in module composition between
groups. Notably, OA showed less similarity of their network
partitions compared to YA, both as a group and across time.
Regarding brain-wide network measures, OA showed lower
modularity and local efficiency compared to YA, with the
difference in local efficiency showing most consistency across
time. At the level of individual networks, OA showed substantial
differences in CON, reflected in all examined metrics, as
well as lower intra-network connectivity in DMN and greater
participation of SMN. Finally, baseline brain-wide network

measures were linked to early learning rates in OA but not in YA,
and the participation of CON showed links with early learning
rates consistent with the patterns identified by the brain-wide
analyses. The main findings are discussed, in turn, below.

The present results replicate previously reported age
differences in functional network properties (Achard and
Bullmore, 2007; Meunier et al., 2009a; Onoda and Yamaguchi,
2013; Betzel et al., 2014; Cao M. et al., 2014; Song et al., 2014;
Geerligs et al., 2015) and extend these findings to multiple time
points (Welton et al., 2015). Regarding community structure, the
present results showing age differences in module composition,
but overall similar modules are consistent with previous evidence
(Geerligs et al., 2015) and suggest age-related topological changes
in the context of overall similar functional configuration,
irrespective of age. Furthermore, the results showing less
similarity of network partitions in OA, both as a group and
across time, are in line with recent evidence suggesting reduced
baseline stability of network activity with aging (Tsvetanov et al.,
2016).

Regarding age differences in network measures, we identified
reliable age differences in brain-wide modularity and local
efficiency, consistent with previous investigations (Achard and
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FIGURE 5 | Age differences in individual network measures. OA showed greater participation coefficients for CON and SMN, lower local efficiency for CON, and for

DMN and SMN only at t2, and lower within-module connectivity within DMN and within CON, compared to YA. FPN, fronto-parietal network; CON, cingulo-opercular

network; DMN, default-mode network; Vis, visual network, SMN, somato-sensorimotor network; YA, younger adults (blue color); OA, older adults (red color).

*p < 0.05, **p < 0.01, ***p < 0.001, across all thresholds and corrected for multiple comparisons.
†
p = 0.016, across all thresholds, uncorrected.

Bullmore, 2007; Onoda and Yamaguchi, 2013; Betzel et al.,
2014; Cao M. et al., 2014; Song et al., 2014; Geerligs et al.,
2015). Modularity indexes the degree to which a graph can
be partitioned into multiple communities, and is considered a
central principle of brain organization, supporting functional
segregation and integration through communication within- and
between-modules, respectively (Dehaene et al., 1998; Sporns
et al., 2000; Meunier et al., 2009b; Sporns and Betzel, 2015). Thus,
results showing lower modularity in OA compared to YA suggest
loss of functional specificity of the brain networks with aging
(Ferreira and Busatto, 2013; Damoiseaux, 2017; Naik et al., 2017).
Global efficiency indexes graph-wide integration and has been
linked with information exchange among distributed regions,
whereas local efficiency indexes regional-level integration and
has been linked with fault tolerance within specialized areas
(Latora and Marchiori, 2003; Achard and Bullmore, 2007). In
general, the argument is that brains maximize cost-efficiency
by favoring dense short-range connections and sparse long-
range connections, because the latter are more costly (Achard

and Bullmore, 2007; Bullmore and Sporns, 2012). Thus, results
showing lower local efficiency in OA compared to YA suggest a
reduction of cost-efficiency in aging; under conditions of similar
connection density, which is considered a proxy for wiring cost,
efficiency is lower in OA compared to YA (Achard and Bullmore,
2007; Geerligs et al., 2015). It should be noted, however, that
wiring costs can only be approximated in functional networks,
because two functionally connected regions do not necessarily
share a direct structural link (Rubinov and Sporns, 2010; Zalesky
et al., 2012). In fact, modularity and local efficiency are related
measures, such that a system with denser local connections
also tends to be more modular (Bullmore and Sporns, 2012).
On the other hand, similar global efficiency irrespective of
age has been explained by a greater number of inter-module
connections in OA; specifically, more inter-module connections
may counterbalance less intra-module connections, resulting in
similar amounts of shortest path lengths between distant nodes
(Song et al., 2014; Geerligs et al., 2015). In sum, these findings
are consistent with overall patterns of decreased within- and
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FIGURE 6 | Relations between network measures and learning during WM training. (Top) Modularity (ρ = 0.51, p = 0.028) and local efficiency (ρ = 0.59, p = 0.01)

were positively correlated, whereas global efficiency (ρ = −0.61, p = 0.007) was negatively correlated with early learning rates in OA (red color), only at t1; blue and

red lines show least squares lines. (Bottom) Relations between network measures and learning rates (Spearman correlation) were fairly constant across thresholds.

t1, time point 1; YA, younger adults (blue color); OA, older adults (red color). *p < 0.05, for each threshold.

increased between-system connectivity, suggesting decreased
“system segregation” in aging (Betzel et al., 2014; Chan et al.,
2014; Ferreira et al., 2016).

The present findings may also be relevant for better
understanding task-related neural over-activation in OA relative
to YA, which has been linked with both compensation and
dedifferentiation (Cabeza, 2002; Park et al., 2004, 2010; Davis
et al., 2008; Grady, 2008; Reuter-Lorenz and Cappell, 2008;
Reuter-Lorenz and Park, 2014). Task-related over-activation in
OA may be related to altered intrinsic network dynamics,
reflected in differences in modularity and local efficiency “at
rest.” Whereas the loss of functional specificity in aging (reflected
by the decline in modularity) is consistent with the idea of
dedifferentiation, reduced cost-efficiency (reflected by the decline
in local efficiency) may be linked to compensatory processes
that are overall less efficient than the primary computations
(Reuter-Lorenz and Park, 2014). Thus, dedifferentiation and
compensation may both be expressions of the same process of
functional recalibration due to declining structure with aging
(Naik et al., 2017). This also highlights the critical need for better
integrating resting-state and task-related approaches, in order
to develop a practical understanding of neurocognitive function
and age-related change (Iordan and Reuter-Lorenz, 2016; see also
Gallen et al., 2016b).

To assess the reliability of age differences in network
properties, in the present study we measured the same
participants over 2 sessions 2 weeks apart and calculated ICC of

network properties between the 2 sessions (McGraw and Wong,
1996). Results showed consistent age differences in network
properties over time, with overall strong to moderate ICCs,
comparable to previous investigations (Telesford et al., 2010;
Wang et al., 2011; Braun et al., 2012; Park et al., 2012; Cao H.
et al., 2014;Welton et al., 2015), thus suggesting that the observed
age differences are reliable. Interestingly, results showed relatively
higher reliability for local compared to global efficiency (see also
Park et al., 2012). This effect was driven by YA, who showedmore
global efficiency variability between the 2 sessions, and it might
have been linked to residual effects from theWM tasks performed
prior to the resting-state recordings (Barnes et al., 2009; Breckel
et al., 2013; Gordon et al., 2014). In line with our findings, a
study by Park et al. (2012) also identified low reliability of global
efficiency in a test-retest investigation of resting-state data in YA,
assessed over a 24-h period. The authors concluded that this was
likely due to high variability of long-range connections (given the
dependence of global efficiency on this topological feature), and
may reflect greater influence of cognitive control on this measure,
compared to local efficiency (Honey et al., 2009).

The results showing age differences in network properties
at the level of individual modules complement and further
elucidate the patterns of brain-wide results. Although DMN
has traditionally been the most investigated resting-state
network (Ferreira and Busatto, 2013; Damoiseaux, 2017), recent
investigations also point to CON changes as prominent features
of healthy aging (Meier et al., 2012; Onoda et al., 2012; He
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et al., 2014; La Corte et al., 2016). The cingulo-opercular network
(or salience network, in alternative taxonomies) is anchored
in the anterior cingulate and frontal operculum/anterior insula
regions, and has been implicated both in stable set-maintenance
(Dosenbach et al., 2006, 2007, 2008; Power and Petersen, 2013)
and multimodal sensory integration (Seeley et al., 2007; Bressler
and Menon, 2010; Menon, 2011). The present results, showing
both higher participation coefficients and lower local efficiency
and intra-module connectivity for CON in OA, suggest age-
related dedifferentiation of this network and support the idea
of changes in CON functionality as a hallmark of healthy aging
(Meier et al., 2012; Onoda et al., 2012; He et al., 2014; La Corte
et al., 2016). Greater participation coefficients for CON and SMN
in OA indicate greater propensity of the nodes within these two
networks to form links outside their own modules, and suggest
that CON and SMN may drive the observed age differences in
brain-wide modularity. Furthermore, local efficiency in CON
was also consistently lower in OA, suggesting an age-related
decline in local integration of information at the level of this
network. In addition to CON, DMN showed consistent lower
intra-module connectivity in OA relative to YA, in line with
previous evidence (Andrews-Hanna et al., 2007; Damoiseaux
et al., 2008; Ferreira and Busatto, 2013; Geerligs et al., 2015;
Grady et al., 2016; Damoiseaux, 2017). Interestingly, our results
did not show greater FPN-DMN inter-network connectivity in
OA relative to YA (Geerligs et al., 2015; Turner and Spreng,
2015), whichmight have been related to the inclusion of relatively
younger, high-functioning OA in our sample. Supporting this
interpretation, a recent longitudinal study in OA (Ng et al.,
2016) identified a u-shaped trajectory in which FPN-DMN
inter-network connectivity initially decreased and then increased
with age, with a turning point around 65–70 years of age.
An alternative interpretation is that the functional interactions
between FPN and DMN in OA might have been influenced by
residual task-effects, as outlined above.

Regarding links between network measures and learning rates
during training, the present results showed that higher resting-
state modularity and local efficiency, as well as lower global
efficiency prior to training, were associated with better early
learning in OA. Early learning rates are thought to reflect the
initial attainment of peak performance within an individual’s
baseline performance range, rather than plasticity per se (Lövden
et al., 2010). Notably, associations between network properties
and early learning rates were observed only for OA and only
at t1. While the presence of these associations only in OA
could be interpreted in line with evidence pointing to age-
related dissociations in the relations between network efficiency
and cognitive performance (Stanley et al., 2015), the lack of
consistency of these relations across time might be attributable
to differences in residual task-effects related to the phenomenon
of task exposure which may have, in turn, influenced the
reliability of network measures across time. Specifically, if task
exposure altered strategies for WM task performance across
the two sessions for older but not for younger adults, the
resting-state activity, which was always recorded subsequent to
task performance, may have been differentially affected. Future
analyses comparing the effects of task exposure on differences

between task-related and subsequently recorded resting-state
network configurations are needed to further clarify this aspect
of the results.

Although evidence linking network properties with benefits
accrued over the course of cognitive training is scarce, the
present results are in line with previous findings showing
positive relations for modularity in OA (Gallen et al., 2016a)
and in patients with traumatic brain injury (Arnemann et al.,
2015). Consistent with the idea that modularity supports
both functional segregation and integration, previous evidence
has positively linked modularity with cognitive performance
(Stevens et al., 2012; Sadaghiani et al., 2015), and thus greater
modularity during resting-state may reflect a more “optimal”
functional organization that promotes cognitive improvements
with training (Gallen et al., 2016a). Results at the level of
individual networks add specificity to this interpretation, by
associating lower CON participation coefficients with higher
learning rates in OA. Combined with evidence showing greater
participation coefficients for this network in OA as a group, the
present findings provide preliminary evidence for a link between
preserved CON segregation and better learning in OA.

The present results linking network properties at rest with
learning rates can be interpreted in the light of evidence from
investigations of task-related performance (Stanley et al., 2015;
Cohen and D’Esposito, 2016; Bolt et al., 2017). Specifically,
investigations comparing network properties across resting
and task contexts have shown that cognitive task states are
characterized by overall lower modularity and local efficiency,
as well as greater global efficiency, and that such levels are
positively associated with cognitive performance at the individual
level in YA (Cohen and D’Esposito, 2016; Bolt et al., 2017).
Consistent with this evidence, age-related investigations have
linked lower local efficiency during task performance with better
WM performance irrespective of age, whereas greater global
efficiency was associated with better WM performance in YA
but relatively worse WM performance in OA (Stanley et al.,
2015). By contrast, prior investigations (Gallen et al., 2016a),
as well as the present results, point to a seemingly inverse
pattern characterizing the relationship between modularity “at
rest” and learning rates in OA, whereby greater modularity
and local efficiency, as well as lower global efficiency “at
rest”, are associated with better learning. Although relations
between resting and task-related network configurations are still
not well understood, the present evidence suggests that the
potential for dynamic network reconfiguration across different
states might play an important role for understanding cognition
and its plasticity in aging (Cole et al., 2014, 2016; Krienen
et al., 2014; Iordan and Reuter-Lorenz, 2016). However, the
exploratory nature of these findings advises their interpretation
with caution.

Limitations and Future Directions
Reliance on extreme groups to understand effects of aging has
clear limitations, and thus future work assessing a broader age
range (e.g., Chan et al., 2014), as well as longitudinal assessments
of the same individuals over periods of years (e.g., Ng et al., 2016),
are necessary to providemore comprehensive insights. Regarding
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the timing of resting-state acquisition, whereas a 6-min break
from a preceding task can be a sufficient “wash-out” period for
certain individuals under certain task conditions (Breckel et al.,
2013), it is not as efficient as longer breaks, and thus resting-
state recording before any task should be preferred. Finally, our
investigations at the level of individual modules have been partly
exploratory. Future studies with strong a priori hypotheses are
needed to further elucidate effects of aging on specific within- and
between-networks interactions.

CONCLUSIONS

In conclusion, we successfully replicated previously reported age
effects on resting-state networks, demonstrated their reliability
over time, and identified links with initial learning during
WM training. We identified both consistencies in network
structure and differences in module composition between YA
and OA, suggesting topological changes and less stability of
functional network structure with aging. Lower modularity and
local efficiency in OA suggests age effects on both functional
segregation and integration of brain networks, consistent with
the idea of age-related functional dedifferentiation. Importantly,
these differences were replicable over time, with the difference
in local efficiency showing most consistency. On the other hand,
global efficiency did not differ between the two age groups
and showed low reliability in YA. At the level of individual
networks, specific differences were identified for CON, DMN,
and SMN, suggesting age-related differential effects at the level
of specialized brain modules. Finally, associations between
network properties and early learning rates were identified for
OA only at t1, suggesting that baseline network configuration

may be informative in predicting aspects of learning in OA,
albeit with some limitations. The present findings advance
our understanding of the effects of aging on the brain’s
large-scale functional organization and provide preliminary
evidence for network characteristics associated with learning
during training. Continued identification of neural mechanisms
associated with training-induced plasticity is important for
further clarifying whether and how such changes predict the
magnitude and maintenance of training gains, as well as the
extent and limits of cognitive transfer in both younger and older
adults.
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APPENDIX

Learning Rates Calculation
Participants completed 6 blocks of 14 trials during each of the
10 training sessions (s1-s10). The number of letters in each
memory set (i.e., set size) remained constant for each block
and was determined by the participant’s performance in the
previous block. The set size increased by one letter if participants’
accuracy was>93% on the preceding block and decreased by one
letter if their accuracy was <70%. Thus, for each participant, we
calculated the average set size across the 6 blocks for each session.

Learning rates were calculated using those average set-sizes
achieved during each training session for each participant.
According to Lövden et al. (2010), early learning is thought
to reflect the initial attainment of peak performance within
an individual’s baseline performance range, and is therefore
associated with a steep slope. Here, we defined early learning rate
as the performance change (i.e., slope) between training sessions
1 and 2. On the other hand, later learning requires prolonged
training, and is thought to reflect plasticity. Thus, we used the
average performance change (i.e., slope) across training sessions
2–10 to reflect later learning rate.

Early and late learning rates were modeled for each individual
using a linear spline term with a knot at training session 2
(s2). The knot location was selected by first fitting a negative
exponential growth curve to the observed data using the NLME
package in R (Pinheiro and Bates, 2000; Rhodes and Katz, 2017).
This procedure was used as an alternative to the assignment
of knot location based on only visual inspection of the overall
training performance curves. The equation for the negative
exponential growth curve is: y(t) = ϕ3– (ϕ3 − ϕ1) exp[-ϕ2 ∗ t],
where t represents the training session, ϕ1 is the performance
at asymptote, ϕ2 is performance at session 1 (t = 0), and ϕ3

is the growth rate. The growth rate parameter can be used to
determine the inflection point of the curve, which is the session
by which half of the total growth has occurred, according to
the formula: t(0.5) = log 2/exp(ϕ3). The parameter estimates
for the observed data were ϕ1 = 9.0 (SE = 0.11), ϕ2 = 5.0
(SE = 0.23), ϕ3 = -0.17 (SE = 0.14). Using the equation
above, the inflection point occurred slightly before s2 (t =

0.8), and was similar across both age groups. Individual linear
spline models with a knot at s2 were then computed for each
participant.
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