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Background: While hepatocyte growth factor (HGF) is known to exert cell growth,
migration and morphogenic effects in various organs, recent studies suggest that HGF
may also play a role in synaptic maintenance and cerebrovascular integrity. Although
increased levels of HGF have been reported in brain and cerebrospinal fluid (CSF)
samples of patients with Alzheimer’s disease (AD), it is unclear whether peripheral HGF
may be associated with cerebrovascular disease (CeVD) and dementia. In this study, we
examined the association of baseline serum HGF with neuroimaging markers of CeVD
in a cohort of pre-dementia (cognitive impaired no dementia, CIND) and AD patients.

Methods: Serum samples from aged, Non-cognitively impaired (NCI) controls, CIND
and AD subjects were measured for HGF levels. CeVD (cortical infarcts, microinfarcts,
lacunes, white matter hyperintensities (WMH) and microbleeds) were assessed by
magnetic resonance imaging (MRI).

Results: After controlling for covariates, higher levels of HGF were associated with both
CIND and AD. Among the different CeVD MRI markers in CIND and AD, only small
vessel disease, but not large vessel disease markers were associated with higher HGF
levels.

Conclusion: Serum HGF may be a useful peripheral biomarker for small vessel disease
in subjects with cognitive impairment and AD.

Keywords: hepatocyte growth factor, Alzheimer’s disease, cognitive impaired no dementia, CeVD, small vessel
disease

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia and a
significant source of caregiver morbidity and healthcare burden. The neuropathological hallmarks
of AD consist of extracellular deposits of β-amyloid-containing neuritic plaques, as well as
intracellular neurofibrillary tangles derived from aggregated, abnormally hyperphosphorylated tau

Abbreviations: AD, Alzheimer’s disease; CeVD, cerebrovascular disease; CIND, cognitive impaired no dementia;
CNS, central nervous system; HGF, Hepatocyte growth factor; NCI, non-cognitively impaired participants; NINCDS-
ADRDA, National Institute of Neurological and Communicative Disorders and Stroke and the AD and Related
Disorders Association; OR, odds ratio; RR, risk ratio; WMH, white matter hyperintensity.
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proteins. Besides the aforementioned plaques and tangles,
AD is also characterized by synaptic loss (Selkoe, 2002),
dysregulated neuroinflammation (Wyss-Coray and Rogers,
2012) and neuronal degeneration (Scheltens et al., 2016).
Additionally, cerebrovascular disease (CeVD) has been suggested
to play a pathogenic role in dementias including AD (Kling et al.,
2013). Several neuroimaging markers of CeVD, such as cortical
infarct, lacunes and especially white matter hyperintensities
(WMH) are associated with AD and may contribute to disease
deterioration (Jellinger, 2002; Moghekar et al., 2012; Toledo
et al., 2013; Attems and Jellinger, 2014). Given the prolonged
prodromal stages where potential disease-modifying therapies
may more likely be efficacious (Jack et al., 2013), the availability
of reliable, easily accessible diagnostic and prognostic biomarkers
is essential for optimal clinical management, and will also help
advance and assess new therapeutic strategies for AD. While
cerebrospinal fluid (CSF) and positron emission tomography
(PET)-based biomarkers are available for AD pathology
(β-amyloid and tau; Villemagne et al., 2017; Zetterberg, 2017)
which may be associated with small vessel CeVD (Kester et al.,
2014), these are relatively costly and invasive, and research efforts
to uncover blood-based biomarkers are ongoing (Henriksen
et al., 2014; Zetterberg, 2017).

Hepatocyte growth factor (HGF, also known as scatter factor),
originally isolated from liver and known to play a role in liver
regeneration (Nakamura et al., 1984), has recently been shown to
also regulate various brain functions, including axon outgrowth,
neuronal survival, synaptic function and plasticity (Ebens et al.,
1996; Nakamura and Mizuno, 2010; Wright and Harding, 2015).
While previous studies reported increased HGF levels in the
brain and CSF of patients with AD (Fenton et al., 1998; Tsuboi
et al., 2003), it is unclear whether peripheral HGF may be
related to cognitive impairment and dementia. Furthermore,
HGF can regulate vascular functions including angiogenesis (Xin
et al., 2001; Morishita et al., 2002), and has also been shown
to reduce ischemia-associated infarct volume (Tsuzuki et al.,
2001; Shimamura et al., 2004), perhaps by preventing delayed
neuronal death (Miyazawa et al., 1998). However, no study
has yet examined the association of serum HGF in patients
with prodromal dementia (cognitive impairment no dementia,
CIND), AD, or concomitant CeVD. Hence, in the present study
we examined the association of serum HGF levels with MRI
markers of CeVD and cognitive impairment/AD in a memory
clinic population.

MATERIALS AND METHODS

Study Cohort
The selection and assessment of the cohort for this case-control
study have previously been described (Hilal et al., 2015;
Chai et al., 2016a; Zhu et al., 2017). Briefly, patients with
subjective complaints of memory loss were recruited from
memory clinics at Singapore’s National University Hospital
and Saint Luke’s Hospital sites between August 2010 and
May 2014. This study was carried out in accordance with
the recommendations of Singapore National Healthcare Group
Domain-Specific Review Board (NHG-DSRB) guidelines with

written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by NHG-DSRB (reference:
2010/00017; study protocol number: DEM4233). Clinical,
physical, neuropsychological assessments and neuroimaging
were performed at the National University of Singapore.
In the current study, the research focus is on CIND/AD
with concomitant CeVD. Therefore, relevant demographic and
medical covariates, including cardiovascular risk factors (see
‘‘Materials and Methods’’ and ‘‘Covariates’’ sections below),
and exclusion factors such as previous head trauma, pure
vascular dementia (Román et al., 1993), psychiatric illnesses,
thyroid disease and non-AD neurodegenerative conditions (e.g.,
Parkinson’s disease) were collected by administering detailed
questionnaire, clinical assessments and review of medical
records.

Covariates
Medical histories of vascular risk factors such as hypertension,
hyperlipidemia, diabetes, smoking and cardiovascular disease
were collected and classified as absent or present, along
with demographic information. Hypertension was defined
as systolic blood pressure ≥140 mmHg and/or diastolic
blood pressure ≥90 mmHg, or use of antihypertensive
medications. Hyperlipidemia is defined as total cholesterol
levels of ≥4.14 mM, or on antihyperlipidemic medication.
Diabetes mellitus was defined as glycated hemoglobin (HbA1c)
of ≥ 6.5%, or on medication. Cardiovascular disease was
classified as a previous history of atrial fibrillation, congestive
heart failure and/or myocardial infarction. Apolipoprotein E
(APOE) genotyping using DNA extracted from the buffy coat of
blood samples were as previously described (Chai et al., 2016b)
for the determination of APOE ε4 carrier status, defined by the
presence of at least one APOE ε4 allele.

Cognitive Assessments
All subjects underwent cognitive assessments including a
comprehensive neuropsychological test battery consisting of
executive function, attention, language, visuomotor speed,
visuoconstruction, verbal memory and visual memory domains
(Hilal et al., 2015), along with standard brief cognitive tests
(Mini-Mental State Examination and Montreal Cognitive
Assessment, Dong et al., 2012). Diagnoses of cognitive
impairment and dementia were made at regular consensus
meetings of study clinicians and neuropsychologists, where
CIND cases were defined as not meeting DSM-IV diagnostic
criteria for dementia (American Psychiatric Association,
1994) but showing impairment in at least one domain of
the neuropsychological battery by education-adjusted scores
≥1.5 standard deviations below normal established means
in > half of the tests for that domain. AD cases were diagnosed
using the National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders
Association (NINCDS-ADRDA) criteria (McKhann et al., 1984).
Non-cognitively impaired (NCI) controls were defined as those
with subjective memory complaints, but who were cognitively
normal on objective neuropsychological assessment.
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CeVD Neuroimaging
Magnetic resonance imaging (MRI) scans were obtained using
3T Siemens Magnetom Trio Tim scanner with a 32-channel head
coil at the Clinical Imaging Research Center of the National
University of Singapore. Subjects who had claustrophobia,
contraindications for MRI, or were unable to tolerate the
procedure were excluded from the present analysis. Cortical and
lacunar infarcts were graded on T1- and T2- weighted images
with Fluid Attenuated Inversion Recovery (FLAIR) sequences.
Cortical infarcts were identified as focal lesions involving cortical
gray matter with low signal on T1-weighted image and FLAIR,
a high signal on T2-weighted image, and hyperintense rim on
FLAIR images and center following CSF intensity. This is further
aided by tissue loss of variable magnitude, with prominent
adjacent sulci and ipsilateral ventricular enlargement. Lacunar
infarcts were defined as lesions involving the subcortical regions,
3–15 mm in diameter, with low signal on T1-weighted image and
FLAIR, a high signal on T2-weighted image, and a hyperintense
rim with a center following CSF intensity on FLAIR. Cortical
microinfarcts (CMIs) were graded on T1, T2-weighted and
FLAIR sequences, and were defined as hypointense lesions on
T1-weighted images, <5 mm in diameter, restricted to the
cortex and perpendicular to the cortical surface (Hilal et al.,
2016, 2017). WMH grading was based on the Age-Related
White Matter Changes (ARWMC) scale Total score (range
from 0: absent to 30: diffuse involvement) in five brain
regions, i.e., frontal, parieto-occipital, temporal, cerebellum and
basal ganglia (Wahlund et al., 2001). Cerebral microbleeds
were defined as focal, rounded lesions of hypointensity
graded on Susceptibility Weighted Images (SWI) using the
Brain Observer Microbleed Scale (BOMBS; Cordonnier et al.,
2009).

Serum HGF Measurement
Non-fasting blood was drawn from study participants into
serum-separating tubes, then centrifuged at 2000 g for 10 min
at 4◦C. Serum samples were then mixed well, aliquoted and
stored at −80◦C for future use. All samples were subjected
to only one freeze-and-thaw cycle. Concentrations of HGF
were measured in duplicates by a bead-based multiplexing

immunoassay technology, MILLIPLEXTM MAP Kit (Millipore
Corp, Billerica, MA, USA) as per manufacturer’s instructions.
The detectable concentration range of HGF is from 4.0 pg/mL
to 15,000 pg/mL.

Statistical Analyses
Statistical analyses were performed using SPSS software
(version 21, IBM Inc., Armonk, NY, USA). For group
comparisons, one-way analysis of variance (ANOVA) with
Bonferroni post hoc tests were used for normally distributed
continuous variables (age); Chi-square tests for categorical
variables (gender, hypertension, APOE ε4 carrier, hypertension,
hyperlipidemia, diabetes, smoking and cardiovascular disease);
while non-parametric Kruskal-Wallis ANOVA with Dunn’s
post hoc tests were used for skewed distributed continuous
variable (HGF levels). For regression analyses, HGF levels were
logarithmically transformed to ensure normal distribution.
In order to assess the association between HGF levels and
cognitively impaired groups (CIND and AD), binary logistic
regressions with odds ratios (ORs) and 95% confidence intervals
(CI) were computed. All the models were initially adjusted
for age, and gender, and subsequently for APOE ε4 carrier,
hypertension, diabetes and cardiovascular diseases. In order to
identify associations between HGF levels and CeVD markers in
CIND/AD, we further constructed Poisson regressions models
for counts of cortical and lacunar infarcts, cortical microinfarcts
and microbleeds with measure of associations as rate ratios
(RR) and 95% CI. The interpretation for RR data are as follows:
a person with a 10-fold increase in HGF (1 unit of 10-log
increment) will be RR times more likely to have 1 additional
CeVD count on MRI compared with a person with a lower
HGF level. For WMH grading, the visual scores were treated
as continuous variables and linear regression models were
performed with measures of associations as mean differences
with 95% CI. The interpretation of the effect estimates on WMH
was as follows: 1 unit of 10-log increment in HGF would give
rise to (mean difference) units increase in WMH burden score
(ARWMCTotal score, see Table 3). All the models were adjusted
in a similar fashion as described above. P values <0.05 were
considered statistically significant.

TABLE 1 | Baseline demographics and biomarker levels of cases and controls (n = 310).

Characteristics NCI CIND AD
n = 79 n = 138 n = 93 P value

Age, mean (SD) 68.3 (6.0) 71.3 (8.2) 77.4 (7.3) 0.001∗

Female, n (%) 41 (51.9) 66 (47.8) 59 (63.4) 0.06
APOE ε4 carrier, n (%) 14 (17.7) 41 (29.7) 31 (33.3) 0.06
Hypertension, n (%) 43 (54.4) 95 (68.8) 78 (83.9) 0.001†

Diabetes mellitus, n (%) 17 (21.5) 53 (38.4) 41 (44.1) 0.006†

Cardiovascular disease, n (%) 4 (5.1) 23 (16.7) 18 (19.4) 0.02†

Hyperlipidemia, n (%) 53 (67.1) 105 (76.1) 67 (72.0) 0.36
Smoking, n (%) 18 (22.8) 41 (29.7) 27 (29.0) 0.52
HGF, median (IQR), pg/ml 525.5 (453) 599.1 (503) 689.9 (467) 0.009‡

AD, Alzheimer’s disease; CIND, cognitive impairment no dementia; HGF, hepatocyte growth factor; IQR, interquartile range; NCI, no cognitive impairment; n, number;
SD, standard deviation. ∗Significant one-way ANOVA. Pairwise P values with post hoc Bonferroni tests are: NCI vs. CIND, P = 0.01; NCI vs. AD, P < 0.001; CIND vs.
AD, P < 0.001. †Significant Chi-Square test. ‡Significant Kruskal-Wallis ANOVA. Pairwise P values with post hoc Dunn’s tests are: NCI vs. CIND, P > 0.05; NCI vs. AD,
P = 0.007; CIND vs. AD, P > 0.05.
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TABLE 2 | Association of HGF with CIND and AD.

Hepatocyte growth factor∗ CIND AD
n = 138 n = 93

OR (95%CI)† OR (95%CI)†

Model I 3.93 (1.39–11.11) 6.44 (1.68–24.65)
Model II 3.84 (1.29–11.41) 7.02 (1.47–33.62)

OR, Odds ratio (in bold font when statistically significant). Model I: adjusted for
age and gender. Model II: adjusted for age, gender, hypertension, diabetes, APOE
ε4 carrier and cardiovascular disease. ∗Log transformed. † Interpretation: the odds
of having CIND/AD in a person with a 10-fold increase in HGF (1 unit of 10-log
increment) will be OR times the odds in a person with a lower HGF level.

RESULTS

A total of 383 subjects (95 NCI, 164 CIND, 124 AD) were
recruited between August 2010 and May 2014, of whom 66
(16 NCI, 23 CIND and 27 AD) had insufficient blood samples
and seven (3 CIND, 4 AD) had no neuroimaging (none,
incomplete, or ungradable MRI), thus leaving 310 (79 NCI,
138 CIND and 93 AD) with available data for analyses. Table 1
shows the demographic and disease factors of the study cohort.
Compared with NCI, CIND and AD were older, and had higher
prevalence of diabetes mellitus, hypertension and cardiovascular
disease. Serum HGF concentrations in the cohort ranged from
58.4 pg/mL to 3020.0 pg/mL. As shown in Table 1, levels of
HGF were highest in AD and lowest in NCI, with intermediate
levels in CIND. The differences reached statistical significance
between NCI vs. AD (P = 0.007, Kruskal-Wallis ANOVA
with post hoc Dunn’s tests). Table 2 shows the multivariate
analyses of associations between serum HGF levels and cognitive
impairment. Higher levels of HGF were significantly associated
with both CIND and AD after correction for age, gender,
APOE ε4 carrier, hypertension, diabetes, and cardiovascular
diseases. Finally, Table 3 demonstrates the associations between
HGF and MRI markers of CeVD. Higher levels of HGF were
significantly associated with higher counts of lacunes, cortical
microinfarcts and microbleeds, as well as more severe WMH.
In contrast, there was no association between HGF and cortical
infarct counts.

DISCUSSION

In this study, we reported higher levels of HGF in both CIND
and AD, independent of demographic covariates and cardiac
risk factors. These findings are in line with previous reports of
higher HGF levels in the brain and CSF of patients with AD

(Fenton et al., 1998; Tsuboi et al., 2003), although it is at
present unclear whether peripheral HGF changes reflect HGF
variations in the central nervous system (CNS). Additionally, the
increased HGF were associated with CeVD in CIND and AD,
but interestingly, these associations were restricted to markers
of small vessel (lacunes, cortical microinfarcts, microbleeds,
WMH), but not large vessel (cortical infarct), disease. Previous
studies have shown that small vessel disease substantially
contributes to long term morbidity in AD and constitutes an
important therapeutic target (Arvanitakis et al., 2016; van Veluw
et al., 2017). As they affect cerebral arterioles, venules as well as
capillaries, detection and quantification of small vessel disease
burden remain challenging on neuroimaging (Wardlaw et al.,
2013), and the potential availability of complementary blood-
based markers for small vessel CeVD may thus be a useful
tool for long term management. Interestingly, the persistence
of these associations even after controlling for cardiovascular
risk factors suggest distinct interactions between HGF and the
cerebrovasculature. Furthermore, the specificity of associations
between HGF and small vessel CeVD suggests an etiological
link between HGF and small, but not large, vessel disease,
although the precise underlying mechanisms are at present
unclear. Besides its beneficial effect on axon outgrowth, neuronal
survival, synaptic function and plasticity (Ebens et al., 1996;
Nakamura and Mizuno, 2010; Wright and Harding, 2015), HGF
has been reported to attenuate cerebral ischemia-induced blood-
brain barrier (BBB) disruption and loss of tight junction protein
expression, both of which are features of small blood vessels
of the brain (Date et al., 2006). Furthermore Knowland et al.
(2014) showed that ischemia-induced tight junction breakdown
associated with BBB disruption, but only at the level of small
venules. The increased levels of HGF seen in SVD-associated
cognitive impairment and AD cases in our study may thus
indicate adaptive plasticity responses to small-vessel mediated
neuronal damage or degeneration. However, follow-up studies
are needed to validate HGF correlations with small vessel CeVD
in AD, as well as their associations with other biomarkers, for
e.g., those of BBB disruption and ischemic damage.

The strengths of this study include: (1) a relatively large
cohort; (2) inclusion of covariates such as age, gender, APOE
ε4 carrier, hypertension, diabetes and cardiovascular diseases in
analyses to reduce confounding; and (3) use of neuroimaging
platforms to detect and quantify CeVD. However, this study
has several limitations as well. First, whilst our finding of HGF
association with CIND suggests that HGF changes may be an

TABLE 3 | Association of HGF with magnetic resonance imaging (MRI) markers of cerebrovascular disease (CeVD) in CIND and AD.

Hepatocyte Number of Number of cortical Number of lacunes Number of cerebral WMH ARWMC mean
growth factor∗ cortical infarcts microinfarcts n = 74 microbleeds difference (95%CI)‡

n = 27 n = 52 RR (95%CI)† n = 115
RR (95%CI)† RR (95%CI)† RR (95%CI)†

Model I 2.74 (0.73–10.20) 3.29 (1.66–6.53) 4.66 (2.23–9.74) 5.59 (4.12–7.60) 3.30 (1.18–5.41)
Model II 2.30 (0.63–8.47) 3.13 (1.59–6.14) 4.09 (1.95–8.63) 5.51 (4.07–7.47) 3.10 (0.95–5.25)

RR, Rate ratio (in bold font when statistically significant). Model I: adjusted for age and gender. Model II: adjusted for age, gender, hypertension, diabetes, APOE ε4 carrier
and cardiovascular disease. ∗Log transformed. † Interpretation: a person with a 10-fold increase in HGF (1 unit of 10-log increment) will be RR times more likely to have
one additional CeVD count on MRI compared with a person with a lower HGF level. ‡ Interpretation: a 10-fold increase in HGF (1 unit of 10-log increment) will give rise to
(mean difference) units increase in white matter hyperintensity (WMH) burden score (age-related white matter changes, ARWMC total score).
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early feature of AD, it is not possible to establish a temporal
association between HGF changes and the development of
cognitive impairment and AD because of the cross-sectional
design of the study. Follow-up longitudinal studies can help
address this limitation as well as elucidate the prognostic
utility of serum HGF in predicting the course of CeVD and
cognitive decline. Second, while we specifically focused on
HGF’s association with CeVD in CIND and AD, it is important
to follow-up with similar association studies on vascular or
post-stroke dementias in order to further evaluate the nature
of HGF changes in response to CeVD, and hence its diagnostic
utility. Third, the NCI control group was relatively younger and
has less burden of CeVD compared to case groups which could
have resulted in selection bias and residual confounding. Lastly,
whilst the dementia cases have been assessed using consensus
criteria for clinical AD diagnosis (NINCDS-ADRDA), there is a
lack of neuropathological confirmation at present.

In conclusion, the present study suggests that serum HGF has
potential clinical utility as a peripheral biomarker of small vessel
CeVD in cognitive impairment and AD. However, follow-up
longitudinal studies are needed for further validation.
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